/* * Header for misc.c. */ #ifndef PUTTY_MISC_H #define PUTTY_MISC_H #include "defs.h" #include "puttymem.h" #include "marshal.h" #include /* for FILE * */ #include /* for va_list */ #include /* for abort */ #include /* for struct tm */ #include /* for INT_MAX/MIN */ #include /* for assert (obviously) */ unsigned long parse_blocksize(const char *bs); char ctrlparse(char *s, char **next); size_t host_strcspn(const char *s, const char *set); char *host_strchr(const char *s, int c); char *host_strrchr(const char *s, int c); char *host_strduptrim(const char *s); char *dupstr(const char *s); char *dupcat_fn(const char *s1, ...); #define dupcat(...) dupcat_fn(__VA_ARGS__, (const char *)NULL) char *dupprintf(const char *fmt, ...) PRINTF_LIKE(1, 2); char *dupvprintf(const char *fmt, va_list ap); void burnstr(char *string); /* * The visible part of a strbuf structure. There's a surrounding * implementation struct in misc.c, which isn't exposed to client * code. */ struct strbuf { char *s; unsigned char *u; size_t len; BinarySink_IMPLEMENTATION; }; /* strbuf constructors: strbuf_new_nm and strbuf_new differ in that a * strbuf constructed using the _nm version will resize itself by * alloc/copy/smemclr/free instead of realloc. Use that version for * data sensitive enough that it's worth costing performance to * avoid copies of it lingering in process memory. */ strbuf *strbuf_new(void); strbuf *strbuf_new_nm(void); void strbuf_free(strbuf *buf); void *strbuf_append(strbuf *buf, size_t len); void strbuf_shrink_to(strbuf *buf, size_t new_len); void strbuf_shrink_by(strbuf *buf, size_t amount_to_remove); char *strbuf_to_str(strbuf *buf); /* does free buf, but you must free result */ void strbuf_catf(strbuf *buf, const char *fmt, ...) PRINTF_LIKE(2, 3); void strbuf_catfv(strbuf *buf, const char *fmt, va_list ap); static inline void strbuf_clear(strbuf *buf) { strbuf_shrink_to(buf, 0); } bool strbuf_chomp(strbuf *buf, char char_to_remove); strbuf *strbuf_new_for_agent_query(void); void strbuf_finalise_agent_query(strbuf *buf); /* String-to-Unicode converters that auto-allocate the destination and * work around the rather deficient interface of mb_to_wc. * * These actually live in miscucs.c, not misc.c (the distinction being * that the former is only linked into tools that also have the main * Unicode support). */ wchar_t *dup_mb_to_wc_c(int codepage, int flags, const char *string, int len); wchar_t *dup_mb_to_wc(int codepage, int flags, const char *string); static inline int toint(unsigned u) { /* * Convert an unsigned to an int, without running into the * undefined behaviour which happens by the strict C standard if * the value overflows. You'd hope that sensible compilers would * do the sensible thing in response to a cast, but actually I * don't trust modern compilers not to do silly things like * assuming that _obviously_ you wouldn't have caused an overflow * and so they can elide an 'if (i < 0)' test immediately after * the cast. * * Sensible compilers ought of course to optimise this entire * function into 'just return the input value', and since it's * also declared inline, elide it completely in their output. */ if (u <= (unsigned)INT_MAX) return (int)u; else if (u >= (unsigned)INT_MIN) /* wrap in cast _to_ unsigned is OK */ return INT_MIN + (int)(u - (unsigned)INT_MIN); else return INT_MIN; /* fallback; should never occur on binary machines */ } char *fgetline(FILE *fp); bool read_file_into(BinarySink *bs, FILE *fp); char *chomp(char *str); bool strstartswith(const char *s, const char *t); bool strendswith(const char *s, const char *t); void base64_encode_atom(const unsigned char *data, int n, char *out); int base64_decode_atom(const char *atom, unsigned char *out); struct bufchain_granule; struct bufchain_tag { struct bufchain_granule *head, *tail; size_t buffersize; /* current amount of buffered data */ void (*queue_idempotent_callback)(IdempotentCallback *ic); IdempotentCallback *ic; }; void bufchain_init(bufchain *ch); void bufchain_clear(bufchain *ch); size_t bufchain_size(bufchain *ch); void bufchain_add(bufchain *ch, const void *data, size_t len); ptrlen bufchain_prefix(bufchain *ch); void bufchain_consume(bufchain *ch, size_t len); void bufchain_fetch(bufchain *ch, void *data, size_t len); void bufchain_fetch_consume(bufchain *ch, void *data, size_t len); bool bufchain_try_fetch_consume(bufchain *ch, void *data, size_t len); size_t bufchain_fetch_consume_up_to(bufchain *ch, void *data, size_t len); void bufchain_set_callback_inner( bufchain *ch, IdempotentCallback *ic, void (*queue_idempotent_callback)(IdempotentCallback *ic)); static inline void bufchain_set_callback(bufchain *ch, IdempotentCallback *ic) { extern void queue_idempotent_callback(struct IdempotentCallback *ic); /* Wrapper that puts in the standard queue_idempotent_callback * function. Lives here rather than in utils.c so that standalone * programs can use the bufchain facility without this optional * callback feature and not need to provide a stub of * queue_idempotent_callback. */ bufchain_set_callback_inner(ch, ic, queue_idempotent_callback); } bool validate_manual_hostkey(char *key); struct tm ltime(void); /* * Special form of strcmp which can cope with NULL inputs. NULL is * defined to sort before even the empty string. */ int nullstrcmp(const char *a, const char *b); static inline ptrlen make_ptrlen(const void *ptr, size_t len) { ptrlen pl; pl.ptr = ptr; pl.len = len; return pl; } static inline ptrlen ptrlen_from_asciz(const char *str) { return make_ptrlen(str, strlen(str)); } static inline ptrlen ptrlen_from_strbuf(strbuf *sb) { return make_ptrlen(sb->u, sb->len); } bool ptrlen_eq_string(ptrlen pl, const char *str); bool ptrlen_eq_ptrlen(ptrlen pl1, ptrlen pl2); int ptrlen_strcmp(ptrlen pl1, ptrlen pl2); /* ptrlen_startswith and ptrlen_endswith write through their 'tail' * argument if and only if it is non-NULL and they return true. Hence * you can write ptrlen_startswith(thing, prefix, &thing), writing * back to the same ptrlen it read from, to remove a prefix if present * and say whether it did so. */ bool ptrlen_startswith(ptrlen whole, ptrlen prefix, ptrlen *tail); bool ptrlen_endswith(ptrlen whole, ptrlen suffix, ptrlen *tail); ptrlen ptrlen_get_word(ptrlen *input, const char *separators); char *mkstr(ptrlen pl); int string_length_for_printf(size_t); /* Derive two printf arguments from a ptrlen, suitable for "%.*s" */ #define PTRLEN_PRINTF(pl) \ string_length_for_printf((pl).len), (const char *)(pl).ptr /* Make a ptrlen out of a compile-time string literal. We try to * enforce that it _is_ a string literal by token-pasting "" on to it, * which should provoke a compile error if it's any other kind of * string. */ #define PTRLEN_LITERAL(stringlit) \ TYPECHECK("" stringlit "", make_ptrlen(stringlit, sizeof(stringlit)-1)) /* Make a ptrlen out of a compile-time string literal in a way that * allows you to declare the ptrlen itself as a compile-time initialiser. */ #define PTRLEN_DECL_LITERAL(stringlit) \ { TYPECHECK("" stringlit "", stringlit), sizeof(stringlit)-1 } /* Make a ptrlen out of a constant byte array. */ #define PTRLEN_FROM_CONST_BYTES(a) make_ptrlen(a, sizeof(a)) /* Wipe sensitive data out of memory that's about to be freed. Simpler * than memset because we don't need the fill char parameter; also * attempts (by fiddly use of volatile) to inhibit the compiler from * over-cleverly trying to optimise the memset away because it knows * the variable is going out of scope. */ void smemclr(void *b, size_t len); /* Compare two fixed-length chunks of memory for equality, without * data-dependent control flow (so an attacker with a very accurate * stopwatch can't try to guess where the first mismatching byte was). * Returns false for mismatch or true for equality (unlike memcmp), * hinted at by the 'eq' in the name. */ bool smemeq(const void *av, const void *bv, size_t len); /* Encode a single UTF-8 character. Assumes that illegal characters * (such as things in the surrogate range, or > 0x10FFFF) have already * been removed. */ size_t encode_utf8(void *output, unsigned long ch); /* Write a string out in C string-literal format. */ void write_c_string_literal(FILE *fp, ptrlen str); char *buildinfo(const char *newline); /* * A function you can put at points in the code where execution should * never reach in the first place. Better than assert(false), or even * assert(false && "some explanatory message"), because some compilers * don't interpret assert(false) as a declaration of unreachability, * so they may still warn about pointless things like some variable * not being initialised on the unreachable code path. * * I follow the assertion with a call to abort() just in case someone * compiles with -DNDEBUG, and I wrap that abort inside my own * function labelled NORETURN just in case some unusual kind of system * header wasn't foresighted enough to label abort() itself that way. */ static inline NORETURN void unreachable_internal(void) { abort(); } #define unreachable(msg) (assert(false && msg), unreachable_internal()) /* * Debugging functions. * * Output goes to debug.log * * debug() is like printf(). * * dmemdump() and dmemdumpl() both do memory dumps. The difference * is that dmemdumpl() is more suited for when the memory address is * important (say because you'll be recording pointer values later * on). dmemdump() is more concise. */ #ifdef DEBUG void debug_printf(const char *fmt, ...) PRINTF_LIKE(1, 2); void debug_memdump(const void *buf, int len, bool L); #define debug(...) (debug_printf(__VA_ARGS__)) #define dmemdump(buf,len) (debug_memdump(buf, len, false)) #define dmemdumpl(buf,len) (debug_memdump(buf, len, true)) #else #define debug(...) ((void)0) #define dmemdump(buf,len) ((void)0) #define dmemdumpl(buf,len) ((void)0) #endif #ifndef lenof #define lenof(x) ( (sizeof((x))) / (sizeof(*(x)))) #endif #ifndef min #define min(x,y) ( (x) < (y) ? (x) : (y) ) #endif #ifndef max #define max(x,y) ( (x) > (y) ? (x) : (y) ) #endif static inline uint64_t GET_64BIT_LSB_FIRST(const void *vp) { const uint8_t *p = (const uint8_t *)vp; return (((uint64_t)p[0] ) | ((uint64_t)p[1] << 8) | ((uint64_t)p[2] << 16) | ((uint64_t)p[3] << 24) | ((uint64_t)p[4] << 32) | ((uint64_t)p[5] << 40) | ((uint64_t)p[6] << 48) | ((uint64_t)p[7] << 56)); } static inline void PUT_64BIT_LSB_FIRST(void *vp, uint64_t value) { uint8_t *p = (uint8_t *)vp; p[0] = (uint8_t)(value); p[1] = (uint8_t)(value >> 8); p[2] = (uint8_t)(value >> 16); p[3] = (uint8_t)(value >> 24); p[4] = (uint8_t)(value >> 32); p[5] = (uint8_t)(value >> 40); p[6] = (uint8_t)(value >> 48); p[7] = (uint8_t)(value >> 56); } static inline uint32_t GET_32BIT_LSB_FIRST(const void *vp) { const uint8_t *p = (const uint8_t *)vp; return (((uint32_t)p[0] ) | ((uint32_t)p[1] << 8) | ((uint32_t)p[2] << 16) | ((uint32_t)p[3] << 24)); } static inline void PUT_32BIT_LSB_FIRST(void *vp, uint32_t value) { uint8_t *p = (uint8_t *)vp; p[0] = (uint8_t)(value); p[1] = (uint8_t)(value >> 8); p[2] = (uint8_t)(value >> 16); p[3] = (uint8_t)(value >> 24); } static inline uint16_t GET_16BIT_LSB_FIRST(const void *vp) { const uint8_t *p = (const uint8_t *)vp; return (((uint16_t)p[0] ) | ((uint16_t)p[1] << 8)); } static inline void PUT_16BIT_LSB_FIRST(void *vp, uint16_t value) { uint8_t *p = (uint8_t *)vp; p[0] = (uint8_t)(value); p[1] = (uint8_t)(value >> 8); } static inline uint64_t GET_64BIT_MSB_FIRST(const void *vp) { const uint8_t *p = (const uint8_t *)vp; return (((uint64_t)p[7] ) | ((uint64_t)p[6] << 8) | ((uint64_t)p[5] << 16) | ((uint64_t)p[4] << 24) | ((uint64_t)p[3] << 32) | ((uint64_t)p[2] << 40) | ((uint64_t)p[1] << 48) | ((uint64_t)p[0] << 56)); } static inline void PUT_64BIT_MSB_FIRST(void *vp, uint64_t value) { uint8_t *p = (uint8_t *)vp; p[7] = (uint8_t)(value); p[6] = (uint8_t)(value >> 8); p[5] = (uint8_t)(value >> 16); p[4] = (uint8_t)(value >> 24); p[3] = (uint8_t)(value >> 32); p[2] = (uint8_t)(value >> 40); p[1] = (uint8_t)(value >> 48); p[0] = (uint8_t)(value >> 56); } static inline uint32_t GET_32BIT_MSB_FIRST(const void *vp) { const uint8_t *p = (const uint8_t *)vp; return (((uint32_t)p[3] ) | ((uint32_t)p[2] << 8) | ((uint32_t)p[1] << 16) | ((uint32_t)p[0] << 24)); } static inline void PUT_32BIT_MSB_FIRST(void *vp, uint32_t value) { uint8_t *p = (uint8_t *)vp; p[3] = (uint8_t)(value); p[2] = (uint8_t)(value >> 8); p[1] = (uint8_t)(value >> 16); p[0] = (uint8_t)(value >> 24); } static inline uint16_t GET_16BIT_MSB_FIRST(const void *vp) { const uint8_t *p = (const uint8_t *)vp; return (((uint16_t)p[1] ) | ((uint16_t)p[0] << 8)); } static inline void PUT_16BIT_MSB_FIRST(void *vp, uint16_t value) { uint8_t *p = (uint8_t *)vp; p[1] = (uint8_t)(value); p[0] = (uint8_t)(value >> 8); } /* For use in X11-related applications, an endianness-variable form of * {GET,PUT}_16BIT which expects 'endian' to be either 'B' or 'l' */ static inline uint16_t GET_16BIT_X11(char endian, const void *p) { return endian == 'B' ? GET_16BIT_MSB_FIRST(p) : GET_16BIT_LSB_FIRST(p); } static inline void PUT_16BIT_X11(char endian, void *p, uint16_t value) { if (endian == 'B') PUT_16BIT_MSB_FIRST(p, value); else PUT_16BIT_LSB_FIRST(p, value); } /* Replace NULL with the empty string, permitting an idiom in which we * get a string (pointer,length) pair that might be NULL,0 and can * then safely say things like printf("%.*s", length, NULLTOEMPTY(ptr)) */ static inline const char *NULLTOEMPTY(const char *s) { return s ? s : ""; } /* StripCtrlChars, defined in stripctrl.c: an adapter you can put on * the front of one BinarySink and which functions as one in turn. * Interprets its input as a stream of multibyte characters in the * system locale, and removes any that are not either printable * characters or newlines. */ struct StripCtrlChars { BinarySink_IMPLEMENTATION; /* and this is contained in a larger structure */ }; StripCtrlChars *stripctrl_new( BinarySink *bs_out, bool permit_cr, wchar_t substitution); StripCtrlChars *stripctrl_new_term_fn( BinarySink *bs_out, bool permit_cr, wchar_t substitution, Terminal *term, unsigned long (*translate)( Terminal *, term_utf8_decode *, unsigned char)); #define stripctrl_new_term(bs, cr, sub, term) \ stripctrl_new_term_fn(bs, cr, sub, term, term_translate) void stripctrl_retarget(StripCtrlChars *sccpub, BinarySink *new_bs_out); void stripctrl_reset(StripCtrlChars *sccpub); void stripctrl_free(StripCtrlChars *sanpub); void stripctrl_enable_line_limiting(StripCtrlChars *sccpub); char *stripctrl_string_ptrlen(StripCtrlChars *sccpub, ptrlen str); static inline char *stripctrl_string(StripCtrlChars *sccpub, const char *str) { return stripctrl_string_ptrlen(sccpub, ptrlen_from_asciz(str)); } /* * A mechanism for loading a file from disk into a memory buffer where * it can be picked apart as a BinarySource. */ struct LoadedFile { char *data; size_t len, max_size; BinarySource_IMPLEMENTATION; }; typedef enum { LF_OK, /* file loaded successfully */ LF_TOO_BIG, /* file didn't fit in buffer */ LF_ERROR, /* error from stdio layer */ } LoadFileStatus; LoadedFile *lf_new(size_t max_size); void lf_free(LoadedFile *lf); LoadFileStatus lf_load_fp(LoadedFile *lf, FILE *fp); LoadFileStatus lf_load(LoadedFile *lf, const Filename *filename); static inline ptrlen ptrlen_from_lf(LoadedFile *lf) { return make_ptrlen(lf->data, lf->len); } /* Set the memory block of 'size' bytes at 'out' to the bitwise XOR of * the two blocks of the same size at 'in1' and 'in2'. * * 'out' may point to exactly the same address as one of the inputs, * but if the input and output blocks overlap in any other way, the * result of this function is not guaranteed. No memmove-style effort * is made to handle difficult overlap cases. */ void memxor(uint8_t *out, const uint8_t *in1, const uint8_t *in2, size_t size); #endif