/* * Generic SSH public-key handling operations. In particular, * reading of SSH public-key files, and also the generic `sign' * operation for SSH-2 (which checks the type of the key and * dispatches to the appropriate key-type specific function). */ #include #include #include #include "putty.h" #include "ssh.h" #include "misc.h" #define rsa_signature "SSH PRIVATE KEY FILE FORMAT 1.1\n" #define BASE64_TOINT(x) ( (x)-'A'<26 ? (x)-'A'+0 :\ (x)-'a'<26 ? (x)-'a'+26 :\ (x)-'0'<10 ? (x)-'0'+52 :\ (x)=='+' ? 62 : \ (x)=='/' ? 63 : 0 ) static int key_type_fp(FILE *fp); static int rsa_ssh1_load_main(FILE * fp, struct RSAKey *key, int pub_only, char **commentptr, const char *passphrase, const char **error) { strbuf *buf; int ciphertype; int ret = 0; struct MD5Context md5c; ptrlen comment; BinarySource src[1]; *error = NULL; /* Slurp the whole file (minus the header) into a buffer. */ buf = strbuf_new(); { int ch; while ((ch = fgetc(fp)) != EOF) put_byte(buf, ch); } fclose(fp); BinarySource_BARE_INIT(src, buf->u, buf->len); *error = "file format error"; /* * A zero byte. (The signature includes a terminating NUL, which * we haven't gone past yet because we read it using fgets which * stopped after the \n.) */ if (get_byte(src) != 0) goto end; /* One byte giving encryption type, and one reserved uint32. */ ciphertype = get_byte(src); if (ciphertype != 0 && ciphertype != SSH_CIPHER_3DES) goto end; if (get_uint32(src) != 0) goto end; /* reserved field nonzero, panic! */ /* Now the serious stuff. An ordinary SSH-1 public key. */ get_rsa_ssh1_pub(src, key, RSA_SSH1_MODULUS_FIRST); /* Next, the comment field. */ comment = get_string(src); if (commentptr) *commentptr = mkstr(comment); if (key) key->comment = mkstr(comment); if (pub_only) { ret = 1; goto end; } if (!key) { ret = ciphertype != 0; *error = NULL; goto end; } /* * Decrypt remainder of buffer. */ if (ciphertype) { unsigned char keybuf[16]; size_t enclen = buf->len - src->pos; if (enclen & 7) goto end; MD5Init(&md5c); put_data(&md5c, passphrase, strlen(passphrase)); MD5Final(keybuf, &md5c); des3_decrypt_pubkey(keybuf, buf->u + src->pos, enclen); smemclr(keybuf, sizeof(keybuf)); /* burn the evidence */ } /* * We are now in the secret part of the key. The first four * bytes should be of the form a, b, a, b. */ { int b0a = get_byte(src); int b1a = get_byte(src); int b0b = get_byte(src); int b1b = get_byte(src); if (b0a != b0b || b1a != b1b) { *error = "wrong passphrase"; ret = -1; goto end; } } /* * After that, we have one further bignum which is our * decryption exponent, and then the three auxiliary values * (iqmp, q, p). */ get_rsa_ssh1_priv(src, key); key->iqmp = get_mp_ssh1(src); key->q = get_mp_ssh1(src); key->p = get_mp_ssh1(src); if (!rsa_verify(key)) { *error = "rsa_verify failed"; freersakey(key); ret = 0; } else ret = 1; end: strbuf_free(buf); return ret; } int rsa_ssh1_loadkey(const Filename *filename, struct RSAKey *key, const char *passphrase, const char **errorstr) { FILE *fp; char buf[64]; int ret = 0; const char *error = NULL; fp = f_open(filename, "rb", FALSE); if (!fp) { error = "can't open file"; goto end; } /* * Read the first line of the file and see if it's a v1 private * key file. */ if (fgets(buf, sizeof(buf), fp) && !strcmp(buf, rsa_signature)) { /* * This routine will take care of calling fclose() for us. */ ret = rsa_ssh1_load_main(fp, key, FALSE, NULL, passphrase, &error); fp = NULL; goto end; } /* * Otherwise, we have nothing. Return empty-handed. */ error = "not an SSH-1 RSA file"; end: if (fp) fclose(fp); if ((ret != 1) && errorstr) *errorstr = error; return ret; } /* * See whether an RSA key is encrypted. Return its comment field as * well. */ int rsa_ssh1_encrypted(const Filename *filename, char **comment) { FILE *fp; char buf[64]; fp = f_open(filename, "rb", FALSE); if (!fp) return 0; /* doesn't even exist */ /* * Read the first line of the file and see if it's a v1 private * key file. */ if (fgets(buf, sizeof(buf), fp) && !strcmp(buf, rsa_signature)) { const char *dummy; /* * This routine will take care of calling fclose() for us. */ return rsa_ssh1_load_main(fp, NULL, FALSE, comment, NULL, &dummy); } fclose(fp); return 0; /* wasn't the right kind of file */ } /* * Read the public part of an SSH-1 RSA key from a file (public or * private), and generate its public blob in exponent-first order. */ int rsa_ssh1_loadpub(const Filename *filename, BinarySink *bs, char **commentptr, const char **errorstr) { FILE *fp; char buf[64]; struct RSAKey key; int ret; const char *error = NULL; /* Default return if we fail. */ ret = FALSE; fp = f_open(filename, "rb", FALSE); if (!fp) { error = "can't open file"; goto end; } /* * Read the first line of the file and see if it's a v1 private * key file. */ if (fgets(buf, sizeof(buf), fp) && !strcmp(buf, rsa_signature)) { memset(&key, 0, sizeof(key)); if (rsa_ssh1_load_main(fp, &key, TRUE, commentptr, NULL, &error)) { rsa_ssh1_public_blob(bs, &key, RSA_SSH1_EXPONENT_FIRST); freersakey(&key); ret = TRUE; } fp = NULL; /* rsa_ssh1_load_main unconditionally closes fp */ } else { /* * Try interpreting the file as an SSH-1 public key. */ char *line, *p, *bitsp, *expp, *modp, *commentp; rewind(fp); line = chomp(fgetline(fp)); p = line; bitsp = p; p += strspn(p, "0123456789"); if (*p != ' ') goto not_public_either; *p++ = '\0'; expp = p; p += strspn(p, "0123456789"); if (*p != ' ') goto not_public_either; *p++ = '\0'; modp = p; p += strspn(p, "0123456789"); if (*p) { if (*p != ' ') goto not_public_either; *p++ = '\0'; commentp = p; } else { commentp = NULL; } memset(&key, 0, sizeof(key)); key.exponent = bignum_from_decimal(expp); key.modulus = bignum_from_decimal(modp); if (atoi(bitsp) != bignum_bitcount(key.modulus)) { freebn(key.exponent); freebn(key.modulus); sfree(line); error = "key bit count does not match in SSH-1 public key file"; goto end; } if (commentptr) *commentptr = commentp ? dupstr(commentp) : NULL; rsa_ssh1_public_blob(bs, &key, RSA_SSH1_EXPONENT_FIRST); freersakey(&key); sfree(line); fclose(fp); return TRUE; not_public_either: sfree(line); error = "not an SSH-1 RSA file"; } end: if (fp) fclose(fp); if ((ret != 1) && errorstr) *errorstr = error; return ret; } /* * Save an RSA key file. Return nonzero on success. */ int rsa_ssh1_savekey(const Filename *filename, struct RSAKey *key, char *passphrase) { strbuf *buf = strbuf_new(); int estart; FILE *fp; /* * The public part of the key. */ put_data(buf, rsa_signature, sizeof(rsa_signature)); put_byte(buf, passphrase ? SSH_CIPHER_3DES : 0); /* encryption type */ put_uint32(buf, 0); /* reserved */ rsa_ssh1_public_blob(BinarySink_UPCAST(buf), key, RSA_SSH1_MODULUS_FIRST); put_stringz(buf, NULLTOEMPTY(key->comment)); /* * The encrypted portion starts here. */ estart = buf->len; /* * Two bytes, then the same two bytes repeated. */ { unsigned char b0 = random_byte(); unsigned char b1 = random_byte(); put_byte(buf, b0); put_byte(buf, b1); put_byte(buf, b0); put_byte(buf, b1); } /* * Four more bignums: the decryption exponent, then iqmp, then * q, then p. */ put_mp_ssh1(buf, key->private_exponent); put_mp_ssh1(buf, key->iqmp); put_mp_ssh1(buf, key->q); put_mp_ssh1(buf, key->p); /* * Now write zeros until the encrypted portion is a multiple of * 8 bytes. */ put_padding(buf, (estart - buf->len) & 7, 0); /* * Now encrypt the encrypted portion. */ if (passphrase) { struct MD5Context md5c; unsigned char keybuf[16]; MD5Init(&md5c); put_data(&md5c, passphrase, strlen(passphrase)); MD5Final(keybuf, &md5c); des3_encrypt_pubkey(keybuf, buf->u + estart, buf->len - estart); smemclr(keybuf, sizeof(keybuf)); /* burn the evidence */ } /* * Done. Write the result to the file. */ fp = f_open(filename, "wb", TRUE); if (fp) { int ret = (fwrite(buf->u, 1, buf->len, fp) == (size_t) (buf->len)); if (fclose(fp)) ret = 0; return ret; } else return 0; } /* ---------------------------------------------------------------------- * SSH-2 private key load/store functions. */ /* * PuTTY's own format for SSH-2 keys is as follows: * * The file is text. Lines are terminated by CRLF, although CR-only * and LF-only are tolerated on input. * * The first line says "PuTTY-User-Key-File-2: " plus the name of the * algorithm ("ssh-dss", "ssh-rsa" etc). * * The next line says "Encryption: " plus an encryption type. * Currently the only supported encryption types are "aes256-cbc" * and "none". * * The next line says "Comment: " plus the comment string. * * Next there is a line saying "Public-Lines: " plus a number N. * The following N lines contain a base64 encoding of the public * part of the key. This is encoded as the standard SSH-2 public key * blob (with no initial length): so for RSA, for example, it will * read * * string "ssh-rsa" * mpint exponent * mpint modulus * * Next, there is a line saying "Private-Lines: " plus a number N, * and then N lines containing the (potentially encrypted) private * part of the key. For the key type "ssh-rsa", this will be * composed of * * mpint private_exponent * mpint p (the larger of the two primes) * mpint q (the smaller prime) * mpint iqmp (the inverse of q modulo p) * data padding (to reach a multiple of the cipher block size) * * And for "ssh-dss", it will be composed of * * mpint x (the private key parameter) * [ string hash 20-byte hash of mpints p || q || g only in old format ] * * Finally, there is a line saying "Private-MAC: " plus a hex * representation of a HMAC-SHA-1 of: * * string name of algorithm ("ssh-dss", "ssh-rsa") * string encryption type * string comment * string public-blob * string private-plaintext (the plaintext version of the * private part, including the final * padding) * * The key to the MAC is itself a SHA-1 hash of: * * data "putty-private-key-file-mac-key" * data passphrase * * (An empty passphrase is used for unencrypted keys.) * * If the key is encrypted, the encryption key is derived from the * passphrase by means of a succession of SHA-1 hashes. Each hash * is the hash of: * * uint32 sequence-number * data passphrase * * where the sequence-number increases from zero. As many of these * hashes are used as necessary. * * For backwards compatibility with snapshots between 0.51 and * 0.52, we also support the older key file format, which begins * with "PuTTY-User-Key-File-1" (version number differs). In this * format the Private-MAC: field only covers the private-plaintext * field and nothing else (and without the 4-byte string length on * the front too). Moreover, the Private-MAC: field can be replaced * with a Private-Hash: field which is a plain SHA-1 hash instead of * an HMAC (this was generated for unencrypted keys). */ static int read_header(FILE * fp, char *header) { int len = 39; int c; while (1) { c = fgetc(fp); if (c == '\n' || c == '\r' || c == EOF) return 0; /* failure */ if (c == ':') { c = fgetc(fp); if (c != ' ') return 0; *header = '\0'; return 1; /* success! */ } if (len == 0) return 0; /* failure */ *header++ = c; len--; } return 0; /* failure */ } static char *read_body(FILE * fp) { char *text; int len; int size; int c; size = 128; text = snewn(size, char); len = 0; text[len] = '\0'; while (1) { c = fgetc(fp); if (c == '\r' || c == '\n' || c == EOF) { if (c != EOF) { c = fgetc(fp); if (c != '\r' && c != '\n') ungetc(c, fp); } return text; } if (len + 1 >= size) { size += 128; text = sresize(text, size, char); } text[len++] = c; text[len] = '\0'; } } static int read_blob(FILE *fp, int nlines, BinarySink *bs) { unsigned char *blob; char *line; int linelen; int i, j, k; /* We expect at most 64 base64 characters, ie 48 real bytes, per line. */ blob = snewn(48 * nlines, unsigned char); for (i = 0; i < nlines; i++) { line = read_body(fp); if (!line) { sfree(blob); return FALSE; } linelen = strlen(line); if (linelen % 4 != 0 || linelen > 64) { sfree(blob); sfree(line); return FALSE; } for (j = 0; j < linelen; j += 4) { unsigned char decoded[3]; k = base64_decode_atom(line + j, decoded); if (!k) { sfree(line); sfree(blob); return FALSE; } put_data(bs, decoded, k); } sfree(line); } return TRUE; } /* * Magic error return value for when the passphrase is wrong. */ struct ssh2_userkey ssh2_wrong_passphrase = { NULL, NULL }; const ssh_keyalg *find_pubkey_alg_len(ptrlen name) { if (ptrlen_eq_string(name, "ssh-rsa")) return &ssh_rsa; else if (ptrlen_eq_string(name, "ssh-dss")) return &ssh_dss; else if (ptrlen_eq_string(name, "ecdsa-sha2-nistp256")) return &ssh_ecdsa_nistp256; else if (ptrlen_eq_string(name, "ecdsa-sha2-nistp384")) return &ssh_ecdsa_nistp384; else if (ptrlen_eq_string(name, "ecdsa-sha2-nistp521")) return &ssh_ecdsa_nistp521; else if (ptrlen_eq_string(name, "ssh-ed25519")) return &ssh_ecdsa_ed25519; else return NULL; } const ssh_keyalg *find_pubkey_alg(const char *name) { return find_pubkey_alg_len(make_ptrlen(name, strlen(name))); } struct ssh2_userkey *ssh2_load_userkey(const Filename *filename, const char *passphrase, const char **errorstr) { FILE *fp; char header[40], *b, *encryption, *comment, *mac; const ssh_keyalg *alg; struct ssh2_userkey *ret; int cipher, cipherblk; strbuf *public_blob, *private_blob; int i, is_mac, old_fmt; int passlen = passphrase ? strlen(passphrase) : 0; const char *error = NULL; ret = NULL; /* return NULL for most errors */ encryption = comment = mac = NULL; public_blob = private_blob = NULL; fp = f_open(filename, "rb", FALSE); if (!fp) { error = "can't open file"; goto error; } /* Read the first header line which contains the key type. */ if (!read_header(fp, header)) goto error; if (0 == strcmp(header, "PuTTY-User-Key-File-2")) { old_fmt = 0; } else if (0 == strcmp(header, "PuTTY-User-Key-File-1")) { /* this is an old key file; warn and then continue */ old_keyfile_warning(); old_fmt = 1; } else if (0 == strncmp(header, "PuTTY-User-Key-File-", 20)) { /* this is a key file FROM THE FUTURE; refuse it, but with a * more specific error message than the generic one below */ error = "PuTTY key format too new"; goto error; } else { error = "not a PuTTY SSH-2 private key"; goto error; } error = "file format error"; if ((b = read_body(fp)) == NULL) goto error; /* Select key algorithm structure. */ alg = find_pubkey_alg(b); if (!alg) { sfree(b); goto error; } sfree(b); /* Read the Encryption header line. */ if (!read_header(fp, header) || 0 != strcmp(header, "Encryption")) goto error; if ((encryption = read_body(fp)) == NULL) goto error; if (!strcmp(encryption, "aes256-cbc")) { cipher = 1; cipherblk = 16; } else if (!strcmp(encryption, "none")) { cipher = 0; cipherblk = 1; } else { goto error; } /* Read the Comment header line. */ if (!read_header(fp, header) || 0 != strcmp(header, "Comment")) goto error; if ((comment = read_body(fp)) == NULL) goto error; /* Read the Public-Lines header line and the public blob. */ if (!read_header(fp, header) || 0 != strcmp(header, "Public-Lines")) goto error; if ((b = read_body(fp)) == NULL) goto error; i = atoi(b); sfree(b); public_blob = strbuf_new(); if (!read_blob(fp, i, BinarySink_UPCAST(public_blob))) goto error; /* Read the Private-Lines header line and the Private blob. */ if (!read_header(fp, header) || 0 != strcmp(header, "Private-Lines")) goto error; if ((b = read_body(fp)) == NULL) goto error; i = atoi(b); sfree(b); private_blob = strbuf_new(); if (!read_blob(fp, i, BinarySink_UPCAST(private_blob))) goto error; /* Read the Private-MAC or Private-Hash header line. */ if (!read_header(fp, header)) goto error; if (0 == strcmp(header, "Private-MAC")) { if ((mac = read_body(fp)) == NULL) goto error; is_mac = 1; } else if (0 == strcmp(header, "Private-Hash") && old_fmt) { if ((mac = read_body(fp)) == NULL) goto error; is_mac = 0; } else goto error; fclose(fp); fp = NULL; /* * Decrypt the private blob. */ if (cipher) { unsigned char key[40]; SHA_State s; if (!passphrase) goto error; if (private_blob->len % cipherblk) goto error; SHA_Init(&s); put_uint32(&s, 0); put_data(&s, passphrase, passlen); SHA_Final(&s, key + 0); SHA_Init(&s); put_uint32(&s, 1); put_data(&s, passphrase, passlen); SHA_Final(&s, key + 20); aes256_decrypt_pubkey(key, private_blob->u, private_blob->len); } /* * Verify the MAC. */ { char realmac[41]; unsigned char binary[20]; strbuf *macdata; int free_macdata; if (old_fmt) { /* MAC (or hash) only covers the private blob. */ macdata = private_blob; free_macdata = FALSE; } else { macdata = strbuf_new(); put_stringz(macdata, alg->ssh_id); put_stringz(macdata, encryption); put_stringz(macdata, comment); put_string(macdata, public_blob->s, public_blob->len); put_string(macdata, private_blob->s, private_blob->len); free_macdata = TRUE; } if (is_mac) { SHA_State s; unsigned char mackey[20]; char header[] = "putty-private-key-file-mac-key"; SHA_Init(&s); put_data(&s, header, sizeof(header)-1); if (cipher && passphrase) put_data(&s, passphrase, passlen); SHA_Final(&s, mackey); hmac_sha1_simple(mackey, 20, macdata->s, macdata->len, binary); smemclr(mackey, sizeof(mackey)); smemclr(&s, sizeof(s)); } else { SHA_Simple(macdata->s, macdata->len, binary); } if (free_macdata) strbuf_free(macdata); for (i = 0; i < 20; i++) sprintf(realmac + 2 * i, "%02x", binary[i]); if (strcmp(mac, realmac)) { /* An incorrect MAC is an unconditional Error if the key is * unencrypted. Otherwise, it means Wrong Passphrase. */ if (cipher) { error = "wrong passphrase"; ret = SSH2_WRONG_PASSPHRASE; } else { error = "MAC failed"; ret = NULL; } goto error; } } sfree(mac); mac = NULL; /* * Create and return the key. */ ret = snew(struct ssh2_userkey); ret->comment = comment; ret->key = ssh_key_new_priv( alg, make_ptrlen(public_blob->u, public_blob->len), make_ptrlen(private_blob->u, private_blob->len)); if (!ret->key) { sfree(ret); ret = NULL; error = "createkey failed"; goto error; } strbuf_free(public_blob); strbuf_free(private_blob); sfree(encryption); if (errorstr) *errorstr = NULL; return ret; /* * Error processing. */ error: if (fp) fclose(fp); if (comment) sfree(comment); if (encryption) sfree(encryption); if (mac) sfree(mac); if (public_blob) strbuf_free(public_blob); if (private_blob) strbuf_free(private_blob); if (errorstr) *errorstr = error; return ret; } int rfc4716_loadpub(FILE *fp, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr) { const char *error; char *line, *colon, *value; char *comment = NULL; unsigned char *pubblob = NULL; int pubbloblen, pubblobsize; char base64in[4]; unsigned char base64out[3]; int base64bytes; int alglen; line = chomp(fgetline(fp)); if (!line || 0 != strcmp(line, "---- BEGIN SSH2 PUBLIC KEY ----")) { error = "invalid begin line in SSH-2 public key file"; goto error; } sfree(line); line = NULL; while (1) { line = chomp(fgetline(fp)); if (!line) { error = "truncated SSH-2 public key file"; goto error; } colon = strstr(line, ": "); if (!colon) break; *colon = '\0'; value = colon + 2; if (!strcmp(line, "Comment")) { char *p, *q; /* Remove containing double quotes, if present */ p = value; if (*p == '"' && p[strlen(p)-1] == '"') { p[strlen(p)-1] = '\0'; p++; } /* Remove \-escaping, not in RFC4716 but seen in the wild * in practice. */ for (q = line; *p; p++) { if (*p == '\\' && p[1]) p++; *q++ = *p; } *q = '\0'; sfree(comment); /* *just* in case of multiple Comment headers */ comment = dupstr(line); } else if (!strcmp(line, "Subject") || !strncmp(line, "x-", 2)) { /* Headers we recognise and ignore. Do nothing. */ } else { error = "unrecognised header in SSH-2 public key file"; goto error; } sfree(line); line = NULL; } /* * Now line contains the initial line of base64 data. Loop round * while it still does contain base64. */ pubblobsize = 4096; pubblob = snewn(pubblobsize, unsigned char); pubbloblen = 0; base64bytes = 0; while (line && line[0] != '-') { char *p; for (p = line; *p; p++) { base64in[base64bytes++] = *p; if (base64bytes == 4) { int n = base64_decode_atom(base64in, base64out); if (pubbloblen + n > pubblobsize) { pubblobsize = (pubbloblen + n) * 5 / 4 + 1024; pubblob = sresize(pubblob, pubblobsize, unsigned char); } memcpy(pubblob + pubbloblen, base64out, n); pubbloblen += n; base64bytes = 0; } } sfree(line); line = NULL; line = chomp(fgetline(fp)); } /* * Finally, check the END line makes sense. */ if (!line || 0 != strcmp(line, "---- END SSH2 PUBLIC KEY ----")) { error = "invalid end line in SSH-2 public key file"; goto error; } sfree(line); line = NULL; /* * OK, we now have a public blob and optionally a comment. We must * return the key algorithm string too, so look for that at the * start of the public blob. */ if (pubbloblen < 4) { error = "not enough data in SSH-2 public key file"; goto error; } alglen = toint(GET_32BIT(pubblob)); if (alglen < 0 || alglen > pubbloblen-4) { error = "invalid algorithm prefix in SSH-2 public key file"; goto error; } if (algorithm) *algorithm = dupprintf("%.*s", alglen, pubblob+4); if (commentptr) *commentptr = comment; else sfree(comment); put_data(bs, pubblob, pubbloblen); sfree(pubblob); return TRUE; error: sfree(line); sfree(comment); sfree(pubblob); if (errorstr) *errorstr = error; return FALSE; } int openssh_loadpub(FILE *fp, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr) { const char *error; char *line, *base64; char *comment = NULL; unsigned char *pubblob = NULL; int pubbloblen, pubblobsize; int alglen; line = chomp(fgetline(fp)); base64 = strchr(line, ' '); if (!base64) { error = "no key blob in OpenSSH public key file"; goto error; } *base64++ = '\0'; comment = strchr(base64, ' '); if (comment) { *comment++ = '\0'; comment = dupstr(comment); } pubblobsize = strlen(base64) / 4 * 3; pubblob = snewn(pubblobsize, unsigned char); pubbloblen = 0; while (!memchr(base64, '\0', 4)) { assert(pubbloblen + 3 <= pubblobsize); pubbloblen += base64_decode_atom(base64, pubblob + pubbloblen); base64 += 4; } if (*base64) { error = "invalid length for base64 data in OpenSSH public key file"; goto error; } /* * Sanity check: the first word on the line should be the key * algorithm, and should match the encoded string at the start of * the public blob. */ alglen = strlen(line); if (pubbloblen < alglen + 4 || GET_32BIT(pubblob) != alglen || 0 != memcmp(pubblob + 4, line, alglen)) { error = "key algorithms do not match in OpenSSH public key file"; goto error; } /* * Done. */ if (algorithm) *algorithm = dupstr(line); if (commentptr) *commentptr = comment; else sfree(comment); sfree(line); put_data(bs, pubblob, pubbloblen); sfree(pubblob); return TRUE; error: sfree(line); sfree(comment); sfree(pubblob); if (errorstr) *errorstr = error; return FALSE; } int ssh2_userkey_loadpub(const Filename *filename, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr) { FILE *fp; char header[40], *b; const ssh_keyalg *alg; int type, i; const char *error = NULL; char *comment = NULL; fp = f_open(filename, "rb", FALSE); if (!fp) { error = "can't open file"; goto error; } /* Initially, check if this is a public-only key file. Sometimes * we'll be asked to read a public blob from one of those. */ type = key_type_fp(fp); if (type == SSH_KEYTYPE_SSH2_PUBLIC_RFC4716) { int ret = rfc4716_loadpub(fp, algorithm, bs, commentptr, errorstr); fclose(fp); return ret; } else if (type == SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH) { int ret = openssh_loadpub(fp, algorithm, bs, commentptr, errorstr); fclose(fp); return ret; } else if (type != SSH_KEYTYPE_SSH2) { error = "not a PuTTY SSH-2 private key"; goto error; } /* Read the first header line which contains the key type. */ if (!read_header(fp, header) || (0 != strcmp(header, "PuTTY-User-Key-File-2") && 0 != strcmp(header, "PuTTY-User-Key-File-1"))) { if (0 == strncmp(header, "PuTTY-User-Key-File-", 20)) error = "PuTTY key format too new"; else error = "not a PuTTY SSH-2 private key"; goto error; } error = "file format error"; if ((b = read_body(fp)) == NULL) goto error; /* Select key algorithm structure. */ alg = find_pubkey_alg(b); sfree(b); if (!alg) { goto error; } /* Read the Encryption header line. */ if (!read_header(fp, header) || 0 != strcmp(header, "Encryption")) goto error; if ((b = read_body(fp)) == NULL) goto error; sfree(b); /* we don't care */ /* Read the Comment header line. */ if (!read_header(fp, header) || 0 != strcmp(header, "Comment")) goto error; if ((comment = read_body(fp)) == NULL) goto error; if (commentptr) *commentptr = comment; else sfree(comment); /* Read the Public-Lines header line and the public blob. */ if (!read_header(fp, header) || 0 != strcmp(header, "Public-Lines")) goto error; if ((b = read_body(fp)) == NULL) goto error; i = atoi(b); sfree(b); if (!read_blob(fp, i, bs)) goto error; fclose(fp); if (algorithm) *algorithm = dupstr(alg->ssh_id); return TRUE; /* * Error processing. */ error: if (fp) fclose(fp); if (errorstr) *errorstr = error; if (comment && commentptr) { sfree(comment); *commentptr = NULL; } return FALSE; } int ssh2_userkey_encrypted(const Filename *filename, char **commentptr) { FILE *fp; char header[40], *b, *comment; int ret; if (commentptr) *commentptr = NULL; fp = f_open(filename, "rb", FALSE); if (!fp) return 0; if (!read_header(fp, header) || (0 != strcmp(header, "PuTTY-User-Key-File-2") && 0 != strcmp(header, "PuTTY-User-Key-File-1"))) { fclose(fp); return 0; } if ((b = read_body(fp)) == NULL) { fclose(fp); return 0; } sfree(b); /* we don't care about key type here */ /* Read the Encryption header line. */ if (!read_header(fp, header) || 0 != strcmp(header, "Encryption")) { fclose(fp); return 0; } if ((b = read_body(fp)) == NULL) { fclose(fp); return 0; } /* Read the Comment header line. */ if (!read_header(fp, header) || 0 != strcmp(header, "Comment")) { fclose(fp); sfree(b); return 1; } if ((comment = read_body(fp)) == NULL) { fclose(fp); sfree(b); return 1; } if (commentptr) *commentptr = comment; else sfree(comment); fclose(fp); if (!strcmp(b, "aes256-cbc")) ret = 1; else ret = 0; sfree(b); return ret; } int base64_lines(int datalen) { /* When encoding, we use 64 chars/line, which equals 48 real chars. */ return (datalen + 47) / 48; } void base64_encode(FILE *fp, const unsigned char *data, int datalen, int cpl) { int linelen = 0; char out[4]; int n, i; while (datalen > 0) { n = (datalen < 3 ? datalen : 3); base64_encode_atom(data, n, out); data += n; datalen -= n; for (i = 0; i < 4; i++) { if (linelen >= cpl) { linelen = 0; fputc('\n', fp); } fputc(out[i], fp); linelen++; } } fputc('\n', fp); } int ssh2_save_userkey(const Filename *filename, struct ssh2_userkey *key, char *passphrase) { FILE *fp; strbuf *pub_blob, *priv_blob; unsigned char *priv_blob_encrypted; int priv_encrypted_len; int passlen; int cipherblk; int i; const char *cipherstr; unsigned char priv_mac[20]; /* * Fetch the key component blobs. */ pub_blob = strbuf_new(); ssh_key_public_blob(key->key, BinarySink_UPCAST(pub_blob)); priv_blob = strbuf_new(); ssh_key_private_blob(key->key, BinarySink_UPCAST(priv_blob)); /* * Determine encryption details, and encrypt the private blob. */ if (passphrase) { cipherstr = "aes256-cbc"; cipherblk = 16; } else { cipherstr = "none"; cipherblk = 1; } priv_encrypted_len = priv_blob->len + cipherblk - 1; priv_encrypted_len -= priv_encrypted_len % cipherblk; priv_blob_encrypted = snewn(priv_encrypted_len, unsigned char); memset(priv_blob_encrypted, 0, priv_encrypted_len); memcpy(priv_blob_encrypted, priv_blob->u, priv_blob->len); /* Create padding based on the SHA hash of the unpadded blob. This prevents * too easy a known-plaintext attack on the last block. */ SHA_Simple(priv_blob->u, priv_blob->len, priv_mac); assert(priv_encrypted_len - priv_blob->len < 20); memcpy(priv_blob_encrypted + priv_blob->len, priv_mac, priv_encrypted_len - priv_blob->len); /* Now create the MAC. */ { strbuf *macdata; SHA_State s; unsigned char mackey[20]; char header[] = "putty-private-key-file-mac-key"; macdata = strbuf_new(); put_stringz(macdata, ssh_key_ssh_id(key->key)); put_stringz(macdata, cipherstr); put_stringz(macdata, key->comment); put_string(macdata, pub_blob->s, pub_blob->len); put_string(macdata, priv_blob_encrypted, priv_encrypted_len); SHA_Init(&s); put_data(&s, header, sizeof(header)-1); if (passphrase) put_data(&s, passphrase, strlen(passphrase)); SHA_Final(&s, mackey); hmac_sha1_simple(mackey, 20, macdata->s, macdata->len, priv_mac); strbuf_free(macdata); smemclr(mackey, sizeof(mackey)); smemclr(&s, sizeof(s)); } if (passphrase) { unsigned char key[40]; SHA_State s; passlen = strlen(passphrase); SHA_Init(&s); put_uint32(&s, 0); put_data(&s, passphrase, passlen); SHA_Final(&s, key + 0); SHA_Init(&s); put_uint32(&s, 1); put_data(&s, passphrase, passlen); SHA_Final(&s, key + 20); aes256_encrypt_pubkey(key, priv_blob_encrypted, priv_encrypted_len); smemclr(key, sizeof(key)); smemclr(&s, sizeof(s)); } fp = f_open(filename, "w", TRUE); if (!fp) { strbuf_free(pub_blob); strbuf_free(priv_blob); smemclr(priv_blob_encrypted, priv_encrypted_len); sfree(priv_blob_encrypted); return 0; } fprintf(fp, "PuTTY-User-Key-File-2: %s\n", ssh_key_ssh_id(key->key)); fprintf(fp, "Encryption: %s\n", cipherstr); fprintf(fp, "Comment: %s\n", key->comment); fprintf(fp, "Public-Lines: %d\n", base64_lines(pub_blob->len)); base64_encode(fp, pub_blob->u, pub_blob->len, 64); fprintf(fp, "Private-Lines: %d\n", base64_lines(priv_encrypted_len)); base64_encode(fp, priv_blob_encrypted, priv_encrypted_len, 64); fprintf(fp, "Private-MAC: "); for (i = 0; i < 20; i++) fprintf(fp, "%02x", priv_mac[i]); fprintf(fp, "\n"); fclose(fp); strbuf_free(pub_blob); strbuf_free(priv_blob); smemclr(priv_blob_encrypted, priv_encrypted_len); sfree(priv_blob_encrypted); return 1; } /* ---------------------------------------------------------------------- * Output public keys. */ char *ssh1_pubkey_str(struct RSAKey *key) { char *buffer; char *dec1, *dec2; dec1 = bignum_decimal(key->exponent); dec2 = bignum_decimal(key->modulus); buffer = dupprintf("%d %s %s%s%s", bignum_bitcount(key->modulus), dec1, dec2, key->comment ? " " : "", key->comment ? key->comment : ""); sfree(dec1); sfree(dec2); return buffer; } void ssh1_write_pubkey(FILE *fp, struct RSAKey *key) { char *buffer = ssh1_pubkey_str(key); fprintf(fp, "%s\n", buffer); sfree(buffer); } static char *ssh2_pubkey_openssh_str_internal(const char *comment, const void *v_pub_blob, int pub_len) { const unsigned char *ssh2blob = (const unsigned char *)v_pub_blob; ptrlen alg; char *buffer, *p; int i; { BinarySource src[1]; BinarySource_BARE_INIT(src, ssh2blob, pub_len); alg = get_string(src); if (get_err(src)) { const char *replacement_str = "INVALID-ALGORITHM"; alg.ptr = replacement_str; alg.len = strlen(replacement_str); } } buffer = snewn(alg.len + 4 * ((pub_len+2) / 3) + (comment ? strlen(comment) : 0) + 3, char); p = buffer + sprintf(buffer, "%.*s ", PTRLEN_PRINTF(alg)); i = 0; while (i < pub_len) { int n = (pub_len - i < 3 ? pub_len - i : 3); base64_encode_atom(ssh2blob + i, n, p); i += n; p += 4; } if (comment) { *p++ = ' '; strcpy(p, comment); } else *p++ = '\0'; return buffer; } char *ssh2_pubkey_openssh_str(struct ssh2_userkey *key) { strbuf *blob; char *ret; blob = strbuf_new(); ssh_key_public_blob(key->key, BinarySink_UPCAST(blob)); ret = ssh2_pubkey_openssh_str_internal( key->comment, blob->s, blob->len); strbuf_free(blob); return ret; } void ssh2_write_pubkey(FILE *fp, const char *comment, const void *v_pub_blob, int pub_len, int keytype) { unsigned char *pub_blob = (unsigned char *)v_pub_blob; if (keytype == SSH_KEYTYPE_SSH2_PUBLIC_RFC4716) { const char *p; int i, column; fprintf(fp, "---- BEGIN SSH2 PUBLIC KEY ----\n"); if (comment) { fprintf(fp, "Comment: \""); for (p = comment; *p; p++) { if (*p == '\\' || *p == '\"') fputc('\\', fp); fputc(*p, fp); } fprintf(fp, "\"\n"); } i = 0; column = 0; while (i < pub_len) { char buf[5]; int n = (pub_len - i < 3 ? pub_len - i : 3); base64_encode_atom(pub_blob + i, n, buf); i += n; buf[4] = '\0'; fputs(buf, fp); if (++column >= 16) { fputc('\n', fp); column = 0; } } if (column > 0) fputc('\n', fp); fprintf(fp, "---- END SSH2 PUBLIC KEY ----\n"); } else if (keytype == SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH) { char *buffer = ssh2_pubkey_openssh_str_internal(comment, v_pub_blob, pub_len); fprintf(fp, "%s\n", buffer); sfree(buffer); } else { assert(0 && "Bad key type in ssh2_write_pubkey"); } } /* ---------------------------------------------------------------------- * Utility functions to compute SSH-2 fingerprints in a uniform way. */ char *ssh2_fingerprint_blob(const void *blob, int bloblen) { unsigned char digest[16]; char fingerprint_str[16*3]; ptrlen algname; const ssh_keyalg *alg; int i; BinarySource src[1]; /* * The fingerprint hash itself is always just the MD5 of the blob. */ MD5Simple(blob, bloblen, digest); for (i = 0; i < 16; i++) sprintf(fingerprint_str + i*3, "%02x%s", digest[i], i==15 ? "" : ":"); /* * Identify the key algorithm, if possible. */ BinarySource_BARE_INIT(src, blob, bloblen); algname = get_string(src); if (!get_err(src)) { alg = find_pubkey_alg_len(algname); if (alg) { int bits = ssh_key_public_bits(alg, make_ptrlen(blob, bloblen)); return dupprintf("%.*s %d %s", PTRLEN_PRINTF(algname), bits, fingerprint_str); } else { return dupprintf("%.*s %s", PTRLEN_PRINTF(algname), fingerprint_str); } } else { /* * No algorithm available (which means a seriously confused * key blob, but there we go). Return only the hash. */ return dupstr(fingerprint_str); } } char *ssh2_fingerprint(ssh_key *data) { strbuf *blob = strbuf_new(); ssh_key_public_blob(data, BinarySink_UPCAST(blob)); char *ret = ssh2_fingerprint_blob(blob->s, blob->len); strbuf_free(blob); return ret; } /* ---------------------------------------------------------------------- * Determine the type of a private key file. */ static int key_type_fp(FILE *fp) { char buf[1024]; const char public_std_sig[] = "---- BEGIN SSH2 PUBLIC KEY"; const char putty2_sig[] = "PuTTY-User-Key-File-"; const char sshcom_sig[] = "---- BEGIN SSH2 ENCRYPTED PRIVAT"; const char openssh_new_sig[] = "-----BEGIN OPENSSH PRIVATE KEY"; const char openssh_sig[] = "-----BEGIN "; int i; char *p; i = fread(buf, 1, sizeof(buf)-1, fp); rewind(fp); if (i < 0) return SSH_KEYTYPE_UNOPENABLE; if (i < 32) return SSH_KEYTYPE_UNKNOWN; assert(i > 0 && i < sizeof(buf)); buf[i] = '\0'; if (!memcmp(buf, rsa_signature, sizeof(rsa_signature)-1)) return SSH_KEYTYPE_SSH1; if (!memcmp(buf, public_std_sig, sizeof(public_std_sig)-1)) return SSH_KEYTYPE_SSH2_PUBLIC_RFC4716; if (!memcmp(buf, putty2_sig, sizeof(putty2_sig)-1)) return SSH_KEYTYPE_SSH2; if (!memcmp(buf, openssh_new_sig, sizeof(openssh_new_sig)-1)) return SSH_KEYTYPE_OPENSSH_NEW; if (!memcmp(buf, openssh_sig, sizeof(openssh_sig)-1)) return SSH_KEYTYPE_OPENSSH_PEM; if (!memcmp(buf, sshcom_sig, sizeof(sshcom_sig)-1)) return SSH_KEYTYPE_SSHCOM; if ((p = buf + strspn(buf, "0123456789"), *p == ' ') && (p = p+1 + strspn(p+1, "0123456789"), *p == ' ') && (p = p+1 + strspn(p+1, "0123456789"), *p == ' ' || *p == '\n' || !*p)) return SSH_KEYTYPE_SSH1_PUBLIC; if ((p = buf + strcspn(buf, " "), find_pubkey_alg_len(make_ptrlen(buf, p-buf))) && (p = p+1 + strspn(p+1, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij" "klmnopqrstuvwxyz+/="), *p == ' ' || *p == '\n' || !*p)) return SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH; return SSH_KEYTYPE_UNKNOWN; /* unrecognised or EOF */ } int key_type(const Filename *filename) { FILE *fp; int ret; fp = f_open(filename, "r", FALSE); if (!fp) return SSH_KEYTYPE_UNOPENABLE; ret = key_type_fp(fp); fclose(fp); return ret; } /* * Convert the type word to a string, for `wrong type' error * messages. */ const char *key_type_to_str(int type) { switch (type) { case SSH_KEYTYPE_UNOPENABLE: return "unable to open file"; break; case SSH_KEYTYPE_UNKNOWN: return "not a recognised key file format"; break; case SSH_KEYTYPE_SSH1_PUBLIC: return "SSH-1 public key"; break; case SSH_KEYTYPE_SSH2_PUBLIC_RFC4716: return "SSH-2 public key (RFC 4716 format)"; break; case SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH: return "SSH-2 public key (OpenSSH format)"; break; case SSH_KEYTYPE_SSH1: return "SSH-1 private key"; break; case SSH_KEYTYPE_SSH2: return "PuTTY SSH-2 private key"; break; case SSH_KEYTYPE_OPENSSH_PEM: return "OpenSSH SSH-2 private key (old PEM format)"; break; case SSH_KEYTYPE_OPENSSH_NEW: return "OpenSSH SSH-2 private key (new format)"; break; case SSH_KEYTYPE_SSHCOM: return "ssh.com SSH-2 private key"; break; /* * This function is called with a key type derived from * looking at an actual key file, so the output-only type * OPENSSH_AUTO should never get here, and is much an INTERNAL * ERROR as a code we don't even understand. */ case SSH_KEYTYPE_OPENSSH_AUTO: return "INTERNAL ERROR (OPENSSH_AUTO)"; break; default: return "INTERNAL ERROR"; break; } }