/* * Digital Signature Algorithm implementation for PuTTY. */ #include #include #include #include "ssh.h" #include "mpint.h" #include "misc.h" static void dsa_freekey(ssh_key *key); /* forward reference */ static ssh_key *dsa_new_pub(const ssh_keyalg *self, ptrlen data) { BinarySource src[1]; struct dsa_key *dsa; BinarySource_BARE_INIT_PL(src, data); if (!ptrlen_eq_string(get_string(src), "ssh-dss")) return NULL; dsa = snew(struct dsa_key); dsa->sshk.vt = &ssh_dsa; dsa->p = get_mp_ssh2(src); dsa->q = get_mp_ssh2(src); dsa->g = get_mp_ssh2(src); dsa->y = get_mp_ssh2(src); dsa->x = NULL; if (get_err(src) || mp_eq_integer(dsa->p, 0) || mp_eq_integer(dsa->q, 0)) { /* Invalid key. */ dsa_freekey(&dsa->sshk); return NULL; } return &dsa->sshk; } static void dsa_freekey(ssh_key *key) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); if (dsa->p) mp_free(dsa->p); if (dsa->q) mp_free(dsa->q); if (dsa->g) mp_free(dsa->g); if (dsa->y) mp_free(dsa->y); if (dsa->x) mp_free(dsa->x); sfree(dsa); } static void append_hex_to_strbuf(strbuf *sb, mp_int *x) { if (sb->len > 0) put_byte(sb, ','); put_data(sb, "0x", 2); char *hex = mp_get_hex(x); size_t hexlen = strlen(hex); put_data(sb, hex, hexlen); smemclr(hex, hexlen); sfree(hex); } static char *dsa_cache_str(ssh_key *key) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); strbuf *sb = strbuf_new(); if (!dsa->p) { strbuf_free(sb); return NULL; } append_hex_to_strbuf(sb, dsa->p); append_hex_to_strbuf(sb, dsa->q); append_hex_to_strbuf(sb, dsa->g); append_hex_to_strbuf(sb, dsa->y); return strbuf_to_str(sb); } static key_components *dsa_components(ssh_key *key) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); key_components *kc = key_components_new(); key_components_add_text(kc, "key_type", "DSA"); assert(dsa->p); key_components_add_mp(kc, "p", dsa->p); key_components_add_mp(kc, "q", dsa->q); key_components_add_mp(kc, "g", dsa->g); key_components_add_mp(kc, "public_y", dsa->y); if (dsa->x) key_components_add_mp(kc, "private_x", dsa->x); return kc; } static char *dsa_invalid(ssh_key *key, unsigned flags) { /* No validity criterion will stop us from using a DSA key at all */ return NULL; } static bool dsa_verify(ssh_key *key, ptrlen sig, ptrlen data) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); BinarySource src[1]; unsigned char hash[20]; bool toret; if (!dsa->p) return false; BinarySource_BARE_INIT_PL(src, sig); /* * Commercial SSH (2.0.13) and OpenSSH disagree over the format * of a DSA signature. OpenSSH is in line with RFC 4253: * it uses a string "ssh-dss", followed by a 40-byte string * containing two 160-bit integers end-to-end. Commercial SSH * can't be bothered with the header bit, and considers a DSA * signature blob to be _just_ the 40-byte string containing * the two 160-bit integers. We tell them apart by measuring * the length: length 40 means the commercial-SSH bug, anything * else is assumed to be RFC-compliant. */ if (sig.len != 40) { /* bug not present; read admin fields */ ptrlen type = get_string(src); sig = get_string(src); if (get_err(src) || !ptrlen_eq_string(type, "ssh-dss") || sig.len != 40) return false; } /* Now we're sitting on a 40-byte string for sure. */ mp_int *r = mp_from_bytes_be(make_ptrlen(sig.ptr, 20)); mp_int *s = mp_from_bytes_be(make_ptrlen((const char *)sig.ptr + 20, 20)); if (!r || !s) { if (r) mp_free(r); if (s) mp_free(s); return false; } /* Basic sanity checks: 0 < r,s < q */ unsigned invalid = 0; invalid |= mp_eq_integer(r, 0); invalid |= mp_eq_integer(s, 0); invalid |= mp_cmp_hs(r, dsa->q); invalid |= mp_cmp_hs(s, dsa->q); if (invalid) { mp_free(r); mp_free(s); return false; } /* * Step 1. w <- s^-1 mod q. */ mp_int *w = mp_invert(s, dsa->q); if (!w) { mp_free(r); mp_free(s); return false; } /* * Step 2. u1 <- SHA(message) * w mod q. */ hash_simple(&ssh_sha1, data, hash); mp_int *sha = mp_from_bytes_be(make_ptrlen(hash, 20)); mp_int *u1 = mp_modmul(sha, w, dsa->q); /* * Step 3. u2 <- r * w mod q. */ mp_int *u2 = mp_modmul(r, w, dsa->q); /* * Step 4. v <- (g^u1 * y^u2 mod p) mod q. */ mp_int *gu1p = mp_modpow(dsa->g, u1, dsa->p); mp_int *yu2p = mp_modpow(dsa->y, u2, dsa->p); mp_int *gu1yu2p = mp_modmul(gu1p, yu2p, dsa->p); mp_int *v = mp_mod(gu1yu2p, dsa->q); /* * Step 5. v should now be equal to r. */ toret = mp_cmp_eq(v, r); mp_free(w); mp_free(sha); mp_free(u1); mp_free(u2); mp_free(gu1p); mp_free(yu2p); mp_free(gu1yu2p); mp_free(v); mp_free(r); mp_free(s); return toret; } static void dsa_public_blob(ssh_key *key, BinarySink *bs) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); put_stringz(bs, "ssh-dss"); put_mp_ssh2(bs, dsa->p); put_mp_ssh2(bs, dsa->q); put_mp_ssh2(bs, dsa->g); put_mp_ssh2(bs, dsa->y); } static void dsa_private_blob(ssh_key *key, BinarySink *bs) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); put_mp_ssh2(bs, dsa->x); } static ssh_key *dsa_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv) { BinarySource src[1]; ssh_key *sshk; struct dsa_key *dsa; ptrlen hash; unsigned char digest[20]; mp_int *ytest; sshk = dsa_new_pub(self, pub); if (!sshk) return NULL; dsa = container_of(sshk, struct dsa_key, sshk); BinarySource_BARE_INIT_PL(src, priv); dsa->x = get_mp_ssh2(src); if (get_err(src)) { dsa_freekey(&dsa->sshk); return NULL; } /* * Check the obsolete hash in the old DSA key format. */ hash = get_string(src); if (hash.len == 20) { ssh_hash *h = ssh_hash_new(&ssh_sha1); put_mp_ssh2(h, dsa->p); put_mp_ssh2(h, dsa->q); put_mp_ssh2(h, dsa->g); ssh_hash_final(h, digest); if (!smemeq(hash.ptr, digest, 20)) { dsa_freekey(&dsa->sshk); return NULL; } } /* * Now ensure g^x mod p really is y. */ ytest = mp_modpow(dsa->g, dsa->x, dsa->p); if (!mp_cmp_eq(ytest, dsa->y)) { mp_free(ytest); dsa_freekey(&dsa->sshk); return NULL; } mp_free(ytest); return &dsa->sshk; } static ssh_key *dsa_new_priv_openssh(const ssh_keyalg *self, BinarySource *src) { struct dsa_key *dsa; dsa = snew(struct dsa_key); dsa->sshk.vt = &ssh_dsa; dsa->p = get_mp_ssh2(src); dsa->q = get_mp_ssh2(src); dsa->g = get_mp_ssh2(src); dsa->y = get_mp_ssh2(src); dsa->x = get_mp_ssh2(src); if (get_err(src) || mp_eq_integer(dsa->q, 0) || mp_eq_integer(dsa->p, 0)) { /* Invalid key. */ dsa_freekey(&dsa->sshk); return NULL; } return &dsa->sshk; } static void dsa_openssh_blob(ssh_key *key, BinarySink *bs) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); put_mp_ssh2(bs, dsa->p); put_mp_ssh2(bs, dsa->q); put_mp_ssh2(bs, dsa->g); put_mp_ssh2(bs, dsa->y); put_mp_ssh2(bs, dsa->x); } static int dsa_pubkey_bits(const ssh_keyalg *self, ptrlen pub) { ssh_key *sshk; struct dsa_key *dsa; int ret; sshk = dsa_new_pub(self, pub); if (!sshk) return -1; dsa = container_of(sshk, struct dsa_key, sshk); ret = mp_get_nbits(dsa->p); dsa_freekey(&dsa->sshk); return ret; } mp_int *dsa_gen_k(const char *id_string, mp_int *modulus, mp_int *private_key, unsigned char *digest, int digest_len) { /* * The basic DSA signing algorithm is: * * - invent a random k between 1 and q-1 (exclusive). * - Compute r = (g^k mod p) mod q. * - Compute s = k^-1 * (hash + x*r) mod q. * * This has the dangerous properties that: * * - if an attacker in possession of the public key _and_ the * signature (for example, the host you just authenticated * to) can guess your k, he can reverse the computation of s * and work out x = r^-1 * (s*k - hash) mod q. That is, he * can deduce the private half of your key, and masquerade * as you for as long as the key is still valid. * * - since r is a function purely of k and the public key, if * the attacker only has a _range of possibilities_ for k * it's easy for him to work through them all and check each * one against r; he'll never be unsure of whether he's got * the right one. * * - if you ever sign two different hashes with the same k, it * will be immediately obvious because the two signatures * will have the same r, and moreover an attacker in * possession of both signatures (and the public key of * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q, * and from there deduce x as before. * * - the Bleichenbacher attack on DSA makes use of methods of * generating k which are significantly non-uniformly * distributed; in particular, generating a 160-bit random * number and reducing it mod q is right out. * * For this reason we must be pretty careful about how we * generate our k. Since this code runs on Windows, with no * particularly good system entropy sources, we can't trust our * RNG itself to produce properly unpredictable data. Hence, we * use a totally different scheme instead. * * What we do is to take a SHA-512 (_big_) hash of the private * key x, and then feed this into another SHA-512 hash that * also includes the message hash being signed. That is: * * proto_k = SHA512 ( SHA512(x) || SHA160(message) ) * * This number is 512 bits long, so reducing it mod q won't be * noticeably non-uniform. So * * k = proto_k mod q * * This has the interesting property that it's _deterministic_: * signing the same hash twice with the same key yields the * same signature. * * Despite this determinism, it's still not predictable to an * attacker, because in order to repeat the SHA-512 * construction that created it, the attacker would have to * know the private key value x - and by assumption he doesn't, * because if he knew that he wouldn't be attacking k! * * (This trick doesn't, _per se_, protect against reuse of k. * Reuse of k is left to chance; all it does is prevent * _excessively high_ chances of reuse of k due to entropy * problems.) * * Thanks to Colin Plumb for the general idea of using x to * ensure k is hard to guess, and to the Cambridge University * Computer Security Group for helping to argue out all the * fine details. */ ssh_hash *h; unsigned char digest512[64]; /* * Hash some identifying text plus x. */ h = ssh_hash_new(&ssh_sha512); put_asciz(h, id_string); put_mp_ssh2(h, private_key); ssh_hash_digest(h, digest512); /* * Now hash that digest plus the message hash. */ ssh_hash_reset(h); put_data(h, digest512, sizeof(digest512)); put_data(h, digest, digest_len); ssh_hash_final(h, digest512); /* * Now convert the result into a bignum, and coerce it to the * range [2,q), which we do by reducing it mod q-2 and adding 2. */ mp_int *modminus2 = mp_copy(modulus); mp_sub_integer_into(modminus2, modminus2, 2); mp_int *proto_k = mp_from_bytes_be(make_ptrlen(digest512, 64)); mp_int *k = mp_mod(proto_k, modminus2); mp_free(proto_k); mp_free(modminus2); mp_add_integer_into(k, k, 2); smemclr(digest512, sizeof(digest512)); return k; } static void dsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs) { struct dsa_key *dsa = container_of(key, struct dsa_key, sshk); unsigned char digest[20]; int i; hash_simple(&ssh_sha1, data, digest); mp_int *k = dsa_gen_k("DSA deterministic k generator", dsa->q, dsa->x, digest, sizeof(digest)); mp_int *kinv = mp_invert(k, dsa->q); /* k^-1 mod q */ /* * Now we have k, so just go ahead and compute the signature. */ mp_int *gkp = mp_modpow(dsa->g, k, dsa->p); /* g^k mod p */ mp_int *r = mp_mod(gkp, dsa->q); /* r = (g^k mod p) mod q */ mp_free(gkp); mp_int *hash = mp_from_bytes_be(make_ptrlen(digest, 20)); mp_int *xr = mp_mul(dsa->x, r); mp_int *hxr = mp_add(xr, hash); /* hash + x*r */ mp_int *s = mp_modmul(kinv, hxr, dsa->q); /* s = k^-1 * (hash+x*r) mod q */ mp_free(hxr); mp_free(xr); mp_free(kinv); mp_free(k); mp_free(hash); put_stringz(bs, "ssh-dss"); put_uint32(bs, 40); for (i = 0; i < 20; i++) put_byte(bs, mp_get_byte(r, 19 - i)); for (i = 0; i < 20; i++) put_byte(bs, mp_get_byte(s, 19 - i)); mp_free(r); mp_free(s); } const ssh_keyalg ssh_dsa = { .new_pub = dsa_new_pub, .new_priv = dsa_new_priv, .new_priv_openssh = dsa_new_priv_openssh, .freekey = dsa_freekey, .invalid = dsa_invalid, .sign = dsa_sign, .verify = dsa_verify, .public_blob = dsa_public_blob, .private_blob = dsa_private_blob, .openssh_blob = dsa_openssh_blob, .cache_str = dsa_cache_str, .components = dsa_components, .pubkey_bits = dsa_pubkey_bits, .supported_flags = nullkey_supported_flags, .alternate_ssh_id = nullkey_alternate_ssh_id, .ssh_id = "ssh-dss", .cache_id = "dss", };