/* * Diffie-Hellman implementation for PuTTY. */ #include "ssh.h" /* * The primes used in the group1 and group14 key exchange. */ static const unsigned char P1[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const unsigned char P14[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; /* * The generator g = 2 (used for both group1 and group14). */ static const unsigned char G[] = { 2 }; struct dh_extra { const unsigned char *pdata, *gdata; /* NULL means group exchange */ int plen, glen; }; static const struct dh_extra extra_group1 = { P1, G, lenof(P1), lenof(G), }; static const struct ssh_kex ssh_diffiehellman_group1_sha1 = { "diffie-hellman-group1-sha1", "group1", KEXTYPE_DH, &ssh_sha1, &extra_group1, }; static const struct ssh_kex *const group1_list[] = { &ssh_diffiehellman_group1_sha1 }; const struct ssh_kexes ssh_diffiehellman_group1 = { sizeof(group1_list) / sizeof(*group1_list), group1_list }; static const struct dh_extra extra_group14 = { P14, G, lenof(P14), lenof(G), }; static const struct ssh_kex ssh_diffiehellman_group14_sha256 = { "diffie-hellman-group14-sha256", "group14", KEXTYPE_DH, &ssh_sha256, &extra_group14, }; static const struct ssh_kex ssh_diffiehellman_group14_sha1 = { "diffie-hellman-group14-sha1", "group14", KEXTYPE_DH, &ssh_sha1, &extra_group14, }; static const struct ssh_kex *const group14_list[] = { &ssh_diffiehellman_group14_sha256, &ssh_diffiehellman_group14_sha1 }; const struct ssh_kexes ssh_diffiehellman_group14 = { sizeof(group14_list) / sizeof(*group14_list), group14_list }; static const struct dh_extra extra_gex = { NULL, NULL, 0, 0, }; static const struct ssh_kex ssh_diffiehellman_gex_sha256 = { "diffie-hellman-group-exchange-sha256", NULL, KEXTYPE_DH, &ssh_sha256, &extra_gex, }; static const struct ssh_kex ssh_diffiehellman_gex_sha1 = { "diffie-hellman-group-exchange-sha1", NULL, KEXTYPE_DH, &ssh_sha1, &extra_gex, }; static const struct ssh_kex *const gex_list[] = { &ssh_diffiehellman_gex_sha256, &ssh_diffiehellman_gex_sha1 }; const struct ssh_kexes ssh_diffiehellman_gex = { sizeof(gex_list) / sizeof(*gex_list), gex_list }; /* * Suffix on GSSAPI SSH protocol identifiers that indicates Kerberos 5 * as the mechanism. * * This suffix is the base64-encoded MD5 hash of the byte sequence * 06 09 2A 86 48 86 F7 12 01 02 02, which in turn is the ASN.1 DER * encoding of the object ID 1.2.840.113554.1.2.2 which designates * Kerberos v5. * * (The same encoded OID, minus the two-byte DER header, is defined in * pgssapi.c as GSS_MECH_KRB5.) */ #define GSS_KRB5_OID_HASH "toWM5Slw5Ew8Mqkay+al2g==" static const struct ssh_kex ssh_gssk5_diffiehellman_gex_sha1 = { "gss-gex-sha1-" GSS_KRB5_OID_HASH, NULL, KEXTYPE_GSS, &ssh_sha1, &extra_gex, }; static const struct ssh_kex ssh_gssk5_diffiehellman_group14_sha1 = { "gss-group14-sha1-" GSS_KRB5_OID_HASH, "group14", KEXTYPE_GSS, &ssh_sha1, &extra_group14, }; static const struct ssh_kex ssh_gssk5_diffiehellman_group1_sha1 = { "gss-group1-sha1-" GSS_KRB5_OID_HASH, "group1", KEXTYPE_GSS, &ssh_sha1, &extra_group1, }; static const struct ssh_kex *const gssk5_sha1_kex_list[] = { &ssh_gssk5_diffiehellman_gex_sha1, &ssh_gssk5_diffiehellman_group14_sha1, &ssh_gssk5_diffiehellman_group1_sha1 }; const struct ssh_kexes ssh_gssk5_sha1_kex = { sizeof(gssk5_sha1_kex_list) / sizeof(*gssk5_sha1_kex_list), gssk5_sha1_kex_list }; /* * Variables. */ struct dh_ctx { Bignum x, e, p, q, qmask, g; }; /* * Common DH initialisation. */ static void dh_init(struct dh_ctx *ctx) { ctx->q = bignum_rshift(ctx->p, 1); ctx->qmask = bignum_bitmask(ctx->q); ctx->x = ctx->e = NULL; } bool dh_is_gex(const struct ssh_kex *kex) { const struct dh_extra *extra = (const struct dh_extra *)kex->extra; return extra->pdata == NULL; } /* * Initialise DH for a standard group. */ struct dh_ctx *dh_setup_group(const struct ssh_kex *kex) { const struct dh_extra *extra = (const struct dh_extra *)kex->extra; struct dh_ctx *ctx = snew(struct dh_ctx); ctx->p = bignum_from_bytes(extra->pdata, extra->plen); ctx->g = bignum_from_bytes(extra->gdata, extra->glen); dh_init(ctx); return ctx; } /* * Initialise DH for a server-supplied group. */ struct dh_ctx *dh_setup_gex(Bignum pval, Bignum gval) { struct dh_ctx *ctx = snew(struct dh_ctx); ctx->p = copybn(pval); ctx->g = copybn(gval); dh_init(ctx); return ctx; } /* * Clean up and free a context. */ void dh_cleanup(struct dh_ctx *ctx) { freebn(ctx->x); freebn(ctx->e); freebn(ctx->p); freebn(ctx->g); freebn(ctx->q); freebn(ctx->qmask); sfree(ctx); } /* * DH stage 1: invent a number x between 1 and q, and compute e = * g^x mod p. Return e. * * If `nbits' is greater than zero, it is used as an upper limit * for the number of bits in x. This is safe provided that (a) you * use twice as many bits in x as the number of bits you expect to * use in your session key, and (b) the DH group is a safe prime * (which SSH demands that it must be). * * P. C. van Oorschot, M. J. Wiener * "On Diffie-Hellman Key Agreement with Short Exponents". * Advances in Cryptology: Proceedings of Eurocrypt '96 * Springer-Verlag, May 1996. */ Bignum dh_create_e(struct dh_ctx *ctx, int nbits) { int i; int nbytes; unsigned char *buf; nbytes = (bignum_bitcount(ctx->qmask) + 7) / 8; buf = snewn(nbytes, unsigned char); do { /* * Create a potential x, by ANDing a string of random bytes * with qmask. */ if (ctx->x) freebn(ctx->x); if (nbits == 0 || nbits > bignum_bitcount(ctx->qmask)) { for (i = 0; i < nbytes; i++) buf[i] = bignum_byte(ctx->qmask, i) & random_byte(); ctx->x = bignum_from_bytes(buf, nbytes); } else { int b, nb; ctx->x = bn_power_2(nbits); b = nb = 0; for (i = 0; i < nbits; i++) { if (nb == 0) { nb = 8; b = random_byte(); } bignum_set_bit(ctx->x, i, b & 1); b >>= 1; nb--; } } } while (bignum_cmp(ctx->x, One) <= 0 || bignum_cmp(ctx->x, ctx->q) >= 0); sfree(buf); /* * Done. Now compute e = g^x mod p. */ ctx->e = modpow(ctx->g, ctx->x, ctx->p); return ctx->e; } /* * DH stage 2-epsilon: given a number f, validate it to ensure it's in * range. (RFC 4253 section 8: "Values of 'e' or 'f' that are not in * the range [1, p-1] MUST NOT be sent or accepted by either side." * Also, we rule out 1 and p-1 too, since that's easy to do and since * they lead to obviously weak keys that even a passive eavesdropper * can figure out.) */ const char *dh_validate_f(struct dh_ctx *ctx, Bignum f) { if (bignum_cmp(f, One) <= 0) { return "f value received is too small"; } else { Bignum pm1 = bigsub(ctx->p, One); int cmp = bignum_cmp(f, pm1); freebn(pm1); if (cmp >= 0) return "f value received is too large"; } return NULL; } /* * DH stage 2: given a number f, compute K = f^x mod p. */ Bignum dh_find_K(struct dh_ctx *ctx, Bignum f) { Bignum ret; ret = modpow(f, ctx->x, ctx->p); return ret; }