#!/usr/bin/env python3 import sys import string from collections import namedtuple assert sys.version_info[:2] >= (3,0), "This is Python 3 code" class Multiprecision(object): def __init__(self, target, minval, maxval, words): self.target = target self.minval = minval self.maxval = maxval self.words = words assert 0 <= self.minval assert self.minval <= self.maxval assert self.target.nwords(self.maxval) == len(words) def getword(self, n): return self.words[n] if n < len(self.words) else "0" def __add__(self, rhs): newmin = self.minval + rhs.minval newmax = self.maxval + rhs.maxval nwords = self.target.nwords(newmax) words = [] addfn = self.target.add for i in range(nwords): words.append(addfn(self.getword(i), rhs.getword(i))) addfn = self.target.adc return Multiprecision(self.target, newmin, newmax, words) def __mul__(self, rhs): newmin = self.minval * rhs.minval newmax = self.maxval * rhs.maxval nwords = self.target.nwords(newmax) words = [] # There are basically two strategies we could take for # multiplying two multiprecision integers. One is to enumerate # the space of pairs of word indices in lexicographic order, # essentially computing a*b[i] for each i and adding them # together; the other is to enumerate in diagonal order, # computing everything together that belongs at a particular # output word index. # # For the moment, I've gone for the former. sprev = [] for i, sword in enumerate(self.words): rprev = None sthis = sprev[:i] for j, rword in enumerate(rhs.words): prevwords = [] if i+j < len(sprev): prevwords.append(sprev[i+j]) if rprev is not None: prevwords.append(rprev) vhi, vlo = self.target.muladd(sword, rword, *prevwords) sthis.append(vlo) rprev = vhi sthis.append(rprev) sprev = sthis # Remove unneeded words from the top of the output, if we can # prove by range analysis that they'll always be zero. sprev = sprev[:self.target.nwords(newmax)] return Multiprecision(self.target, newmin, newmax, sprev) def extract_bits(self, start, bits=None): if bits is None: bits = (self.maxval >> start).bit_length() # Overly thorough range analysis: if min and max have the same # *quotient* by 2^bits, then the result of reducing anything # in the range [min,max] mod 2^bits has to fall within the # obvious range. But if they have different quotients, then # you can wrap round the modulus and so any value mod 2^bits # is possible. newmin = self.minval >> start newmax = self.maxval >> start if (newmin >> bits) != (newmax >> bits): newmin = 0 newmax = (1 << bits) - 1 nwords = self.target.nwords(newmax) words = [] for i in range(nwords): srcpos = i * self.target.bits + start maxbits = min(self.target.bits, start + bits - srcpos) wordindex = srcpos // self.target.bits if srcpos % self.target.bits == 0: word = self.getword(srcpos // self.target.bits) elif (wordindex+1 >= len(self.words) or srcpos % self.target.bits + maxbits < self.target.bits): word = self.target.new_value( "(%%s) >> %d" % (srcpos % self.target.bits), self.getword(srcpos // self.target.bits)) else: word = self.target.new_value( "((%%s) >> %d) | ((%%s) << %d)" % ( srcpos % self.target.bits, self.target.bits - (srcpos % self.target.bits)), self.getword(srcpos // self.target.bits), self.getword(srcpos // self.target.bits + 1)) if maxbits < self.target.bits and maxbits < bits: word = self.target.new_value( "(%%s) & ((((BignumInt)1) << %d)-1)" % maxbits, word) words.append(word) return Multiprecision(self.target, newmin, newmax, words) # Each Statement has a list of variables it reads, and a list of ones # it writes. 'forms' is a list of multiple actual C statements it # could be generated as, depending on which of its output variables is # actually used (e.g. no point calling BignumADC if the generated # carry in a particular case is unused, or BignumMUL if nobody needs # the top half). It is indexed by a bitmap whose bits correspond to # the entries in wvars, with wvars[0] the MSB and wvars[-1] the LSB. Statement = namedtuple("Statement", "rvars wvars forms") class CodegenTarget(object): def __init__(self, bits): self.bits = bits self.valindex = 0 self.stmts = [] self.generators = {} self.bv_words = (130 + self.bits - 1) // self.bits self.carry_index = 0 def nwords(self, maxval): return (maxval.bit_length() + self.bits - 1) // self.bits def stmt(self, stmt, needed=False): index = len(self.stmts) self.stmts.append([needed, stmt]) for val in stmt.wvars: self.generators[val] = index def new_value(self, formatstr=None, *deps): name = "v%d" % self.valindex self.valindex += 1 if formatstr is not None: self.stmt(Statement( rvars=deps, wvars=[name], forms=[None, name + " = " + formatstr % deps])) return name def bigval_input(self, name, bits): words = (bits + self.bits - 1) // self.bits # Expect not to require an entire extra word assert words == self.bv_words return Multiprecision(self, 0, (1<w[%d]" % (name, i)) for i in range(words)]) def const(self, value): # We only support constants small enough to both fit in a # BignumInt (of any size supported) _and_ be expressible in C # with no weird integer literal syntax like a trailing LL. # # Supporting larger constants would be possible - you could # break 'value' up into word-sized pieces on the Python side, # and generate a legal C expression for each piece by # splitting it further into pieces within the # standards-guaranteed 'unsigned long' limit of 32 bits and # then casting those to BignumInt before combining them with # shifts. But it would be a lot of effort, and since the # application for this code doesn't even need it, there's no # point in bothering. assert value < 2**16 return Multiprecision(self, value, value, ["%d" % value]) def current_carry(self): return "carry%d" % self.carry_index def add(self, a1, a2): ret = self.new_value() adcform = "BignumADC(%s, carry, %s, %s, 0)" % (ret, a1, a2) plainform = "%s = %s + %s" % (ret, a1, a2) self.carry_index += 1 carryout = self.current_carry() self.stmt(Statement( rvars=[a1,a2], wvars=[ret,carryout], forms=[None, adcform, plainform, adcform])) return ret def adc(self, a1, a2): ret = self.new_value() adcform = "BignumADC(%s, carry, %s, %s, carry)" % (ret, a1, a2) plainform = "%s = %s + %s + carry" % (ret, a1, a2) carryin = self.current_carry() self.carry_index += 1 carryout = self.current_carry() self.stmt(Statement( rvars=[a1,a2,carryin], wvars=[ret,carryout], forms=[None, adcform, plainform, adcform])) return ret def muladd(self, m1, m2, *addends): rlo = self.new_value() rhi = self.new_value() wideform = "BignumMUL%s(%s)" % ( { 0:"", 1:"ADD", 2:"ADD2" }[len(addends)], ", ".join([rhi, rlo, m1, m2] + list(addends))) narrowform = " + ".join(["%s = %s * %s" % (rlo, m1, m2)] + list(addends)) self.stmt(Statement( rvars=[m1,m2]+list(addends), wvars=[rhi,rlo], forms=[None, narrowform, wideform, wideform])) return rhi, rlo def write_bigval(self, name, val): for i in range(self.bv_words): word = val.getword(i) self.stmt(Statement( rvars=[word], wvars=[], forms=["%s->w[%d] = %s" % (name, i, word)]), needed=True) def compute_needed(self): used_vars = set() self.queue = [stmt for (needed,stmt) in self.stmts if needed] while len(self.queue) > 0: stmt = self.queue.pop(0) deps = [] for var in stmt.rvars: if var[0] in string.digits: continue # constant deps.append(self.generators[var]) used_vars.add(var) for index in deps: if not self.stmts[index][0]: self.stmts[index][0] = True self.queue.append(self.stmts[index][1]) forms = [] for i, (needed, stmt) in enumerate(self.stmts): if needed: formindex = 0 for (j, var) in enumerate(stmt.wvars): formindex *= 2 if var in used_vars: formindex += 1 forms.append(stmt.forms[formindex]) # Now we must check whether this form of the statement # also writes some variables we _don't_ actually need # (e.g. if you only wanted the top half from a mul, or # only the carry from an adc, you'd be forced to # generate the other output too). Easiest way to do # this is to look for an identical statement form # later in the array. maxindex = max(i for i in range(len(stmt.forms)) if stmt.forms[i] == stmt.forms[formindex]) extra_vars = maxindex & ~formindex bitpos = 0 while extra_vars != 0: if extra_vars & (1 << bitpos): extra_vars &= ~(1 << bitpos) var = stmt.wvars[-1-bitpos] used_vars.add(var) # Also, write out a cast-to-void for each # subsequently unused value, to prevent gcc # warnings when the output code is compiled. forms.append("(void)" + var) bitpos += 1 used_carry = any(v.startswith("carry") for v in used_vars) used_vars = [v for v in used_vars if v.startswith("v")] used_vars.sort(key=lambda v: int(v[1:])) return used_carry, used_vars, forms def text(self): used_carry, values, forms = self.compute_needed() ret = "" while len(values) > 0: prefix, sep, suffix = " BignumInt ", ", ", ";" currline = values.pop(0) while (len(values) > 0 and len(prefix+currline+sep+values[0]+suffix) < 79): currline += sep + values.pop(0) ret += prefix + currline + suffix + "\n" if used_carry: ret += " BignumCarry carry;\n" if ret != "": ret += "\n" for stmtform in forms: ret += " %s;\n" % stmtform return ret def gen_add(target): # This is an addition _without_ reduction mod p, so that it can be # used both during accumulation of the polynomial and for adding # on the encrypted nonce at the end (which is mod 2^128, not mod # p). # # Because one of the inputs will have come from our # not-completely-reducing multiplication function, we expect up to # 3 extra bits of input. a = target.bigval_input("a", 133) b = target.bigval_input("b", 133) ret = a + b target.write_bigval("r", ret) return """\ static void bigval_add(bigval *r, const bigval *a, const bigval *b) { %s} \n""" % target.text() def gen_mul(target): # The inputs are not 100% reduced mod p. Specifically, we can get # a full 130-bit number from the pow5==0 pass, and then a 130-bit # number times 5 from the pow5==1 pass, plus a possible carry. The # total of that can be easily bounded above by 2^130 * 8, so we # need to assume we're multiplying two 133-bit numbers. a = target.bigval_input("a", 133) b = target.bigval_input("b", 133) ab = a * b ab0 = ab.extract_bits(0, 130) ab1 = ab.extract_bits(130, 130) ab2 = ab.extract_bits(260) ab1_5 = target.const(5) * ab1 ab2_25 = target.const(25) * ab2 ret = ab0 + ab1_5 + ab2_25 target.write_bigval("r", ret) return """\ static void bigval_mul_mod_p(bigval *r, const bigval *a, const bigval *b) { %s} \n""" % target.text() def gen_final_reduce(target): # Given our input number n, n >> 130 is usually precisely the # multiple of p that needs to be subtracted from n to reduce it to # strictly less than p, but it might be too low by 1 (but not more # than 1, given the range of our input is nowhere near the square # of the modulus). So we add another 5, which will push a carry # into the 130th bit if and only if that has happened, and then # use that to decide whether to subtract one more copy of p. a = target.bigval_input("n", 133) q = a.extract_bits(130) adjusted = a.extract_bits(0, 130) + target.const(5) * q final_subtract = (adjusted + target.const(5)).extract_bits(130) adjusted2 = adjusted + target.const(5) * final_subtract ret = adjusted2.extract_bits(0, 130) target.write_bigval("n", ret) return """\ static void bigval_final_reduce(bigval *n) { %s} \n""" % target.text() pp_keyword = "#if" for bits in [16, 32, 64]: sys.stdout.write("%s BIGNUM_INT_BITS == %d\n\n" % (pp_keyword, bits)) pp_keyword = "#elif" sys.stdout.write(gen_add(CodegenTarget(bits))) sys.stdout.write(gen_mul(CodegenTarget(bits))) sys.stdout.write(gen_final_reduce(CodegenTarget(bits))) sys.stdout.write("""#else #error Add another bit count to contrib/make1305.py and rerun it #endif """)