/* * Generic SSH public-key handling operations. In particular, * reading of SSH public-key files, and also the generic `sign' * operation for SSH-2 (which checks the type of the key and * dispatches to the appropriate key-type specific function). */ #include #include #include #include #include #include #include "putty.h" #include "mpint.h" #include "ssh.h" #include "misc.h" /* * Fairly arbitrary size limit on any public or private key blob. * Chosen to match AGENT_MAX_MSGLEN, on the basis that any key too * large to transfer over the ssh-agent protocol is probably too large * to be useful in general. * * MAX_KEY_BLOB_LINES is the corresponding limit on the Public-Lines * or Private-Lines header field in a key file. */ #define MAX_KEY_BLOB_SIZE 262144 #define MAX_KEY_BLOB_LINES (MAX_KEY_BLOB_SIZE / 48) /* * Corresponding limit on the size of a key _file_ itself, based on * base64-encoding the key blob and then adding a few Kb for * surrounding metadata. */ #define MAX_KEY_FILE_SIZE (MAX_KEY_BLOB_SIZE * 4 / 3 + 4096) static const ptrlen rsa1_signature = PTRLEN_DECL_LITERAL("SSH PRIVATE KEY FILE FORMAT 1.1\n\0"); #define BASE64_TOINT(x) ( (x)-'A'<26 ? (x)-'A'+0 :\ (x)-'a'<26 ? (x)-'a'+26 :\ (x)-'0'<10 ? (x)-'0'+52 :\ (x)=='+' ? 62 : \ (x)=='/' ? 63 : 0 ) LoadedFile *lf_new(size_t max_size) { LoadedFile *lf = snew_plus(LoadedFile, max_size); lf->data = snew_plus_get_aux(lf); lf->len = 0; lf->max_size = max_size; return lf; } void lf_free(LoadedFile *lf) { smemclr(lf->data, lf->max_size); smemclr(lf, sizeof(LoadedFile)); sfree(lf); } LoadFileStatus lf_load_fp(LoadedFile *lf, FILE *fp) { lf->len = 0; while (lf->len < lf->max_size) { size_t retd = fread(lf->data + lf->len, 1, lf->max_size - lf->len, fp); if (ferror(fp)) return LF_ERROR; if (retd == 0) break; lf->len += retd; } LoadFileStatus status = LF_OK; if (lf->len == lf->max_size) { /* The file might be too long to fit in our fixed-size * structure. Try reading one more byte, to check. */ if (fgetc(fp) != EOF) status = LF_TOO_BIG; } BinarySource_INIT(lf, lf->data, lf->len); return status; } LoadFileStatus lf_load(LoadedFile *lf, const Filename *filename) { FILE *fp = f_open(filename, "rb", false); if (!fp) return LF_ERROR; LoadFileStatus status = lf_load_fp(lf, fp); fclose(fp); return status; } static inline bool lf_load_keyfile_helper(LoadFileStatus status, const char **errptr) { const char *error; switch (status) { case LF_OK: return true; case LF_TOO_BIG: error = "file is too large to be a key file"; break; case LF_ERROR: error = strerror(errno); break; default: unreachable("bad status value in lf_load_keyfile_helper"); } if (errptr) *errptr = error; return false; } LoadedFile *lf_load_keyfile(const Filename *filename, const char **errptr) { LoadedFile *lf = lf_new(MAX_KEY_FILE_SIZE); if (!lf_load_keyfile_helper(lf_load(lf, filename), errptr)) { lf_free(lf); return NULL; } return lf; } LoadedFile *lf_load_keyfile_fp(FILE *fp, const char **errptr) { LoadedFile *lf = lf_new(MAX_KEY_FILE_SIZE); if (!lf_load_keyfile_helper(lf_load_fp(lf, fp), errptr)) { lf_free(lf); return NULL; } return lf; } static bool expect_signature(BinarySource *src, ptrlen realsig) { ptrlen thissig = get_data(src, realsig.len); return !get_err(src) && ptrlen_eq_ptrlen(realsig, thissig); } static int rsa1_load_s_internal(BinarySource *src, RSAKey *key, bool pub_only, char **commentptr, const char *passphrase, const char **error) { strbuf *buf = NULL; int ciphertype; int ret = 0; ptrlen comment; *error = "not an SSH-1 RSA file"; if (!expect_signature(src, rsa1_signature)) goto end; *error = "file format error"; /* One byte giving encryption type, and one reserved uint32. */ ciphertype = get_byte(src); if (ciphertype != 0 && ciphertype != SSH1_CIPHER_3DES) goto end; if (get_uint32(src) != 0) goto end; /* reserved field nonzero, panic! */ /* Now the serious stuff. An ordinary SSH-1 public key. */ get_rsa_ssh1_pub(src, key, RSA_SSH1_MODULUS_FIRST); /* Next, the comment field. */ comment = get_string(src); if (commentptr) *commentptr = mkstr(comment); if (key) key->comment = mkstr(comment); if (pub_only) { ret = 1; goto end; } if (!key) { ret = ciphertype != 0; *error = NULL; goto end; } /* * Decrypt remainder of buffer. */ if (ciphertype) { size_t enclen = get_avail(src); if (enclen & 7) goto end; buf = strbuf_dup_nm(get_data(src, enclen)); unsigned char keybuf[16]; hash_simple(&ssh_md5, ptrlen_from_asciz(passphrase), keybuf); des3_decrypt_pubkey(keybuf, buf->u, enclen); smemclr(keybuf, sizeof(keybuf)); /* burn the evidence */ BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buf)); } /* * We are now in the secret part of the key. The first four * bytes should be of the form a, b, a, b. */ { int b0a = get_byte(src); int b1a = get_byte(src); int b0b = get_byte(src); int b1b = get_byte(src); if (b0a != b0b || b1a != b1b) { *error = "wrong passphrase"; ret = -1; goto end; } } /* * After that, we have one further bignum which is our * decryption exponent, and then the three auxiliary values * (iqmp, q, p). */ get_rsa_ssh1_priv(src, key); key->iqmp = get_mp_ssh1(src); key->q = get_mp_ssh1(src); key->p = get_mp_ssh1(src); if (!rsa_verify(key)) { *error = "rsa_verify failed"; freersakey(key); ret = 0; } else { *error = NULL; ret = 1; } end: if (buf) strbuf_free(buf); return ret; } int rsa1_load_s(BinarySource *src, RSAKey *key, const char *passphrase, const char **errstr) { return rsa1_load_s_internal(src, key, false, NULL, passphrase, errstr); } int rsa1_load_f(const Filename *filename, RSAKey *key, const char *passphrase, const char **errstr) { LoadedFile *lf = lf_load_keyfile(filename, errstr); if (!lf) return false; int toret = rsa1_load_s(BinarySource_UPCAST(lf), key, passphrase, errstr); lf_free(lf); return toret; } /* * See whether an RSA key is encrypted. Return its comment field as * well. */ bool rsa1_encrypted_s(BinarySource *src, char **comment) { const char *dummy; return rsa1_load_s_internal(src, NULL, false, comment, NULL, &dummy) == 1; } bool rsa1_encrypted_f(const Filename *filename, char **comment) { LoadedFile *lf = lf_load_keyfile(filename, NULL); if (!lf) return false; /* couldn't even open the file */ bool toret = rsa1_encrypted_s(BinarySource_UPCAST(lf), comment); lf_free(lf); return toret; } /* * Read the public part of an SSH-1 RSA key from a file (public or * private), and generate its public blob in exponent-first order. */ int rsa1_loadpub_s(BinarySource *src, BinarySink *bs, char **commentptr, const char **errorstr) { RSAKey key; int ret; const char *error = NULL; /* Default return if we fail. */ ret = 0; bool is_privkey_file = expect_signature(src, rsa1_signature); BinarySource_REWIND(src); if (is_privkey_file) { /* * Load just the public half from an SSH-1 private key file. */ memset(&key, 0, sizeof(key)); if (rsa1_load_s_internal(src, &key, true, commentptr, NULL, &error)) { rsa_ssh1_public_blob(bs, &key, RSA_SSH1_EXPONENT_FIRST); freersakey(&key); ret = 1; } } else { /* * Try interpreting the file as an SSH-1 public key. */ char *line, *p, *bitsp, *expp, *modp, *commentp; line = mkstr(get_chomped_line(src)); p = line; bitsp = p; p += strspn(p, "0123456789"); if (*p != ' ') goto not_public_either; *p++ = '\0'; expp = p; p += strspn(p, "0123456789"); if (*p != ' ') goto not_public_either; *p++ = '\0'; modp = p; p += strspn(p, "0123456789"); if (*p) { if (*p != ' ') goto not_public_either; *p++ = '\0'; commentp = p; } else { commentp = NULL; } memset(&key, 0, sizeof(key)); key.exponent = mp_from_decimal(expp); key.modulus = mp_from_decimal(modp); if (atoi(bitsp) != mp_get_nbits(key.modulus)) { mp_free(key.exponent); mp_free(key.modulus); sfree(line); error = "key bit count does not match in SSH-1 public key file"; goto end; } if (commentptr) *commentptr = commentp ? dupstr(commentp) : NULL; rsa_ssh1_public_blob(bs, &key, RSA_SSH1_EXPONENT_FIRST); freersakey(&key); sfree(line); return 1; not_public_either: sfree(line); error = "not an SSH-1 RSA file"; } end: if ((ret != 1) && errorstr) *errorstr = error; return ret; } int rsa1_loadpub_f(const Filename *filename, BinarySink *bs, char **commentptr, const char **errorstr) { LoadedFile *lf = lf_load_keyfile(filename, errorstr); if (!lf) return 0; int toret = rsa1_loadpub_s(BinarySource_UPCAST(lf), bs, commentptr, errorstr); lf_free(lf); return toret; } strbuf *rsa1_save_sb(RSAKey *key, const char *passphrase) { strbuf *buf = strbuf_new_nm(); int estart; /* * The public part of the key. */ put_datapl(buf, rsa1_signature); put_byte(buf, passphrase ? SSH1_CIPHER_3DES : 0); /* encryption type */ put_uint32(buf, 0); /* reserved */ rsa_ssh1_public_blob(BinarySink_UPCAST(buf), key, RSA_SSH1_MODULUS_FIRST); put_stringz(buf, NULLTOEMPTY(key->comment)); /* * The encrypted portion starts here. */ estart = buf->len; /* * Two bytes, then the same two bytes repeated. */ { uint8_t bytes[2]; random_read(bytes, 2); put_data(buf, bytes, 2); put_data(buf, bytes, 2); } /* * Four more bignums: the decryption exponent, then iqmp, then * q, then p. */ put_mp_ssh1(buf, key->private_exponent); put_mp_ssh1(buf, key->iqmp); put_mp_ssh1(buf, key->q); put_mp_ssh1(buf, key->p); /* * Now write zeros until the encrypted portion is a multiple of * 8 bytes. */ put_padding(buf, (estart - buf->len) & 7, 0); /* * Now encrypt the encrypted portion. */ if (passphrase) { unsigned char keybuf[16]; hash_simple(&ssh_md5, ptrlen_from_asciz(passphrase), keybuf); des3_encrypt_pubkey(keybuf, buf->u + estart, buf->len - estart); smemclr(keybuf, sizeof(keybuf)); /* burn the evidence */ } return buf; } /* * Save an RSA key file. Return true on success. */ bool rsa1_save_f(const Filename *filename, RSAKey *key, const char *passphrase) { FILE *fp = f_open(filename, "wb", true); if (!fp) return false; strbuf *buf = rsa1_save_sb(key, passphrase); bool toret = fwrite(buf->s, 1, buf->len, fp) == buf->len; if (fclose(fp)) toret = false; strbuf_free(buf); return toret; } /* ---------------------------------------------------------------------- * SSH-2 private key load/store functions. * * PuTTY's own file format for SSH-2 keys is given in doc/ppk.but, aka * the "PPK file format" appendix in the PuTTY manual. */ static bool read_header(BinarySource *src, char *header) { int len = 39; int c; while (1) { c = get_byte(src); if (c == '\n' || c == '\r' || get_err(src)) return false; /* failure */ if (c == ':') { c = get_byte(src); if (c != ' ') return false; *header = '\0'; return true; /* success! */ } if (len == 0) return false; /* failure */ *header++ = c; len--; } return false; /* failure */ } static char *read_body(BinarySource *src) { strbuf *buf = strbuf_new_nm(); while (1) { int c = get_byte(src); if (c == '\r' || c == '\n' || get_err(src)) { if (!get_err(src)) { c = get_byte(src); if (c != '\r' && c != '\n' && !get_err(src)) src->pos--; } return strbuf_to_str(buf); } put_byte(buf, c); } } static bool read_blob(BinarySource *src, int nlines, BinarySink *bs) { char *line; int linelen; int i, j, k; /* We expect at most 64 base64 characters, ie 48 real bytes, per line. */ for (i = 0; i < nlines; i++) { line = read_body(src); if (!line) return false; linelen = strlen(line); if (linelen % 4 != 0 || linelen > 64) { sfree(line); return false; } for (j = 0; j < linelen; j += 4) { unsigned char decoded[3]; k = base64_decode_atom(line + j, decoded); if (!k) { sfree(line); return false; } put_data(bs, decoded, k); } sfree(line); } return true; } /* * Magic error return value for when the passphrase is wrong. */ ssh2_userkey ssh2_wrong_passphrase = { NULL, NULL }; const ssh_keyalg *const all_keyalgs[] = { &ssh_rsa, &ssh_rsa_sha256, &ssh_rsa_sha512, &ssh_dsa, &ssh_ecdsa_nistp256, &ssh_ecdsa_nistp384, &ssh_ecdsa_nistp521, &ssh_ecdsa_ed25519, &ssh_ecdsa_ed448, &opensshcert_ssh_dsa, &opensshcert_ssh_rsa, &opensshcert_ssh_rsa_sha256, &opensshcert_ssh_rsa_sha512, &opensshcert_ssh_ecdsa_ed25519, &opensshcert_ssh_ecdsa_nistp256, &opensshcert_ssh_ecdsa_nistp384, &opensshcert_ssh_ecdsa_nistp521, }; const size_t n_keyalgs = lenof(all_keyalgs); const ssh_keyalg *find_pubkey_alg_len(ptrlen name) { for (size_t i = 0; i < n_keyalgs; i++) if (ptrlen_eq_string(name, all_keyalgs[i]->ssh_id)) return all_keyalgs[i]; return NULL; } const ssh_keyalg *find_pubkey_alg(const char *name) { return find_pubkey_alg_len(ptrlen_from_asciz(name)); } ptrlen pubkey_blob_to_alg_name(ptrlen blob) { BinarySource src[1]; BinarySource_BARE_INIT_PL(src, blob); return get_string(src); } const ssh_keyalg *pubkey_blob_to_alg(ptrlen blob) { return find_pubkey_alg_len(pubkey_blob_to_alg_name(blob)); } struct ppk_cipher { const char *name; size_t blocklen, keylen, ivlen; }; static const struct ppk_cipher ppk_cipher_none = { "none", 1, 0, 0 }; static const struct ppk_cipher ppk_cipher_aes256_cbc = { "aes256-cbc", 16, 32, 16 }; static void ssh2_ppk_derive_keys( unsigned fmt_version, const struct ppk_cipher *ciphertype, ptrlen passphrase, strbuf *storage, ptrlen *cipherkey, ptrlen *cipheriv, ptrlen *mackey, ptrlen passphrase_salt, ppk_save_parameters *params) { size_t mac_keylen; switch (fmt_version) { case 3: { if (ciphertype->keylen == 0) { mac_keylen = 0; break; } ptrlen empty = PTRLEN_LITERAL(""); mac_keylen = 32; uint32_t taglen = ciphertype->keylen + ciphertype->ivlen + mac_keylen; if (params->argon2_passes_auto) { uint32_t passes; argon2_choose_passes( params->argon2_flavour, params->argon2_mem, params->argon2_milliseconds, &passes, params->argon2_parallelism, taglen, passphrase, passphrase_salt, empty, empty, storage); params->argon2_passes_auto = false; params->argon2_passes = passes; } else { argon2(params->argon2_flavour, params->argon2_mem, params->argon2_passes, params->argon2_parallelism, taglen, passphrase, passphrase_salt, empty, empty, storage); } break; } case 2: case 1: { /* Counter-mode iteration to generate cipher key data. */ for (unsigned ctr = 0; ctr * 20 < ciphertype->keylen; ctr++) { ssh_hash *h = ssh_hash_new(&ssh_sha1); put_uint32(h, ctr); put_datapl(h, passphrase); ssh_hash_final(h, strbuf_append(storage, 20)); } strbuf_shrink_to(storage, ciphertype->keylen); /* In this version of the format, the CBC IV was always all 0. */ put_padding(storage, ciphertype->ivlen, 0); /* Completely separate hash for the MAC key. */ ssh_hash *h = ssh_hash_new(&ssh_sha1); mac_keylen = ssh_hash_alg(h)->hlen; put_datapl(h, PTRLEN_LITERAL("putty-private-key-file-mac-key")); put_datapl(h, passphrase); ssh_hash_final(h, strbuf_append(storage, mac_keylen)); break; } default: unreachable("bad format version in ssh2_ppk_derive_keys"); } BinarySource src[1]; BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(storage)); *cipherkey = get_data(src, ciphertype->keylen); *cipheriv = get_data(src, ciphertype->ivlen); *mackey = get_data(src, mac_keylen); } static int userkey_parse_line_counter(const char *text) { char *endptr; unsigned long ul = strtoul(text, &endptr, 10); if (*text && !*endptr && ul < MAX_KEY_BLOB_LINES) return ul; else return -1; } static bool str_to_uint32_t(const char *s, uint32_t *out) { char *endptr; unsigned long converted = strtoul(s, &endptr, 10); if (*s && !*endptr && converted <= ~(uint32_t)0) { *out = converted; return true; } else { return false; } } ssh2_userkey *ppk_load_s(BinarySource *src, const char *passphrase, const char **errorstr) { char header[40], *b, *encryption, *comment, *mac; const ssh_keyalg *alg; ssh2_userkey *ret; strbuf *public_blob, *private_blob, *cipher_mac_keys_blob; strbuf *passphrase_salt = strbuf_new(); ptrlen cipherkey, cipheriv, mackey; const struct ppk_cipher *ciphertype; int i; bool is_mac; unsigned fmt_version; const char *error = NULL; ppk_save_parameters params; ret = NULL; /* return NULL for most errors */ encryption = comment = mac = NULL; public_blob = private_blob = cipher_mac_keys_blob = NULL; /* Read the first header line which contains the key type. */ if (!read_header(src, header)) { error = "no header line found in key file"; goto error; } if (0 == strcmp(header, "PuTTY-User-Key-File-3")) { fmt_version = 3; } else if (0 == strcmp(header, "PuTTY-User-Key-File-2")) { fmt_version = 2; } else if (0 == strcmp(header, "PuTTY-User-Key-File-1")) { /* this is an old key file; warn and then continue */ old_keyfile_warning(); fmt_version = 1; } else if (0 == strncmp(header, "PuTTY-User-Key-File-", 20)) { /* this is a key file FROM THE FUTURE; refuse it, but with a * more specific error message than the generic one below */ error = "PuTTY key format too new"; goto error; } else { error = "not a PuTTY SSH-2 private key"; goto error; } error = "file format error"; if ((b = read_body(src)) == NULL) goto error; /* Select key algorithm structure. */ alg = find_pubkey_alg(b); if (!alg) { sfree(b); goto error; } sfree(b); /* Read the Encryption header line. */ if (!read_header(src, header) || 0 != strcmp(header, "Encryption")) goto error; if ((encryption = read_body(src)) == NULL) goto error; if (!strcmp(encryption, "aes256-cbc")) { ciphertype = &ppk_cipher_aes256_cbc; } else if (!strcmp(encryption, "none")) { ciphertype = &ppk_cipher_none; } else { goto error; } /* Read the Comment header line. */ if (!read_header(src, header) || 0 != strcmp(header, "Comment")) goto error; if ((comment = read_body(src)) == NULL) goto error; memset(¶ms, 0, sizeof(params)); /* in particular, sets * passes_auto=false */ /* Read the Public-Lines header line and the public blob. */ if (!read_header(src, header) || 0 != strcmp(header, "Public-Lines")) goto error; if ((b = read_body(src)) == NULL) goto error; i = userkey_parse_line_counter(b); sfree(b); if (i < 0) goto error; public_blob = strbuf_new(); if (!read_blob(src, i, BinarySink_UPCAST(public_blob))) goto error; if (fmt_version >= 3 && ciphertype->keylen != 0) { /* Read Argon2 key derivation parameters. */ if (!read_header(src, header) || 0 != strcmp(header, "Key-Derivation")) goto error; if ((b = read_body(src)) == NULL) goto error; if (!strcmp(b, "Argon2d")) { params.argon2_flavour = Argon2d; } else if (!strcmp(b, "Argon2i")) { params.argon2_flavour = Argon2i; } else if (!strcmp(b, "Argon2id")) { params.argon2_flavour = Argon2id; } else { sfree(b); goto error; } sfree(b); if (!read_header(src, header) || 0 != strcmp(header, "Argon2-Memory")) goto error; if ((b = read_body(src)) == NULL) goto error; if (!str_to_uint32_t(b, ¶ms.argon2_mem)) { sfree(b); goto error; } sfree(b); if (!read_header(src, header) || 0 != strcmp(header, "Argon2-Passes")) goto error; if ((b = read_body(src)) == NULL) goto error; if (!str_to_uint32_t(b, ¶ms.argon2_passes)) { sfree(b); goto error; } sfree(b); if (!read_header(src, header) || 0 != strcmp(header, "Argon2-Parallelism")) goto error; if ((b = read_body(src)) == NULL) goto error; if (!str_to_uint32_t(b, ¶ms.argon2_parallelism)) { sfree(b); goto error; } sfree(b); if (!read_header(src, header) || 0 != strcmp(header, "Argon2-Salt")) goto error; if ((b = read_body(src)) == NULL) goto error; for (size_t i = 0; b[i]; i += 2) { if (isxdigit((unsigned char)b[i]) && b[i+1] && isxdigit((unsigned char)b[i+1])) { char s[3]; s[0] = b[i]; s[1] = b[i+1]; s[2] = '\0'; put_byte(passphrase_salt, strtoul(s, NULL, 16)); } else { sfree(b); goto error; } } sfree(b); } /* Read the Private-Lines header line and the Private blob. */ if (!read_header(src, header) || 0 != strcmp(header, "Private-Lines")) goto error; if ((b = read_body(src)) == NULL) goto error; i = userkey_parse_line_counter(b); sfree(b); if (i < 0) goto error; private_blob = strbuf_new_nm(); if (!read_blob(src, i, BinarySink_UPCAST(private_blob))) goto error; /* Read the Private-MAC or Private-Hash header line. */ if (!read_header(src, header)) goto error; if (0 == strcmp(header, "Private-MAC")) { if ((mac = read_body(src)) == NULL) goto error; is_mac = true; } else if (0 == strcmp(header, "Private-Hash") && fmt_version == 1) { if ((mac = read_body(src)) == NULL) goto error; is_mac = false; } else goto error; cipher_mac_keys_blob = strbuf_new(); ssh2_ppk_derive_keys(fmt_version, ciphertype, ptrlen_from_asciz(passphrase ? passphrase : ""), cipher_mac_keys_blob, &cipherkey, &cipheriv, &mackey, ptrlen_from_strbuf(passphrase_salt), ¶ms); /* * Decrypt the private blob. */ if (private_blob->len % ciphertype->blocklen) goto error; if (ciphertype == &ppk_cipher_aes256_cbc) { aes256_decrypt_pubkey(cipherkey.ptr, cipheriv.ptr, private_blob->u, private_blob->len); } /* * Verify the MAC. */ { unsigned char binary[32]; char realmac[sizeof(binary) * 2 + 1]; strbuf *macdata; bool free_macdata; const ssh2_macalg *mac_alg = fmt_version <= 2 ? &ssh_hmac_sha1 : &ssh_hmac_sha256; if (fmt_version == 1) { /* MAC (or hash) only covers the private blob. */ macdata = private_blob; free_macdata = false; } else { macdata = strbuf_new_nm(); put_stringz(macdata, alg->ssh_id); put_stringz(macdata, encryption); put_stringz(macdata, comment); put_string(macdata, public_blob->s, public_blob->len); put_string(macdata, private_blob->s, private_blob->len); free_macdata = true; } if (is_mac) { ssh2_mac *mac; mac = ssh2_mac_new(mac_alg, NULL); ssh2_mac_setkey(mac, mackey); ssh2_mac_start(mac); put_data(mac, macdata->s, macdata->len); ssh2_mac_genresult(mac, binary); ssh2_mac_free(mac); } else { hash_simple(&ssh_sha1, ptrlen_from_strbuf(macdata), binary); } if (free_macdata) strbuf_free(macdata); for (i = 0; i < mac_alg->len; i++) sprintf(realmac + 2 * i, "%02x", binary[i]); if (strcmp(mac, realmac)) { /* An incorrect MAC is an unconditional Error if the key is * unencrypted. Otherwise, it means Wrong Passphrase. */ if (ciphertype->keylen != 0) { error = "wrong passphrase"; ret = SSH2_WRONG_PASSPHRASE; } else { error = "MAC failed"; ret = NULL; } goto error; } } /* * Create and return the key. */ ret = snew(ssh2_userkey); ret->comment = comment; comment = NULL; ret->key = ssh_key_new_priv( alg, ptrlen_from_strbuf(public_blob), ptrlen_from_strbuf(private_blob)); if (!ret->key) { sfree(ret); ret = NULL; error = "createkey failed"; goto error; } error = NULL; /* * Error processing. */ error: if (comment) sfree(comment); if (encryption) sfree(encryption); if (mac) sfree(mac); if (public_blob) strbuf_free(public_blob); if (private_blob) strbuf_free(private_blob); if (cipher_mac_keys_blob) strbuf_free(cipher_mac_keys_blob); strbuf_free(passphrase_salt); if (errorstr) *errorstr = error; return ret; } ssh2_userkey *ppk_load_f(const Filename *filename, const char *passphrase, const char **errorstr) { LoadedFile *lf = lf_load_keyfile(filename, errorstr); ssh2_userkey *toret; if (lf) { toret = ppk_load_s(BinarySource_UPCAST(lf), passphrase, errorstr); lf_free(lf); } else { toret = NULL; *errorstr = "can't open file"; } return toret; } static bool rfc4716_loadpub(BinarySource *src, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr) { const char *error; char *line, *colon, *value; char *comment = NULL; strbuf *pubblob = NULL; char base64in[4]; unsigned char base64out[3]; int base64bytes; int alglen; line = mkstr(get_chomped_line(src)); if (!line || 0 != strcmp(line, "---- BEGIN SSH2 PUBLIC KEY ----")) { error = "invalid begin line in SSH-2 public key file"; goto error; } sfree(line); line = NULL; while (1) { line = mkstr(get_chomped_line(src)); if (!line) { error = "truncated SSH-2 public key file"; goto error; } colon = strstr(line, ": "); if (!colon) break; *colon = '\0'; value = colon + 2; if (!strcmp(line, "Comment")) { char *p, *q; /* Remove containing double quotes, if present */ p = value; if (*p == '"' && p[strlen(p)-1] == '"') { p[strlen(p)-1] = '\0'; p++; } /* Remove \-escaping, not in RFC4716 but seen in the wild * in practice. */ for (q = line; *p; p++) { if (*p == '\\' && p[1]) p++; *q++ = *p; } *q = '\0'; sfree(comment); /* *just* in case of multiple Comment headers */ comment = dupstr(line); } else if (!strcmp(line, "Subject") || !strncmp(line, "x-", 2)) { /* Headers we recognise and ignore. Do nothing. */ } else { error = "unrecognised header in SSH-2 public key file"; goto error; } sfree(line); line = NULL; } /* * Now line contains the initial line of base64 data. Loop round * while it still does contain base64. */ pubblob = strbuf_new(); base64bytes = 0; while (line && line[0] != '-') { char *p; for (p = line; *p; p++) { base64in[base64bytes++] = *p; if (base64bytes == 4) { int n = base64_decode_atom(base64in, base64out); put_data(pubblob, base64out, n); base64bytes = 0; } } sfree(line); line = NULL; line = mkstr(get_chomped_line(src)); } /* * Finally, check the END line makes sense. */ if (!line || 0 != strcmp(line, "---- END SSH2 PUBLIC KEY ----")) { error = "invalid end line in SSH-2 public key file"; goto error; } sfree(line); line = NULL; /* * OK, we now have a public blob and optionally a comment. We must * return the key algorithm string too, so look for that at the * start of the public blob. */ if (pubblob->len < 4) { error = "not enough data in SSH-2 public key file"; goto error; } alglen = toint(GET_32BIT_MSB_FIRST(pubblob->u)); if (alglen < 0 || alglen > pubblob->len-4) { error = "invalid algorithm prefix in SSH-2 public key file"; goto error; } if (algorithm) *algorithm = dupprintf("%.*s", alglen, pubblob->s+4); if (commentptr) *commentptr = comment; else sfree(comment); put_datapl(bs, ptrlen_from_strbuf(pubblob)); strbuf_free(pubblob); return true; error: sfree(line); sfree(comment); if (pubblob) strbuf_free(pubblob); if (errorstr) *errorstr = error; return false; } static bool openssh_loadpub(BinarySource *src, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr) { const char *error; char *line, *base64; char *comment = NULL; unsigned char *pubblob = NULL; int pubbloblen, pubblobsize; int alglen; line = mkstr(get_chomped_line(src)); base64 = strchr(line, ' '); if (!base64) { error = "no key blob in OpenSSH public key file"; goto error; } *base64++ = '\0'; comment = strchr(base64, ' '); if (comment) { *comment++ = '\0'; comment = dupstr(comment); } pubblobsize = strlen(base64) / 4 * 3; pubblob = snewn(pubblobsize, unsigned char); pubbloblen = 0; while (!memchr(base64, '\0', 4)) { assert(pubbloblen + 3 <= pubblobsize); pubbloblen += base64_decode_atom(base64, pubblob + pubbloblen); base64 += 4; } if (*base64) { error = "invalid length for base64 data in OpenSSH public key file"; goto error; } /* * Sanity check: the first word on the line should be the key * algorithm, and should match the encoded string at the start of * the public blob. */ alglen = strlen(line); if (pubbloblen < alglen + 4 || GET_32BIT_MSB_FIRST(pubblob) != alglen || 0 != memcmp(pubblob + 4, line, alglen)) { error = "key algorithms do not match in OpenSSH public key file"; goto error; } /* * Done. */ if (algorithm) *algorithm = dupstr(line); if (commentptr) *commentptr = comment; else sfree(comment); sfree(line); put_data(bs, pubblob, pubbloblen); sfree(pubblob); return true; error: sfree(line); sfree(comment); sfree(pubblob); if (errorstr) *errorstr = error; return false; } bool ppk_loadpub_s(BinarySource *src, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr) { char header[40], *b; const ssh_keyalg *alg; int type, i; const char *error = NULL; char *comment = NULL; /* Initially, check if this is a public-only key file. Sometimes * we'll be asked to read a public blob from one of those. */ type = key_type_s(src); if (type == SSH_KEYTYPE_SSH2_PUBLIC_RFC4716) { bool ret = rfc4716_loadpub(src, algorithm, bs, commentptr, errorstr); return ret; } else if (type == SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH) { bool ret = openssh_loadpub(src, algorithm, bs, commentptr, errorstr); return ret; } else if (type != SSH_KEYTYPE_SSH2) { error = "not a public key or a PuTTY SSH-2 private key"; goto error; } /* Read the first header line which contains the key type. */ if (!read_header(src, header) || (0 != strcmp(header, "PuTTY-User-Key-File-3") && 0 != strcmp(header, "PuTTY-User-Key-File-2") && 0 != strcmp(header, "PuTTY-User-Key-File-1"))) { if (0 == strncmp(header, "PuTTY-User-Key-File-", 20)) error = "PuTTY key format too new"; else error = "not a public key or a PuTTY SSH-2 private key"; goto error; } error = "file format error"; if ((b = read_body(src)) == NULL) goto error; /* Select key algorithm structure. */ alg = find_pubkey_alg(b); sfree(b); if (!alg) { goto error; } /* Read the Encryption header line. */ if (!read_header(src, header) || 0 != strcmp(header, "Encryption")) goto error; if ((b = read_body(src)) == NULL) goto error; sfree(b); /* we don't care */ /* Read the Comment header line. */ if (!read_header(src, header) || 0 != strcmp(header, "Comment")) goto error; if ((comment = read_body(src)) == NULL) goto error; if (commentptr) *commentptr = comment; else sfree(comment); /* Read the Public-Lines header line and the public blob. */ if (!read_header(src, header) || 0 != strcmp(header, "Public-Lines")) goto error; if ((b = read_body(src)) == NULL) goto error; i = userkey_parse_line_counter(b); sfree(b); if (i < 0) goto error; if (!read_blob(src, i, bs)) goto error; if (algorithm) *algorithm = dupstr(alg->ssh_id); return true; /* * Error processing. */ error: if (errorstr) *errorstr = error; if (comment && commentptr) { sfree(comment); *commentptr = NULL; } return false; } bool ppk_loadpub_f(const Filename *filename, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr) { LoadedFile *lf = lf_load_keyfile(filename, errorstr); if (!lf) return false; bool toret = ppk_loadpub_s(BinarySource_UPCAST(lf), algorithm, bs, commentptr, errorstr); lf_free(lf); return toret; } bool ppk_encrypted_s(BinarySource *src, char **commentptr) { char header[40], *b, *comment; bool ret; if (commentptr) *commentptr = NULL; if (!read_header(src, header) || (0 != strcmp(header, "PuTTY-User-Key-File-3") && 0 != strcmp(header, "PuTTY-User-Key-File-2") && 0 != strcmp(header, "PuTTY-User-Key-File-1"))) { return false; } if ((b = read_body(src)) == NULL) { return false; } sfree(b); /* we don't care about key type here */ /* Read the Encryption header line. */ if (!read_header(src, header) || 0 != strcmp(header, "Encryption")) { return false; } if ((b = read_body(src)) == NULL) { return false; } /* Read the Comment header line. */ if (!read_header(src, header) || 0 != strcmp(header, "Comment")) { sfree(b); return true; } if ((comment = read_body(src)) == NULL) { sfree(b); return true; } if (commentptr) *commentptr = comment; else sfree(comment); if (!strcmp(b, "aes256-cbc")) ret = true; else ret = false; sfree(b); return ret; } bool ppk_encrypted_f(const Filename *filename, char **commentptr) { LoadedFile *lf = lf_load_keyfile(filename, NULL); if (!lf) { if (commentptr) *commentptr = NULL; return false; } bool toret = ppk_encrypted_s(BinarySource_UPCAST(lf), commentptr); lf_free(lf); return toret; } int base64_lines(int datalen) { /* When encoding, we use 64 chars/line, which equals 48 real chars. */ return (datalen + 47) / 48; } const ppk_save_parameters ppk_save_default_parameters = { .fmt_version = 3, /* * The Argon2 spec recommends the hybrid variant Argon2id, where * you don't have a good reason to go with the pure Argon2d or * Argon2i. */ .argon2_flavour = Argon2id, /* * Memory requirement for hashing a password: I don't want to set * this to some truly huge thing like a gigabyte, because for all * I know people might perfectly reasonably be running PuTTY on * machines that don't _have_ a gigabyte spare to hash a private * key passphrase in the legitimate use cases. * * I've picked 8 MB as an amount of memory that isn't unreasonable * to expect a desktop client machine to have, but is also large * compared to the memory requirements of the PPK v2 password hash * (which was plain SHA-1), so it still imposes a limit on * parallel attacks on someone's key file. */ .argon2_mem = 8192, /* require 8 Mb memory */ /* * Automatically scale the number of Argon2 passes so that the * overall time taken is about 1/10 second. (Again, I could crank * this up to a larger time and _most_ people might be OK with it, * but for the moment, I'm trying to err on the side of not * stopping anyone from using the tools at all.) */ .argon2_passes_auto = true, .argon2_milliseconds = 100, /* * PuTTY's own Argon2 implementation is single-threaded. So we * might as well set parallelism to 1, which requires that * attackers' implementations must also be effectively * single-threaded, and they don't get any benefit from using * multiple cores on the same hash attempt. (Of course they can * still use multiple cores for _separate_ hash attempts, but at * least they don't get a speed advantage over us in computing * even one hash.) */ .argon2_parallelism = 1, }; strbuf *ppk_save_sb(ssh2_userkey *key, const char *passphrase, const ppk_save_parameters *params_orig) { strbuf *pub_blob, *priv_blob, *cipher_mac_keys_blob; unsigned char *priv_blob_encrypted; int priv_encrypted_len; int cipherblk; int i; const char *cipherstr; ptrlen cipherkey, cipheriv, mackey; const struct ppk_cipher *ciphertype; unsigned char priv_mac[32]; /* * Fetch the key component blobs. */ pub_blob = strbuf_new(); ssh_key_public_blob(key->key, BinarySink_UPCAST(pub_blob)); priv_blob = strbuf_new_nm(); ssh_key_private_blob(key->key, BinarySink_UPCAST(priv_blob)); /* * Determine encryption details, and encrypt the private blob. */ if (passphrase) { cipherstr = "aes256-cbc"; cipherblk = 16; ciphertype = &ppk_cipher_aes256_cbc; } else { cipherstr = "none"; cipherblk = 1; ciphertype = &ppk_cipher_none; } priv_encrypted_len = priv_blob->len + cipherblk - 1; priv_encrypted_len -= priv_encrypted_len % cipherblk; priv_blob_encrypted = snewn(priv_encrypted_len, unsigned char); memset(priv_blob_encrypted, 0, priv_encrypted_len); memcpy(priv_blob_encrypted, priv_blob->u, priv_blob->len); /* Create padding based on the SHA hash of the unpadded blob. This prevents * too easy a known-plaintext attack on the last block. */ hash_simple(&ssh_sha1, ptrlen_from_strbuf(priv_blob), priv_mac); assert(priv_encrypted_len - priv_blob->len < 20); memcpy(priv_blob_encrypted + priv_blob->len, priv_mac, priv_encrypted_len - priv_blob->len); /* Copy the save parameters, so that when derive_keys chooses the * number of Argon2 passes, it can write the result back to our * copy for us to retrieve. */ ppk_save_parameters params = *params_orig; strbuf *passphrase_salt = strbuf_new(); if (params.fmt_version == 3) { /* Invent a salt for the password hash. */ if (params.salt) put_data(passphrase_salt, params.salt, params.saltlen); else random_read(strbuf_append(passphrase_salt, 16), 16); } cipher_mac_keys_blob = strbuf_new(); ssh2_ppk_derive_keys(params.fmt_version, ciphertype, ptrlen_from_asciz(passphrase ? passphrase : ""), cipher_mac_keys_blob, &cipherkey, &cipheriv, &mackey, ptrlen_from_strbuf(passphrase_salt), ¶ms); const ssh2_macalg *macalg = (params.fmt_version == 2 ? &ssh_hmac_sha1 : &ssh_hmac_sha256); /* Now create the MAC. */ { strbuf *macdata; macdata = strbuf_new_nm(); put_stringz(macdata, ssh_key_ssh_id(key->key)); put_stringz(macdata, cipherstr); put_stringz(macdata, key->comment); put_string(macdata, pub_blob->s, pub_blob->len); put_string(macdata, priv_blob_encrypted, priv_encrypted_len); mac_simple(macalg, mackey, ptrlen_from_strbuf(macdata), priv_mac); strbuf_free(macdata); } if (passphrase) { assert(cipherkey.len == 32); aes256_encrypt_pubkey(cipherkey.ptr, cipheriv.ptr, priv_blob_encrypted, priv_encrypted_len); } strbuf *out = strbuf_new_nm(); put_fmt(out, "PuTTY-User-Key-File-%u: %s\n", params.fmt_version, ssh_key_ssh_id(key->key)); put_fmt(out, "Encryption: %s\n", cipherstr); put_fmt(out, "Comment: %s\n", key->comment); put_fmt(out, "Public-Lines: %d\n", base64_lines(pub_blob->len)); base64_encode_bs(BinarySink_UPCAST(out), ptrlen_from_strbuf(pub_blob), 64); if (params.fmt_version == 3 && ciphertype->keylen != 0) { put_fmt(out, "Key-Derivation: %s\n", params.argon2_flavour == Argon2d ? "Argon2d" : params.argon2_flavour == Argon2i ? "Argon2i" : "Argon2id"); put_fmt(out, "Argon2-Memory: %"PRIu32"\n", params.argon2_mem); assert(!params.argon2_passes_auto); put_fmt(out, "Argon2-Passes: %"PRIu32"\n", params.argon2_passes); put_fmt(out, "Argon2-Parallelism: %"PRIu32"\n", params.argon2_parallelism); put_fmt(out, "Argon2-Salt: "); for (size_t i = 0; i < passphrase_salt->len; i++) put_fmt(out, "%02x", passphrase_salt->u[i]); put_fmt(out, "\n"); } put_fmt(out, "Private-Lines: %d\n", base64_lines(priv_encrypted_len)); base64_encode_bs(BinarySink_UPCAST(out), make_ptrlen(priv_blob_encrypted, priv_encrypted_len), 64); put_fmt(out, "Private-MAC: "); for (i = 0; i < macalg->len; i++) put_fmt(out, "%02x", priv_mac[i]); put_fmt(out, "\n"); strbuf_free(cipher_mac_keys_blob); strbuf_free(passphrase_salt); strbuf_free(pub_blob); strbuf_free(priv_blob); smemclr(priv_blob_encrypted, priv_encrypted_len); sfree(priv_blob_encrypted); return out; } bool ppk_save_f(const Filename *filename, ssh2_userkey *key, const char *passphrase, const ppk_save_parameters *params) { FILE *fp = f_open(filename, "wb", true); if (!fp) return false; strbuf *buf = ppk_save_sb(key, passphrase, params); bool toret = fwrite(buf->s, 1, buf->len, fp) == buf->len; if (fclose(fp)) toret = false; strbuf_free(buf); return toret; } /* ---------------------------------------------------------------------- * Output public keys. */ char *ssh1_pubkey_str(RSAKey *key) { char *buffer; char *dec1, *dec2; dec1 = mp_get_decimal(key->exponent); dec2 = mp_get_decimal(key->modulus); buffer = dupprintf("%"SIZEu" %s %s%s%s", mp_get_nbits(key->modulus), dec1, dec2, key->comment ? " " : "", key->comment ? key->comment : ""); sfree(dec1); sfree(dec2); return buffer; } void ssh1_write_pubkey(FILE *fp, RSAKey *key) { char *buffer = ssh1_pubkey_str(key); fprintf(fp, "%s\n", buffer); sfree(buffer); } static char *ssh2_pubkey_openssh_str_internal(const char *comment, const void *v_pub_blob, int pub_len) { const unsigned char *ssh2blob = (const unsigned char *)v_pub_blob; ptrlen alg; char *buffer, *p; int i; { BinarySource src[1]; BinarySource_BARE_INIT(src, ssh2blob, pub_len); alg = get_string(src); if (get_err(src)) { const char *replacement_str = "INVALID-ALGORITHM"; alg.ptr = replacement_str; alg.len = strlen(replacement_str); } } buffer = snewn(alg.len + 4 * ((pub_len+2) / 3) + (comment ? strlen(comment) : 0) + 3, char); p = buffer + sprintf(buffer, "%.*s ", PTRLEN_PRINTF(alg)); i = 0; while (i < pub_len) { int n = (pub_len - i < 3 ? pub_len - i : 3); base64_encode_atom(ssh2blob + i, n, p); i += n; p += 4; } if (comment) { *p++ = ' '; strcpy(p, comment); } else *p++ = '\0'; return buffer; } char *ssh2_pubkey_openssh_str(ssh2_userkey *key) { strbuf *blob; char *ret; blob = strbuf_new(); ssh_key_public_blob(key->key, BinarySink_UPCAST(blob)); ret = ssh2_pubkey_openssh_str_internal( key->comment, blob->s, blob->len); strbuf_free(blob); return ret; } void ssh2_write_pubkey(FILE *fp, const char *comment, const void *v_pub_blob, int pub_len, int keytype) { unsigned char *pub_blob = (unsigned char *)v_pub_blob; if (keytype == SSH_KEYTYPE_SSH2_PUBLIC_RFC4716) { const char *p; int i, column; fprintf(fp, "---- BEGIN SSH2 PUBLIC KEY ----\n"); if (comment) { fprintf(fp, "Comment: \""); for (p = comment; *p; p++) { if (*p == '\\' || *p == '\"') fputc('\\', fp); fputc(*p, fp); } fprintf(fp, "\"\n"); } i = 0; column = 0; while (i < pub_len) { char buf[5]; int n = (pub_len - i < 3 ? pub_len - i : 3); base64_encode_atom(pub_blob + i, n, buf); i += n; buf[4] = '\0'; fputs(buf, fp); if (++column >= 16) { fputc('\n', fp); column = 0; } } if (column > 0) fputc('\n', fp); fprintf(fp, "---- END SSH2 PUBLIC KEY ----\n"); } else if (keytype == SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH) { char *buffer = ssh2_pubkey_openssh_str_internal(comment, v_pub_blob, pub_len); fprintf(fp, "%s\n", buffer); sfree(buffer); } else { unreachable("Bad key type in ssh2_write_pubkey"); } } /* ---------------------------------------------------------------------- * Utility functions to compute SSH-2 fingerprints in a uniform way. */ static void ssh2_fingerprint_blob_md5(ptrlen blob, strbuf *sb) { unsigned char digest[16]; hash_simple(&ssh_md5, blob, digest); for (unsigned i = 0; i < 16; i++) put_fmt(sb, "%02x%s", digest[i], i==15 ? "" : ":"); } static void ssh2_fingerprint_blob_sha256(ptrlen blob, strbuf *sb) { unsigned char digest[32]; hash_simple(&ssh_sha256, blob, digest); put_datapl(sb, PTRLEN_LITERAL("SHA256:")); for (unsigned i = 0; i < 32; i += 3) { char buf[5]; unsigned len = 32-i; if (len > 3) len = 3; base64_encode_atom(digest + i, len, buf); put_data(sb, buf, 4); } strbuf_chomp(sb, '='); } char *ssh2_fingerprint_blob(ptrlen blob, FingerprintType fptype) { strbuf *sb = strbuf_new(); strbuf *tmp = NULL; /* * Identify the key algorithm, if possible. * * If we can't do that, then we have a seriously confused key * blob, in which case we return only the hash. */ BinarySource src[1]; BinarySource_BARE_INIT_PL(src, blob); ptrlen algname = get_string(src); if (!get_err(src)) { const ssh_keyalg *alg = find_pubkey_alg_len(algname); if (alg) { int bits = ssh_key_public_bits(alg, blob); put_fmt(sb, "%.*s %d ", PTRLEN_PRINTF(algname), bits); if (!ssh_fptype_is_cert(fptype) && alg->is_certificate) { ssh_key *key = ssh_key_new_pub(alg, blob); if (key) { tmp = strbuf_new(); ssh_key_public_blob(ssh_key_base_key(key), BinarySink_UPCAST(tmp)); blob = ptrlen_from_strbuf(tmp); ssh_key_free(key); } } } else { put_fmt(sb, "%.*s ", PTRLEN_PRINTF(algname)); } } switch (ssh_fptype_from_cert(fptype)) { case SSH_FPTYPE_MD5: ssh2_fingerprint_blob_md5(blob, sb); break; case SSH_FPTYPE_SHA256: ssh2_fingerprint_blob_sha256(blob, sb); break; default: unreachable("ssh_fptype_from_cert ruled out the other values"); } if (tmp) strbuf_free(tmp); return strbuf_to_str(sb); } char *ssh2_double_fingerprint_blob(ptrlen blob, FingerprintType fptype) { if (ssh_fptype_is_cert(fptype)) fptype = ssh_fptype_from_cert(fptype); char *fp = ssh2_fingerprint_blob(blob, fptype); char *p = strrchr(fp, ' '); char *hash = p ? p + 1 : fp; char *fpc = ssh2_fingerprint_blob(blob, ssh_fptype_to_cert(fptype)); char *pc = strrchr(fpc, ' '); char *hashc = pc ? pc + 1 : fpc; if (strcmp(hash, hashc)) { char *tmp = dupprintf("%s (with certificate: %s)", fp, hashc); sfree(fp); fp = tmp; } sfree(fpc); return fp; } char **ssh2_all_fingerprints_for_blob(ptrlen blob) { char **fps = snewn(SSH_N_FPTYPES, char *); for (unsigned i = 0; i < SSH_N_FPTYPES; i++) fps[i] = ssh2_fingerprint_blob(blob, i); return fps; } char *ssh2_fingerprint(ssh_key *data, FingerprintType fptype) { strbuf *blob = strbuf_new(); ssh_key_public_blob(data, BinarySink_UPCAST(blob)); char *ret = ssh2_fingerprint_blob(ptrlen_from_strbuf(blob), fptype); strbuf_free(blob); return ret; } char *ssh2_double_fingerprint(ssh_key *data, FingerprintType fptype) { strbuf *blob = strbuf_new(); ssh_key_public_blob(data, BinarySink_UPCAST(blob)); char *ret = ssh2_double_fingerprint_blob(ptrlen_from_strbuf(blob), fptype); strbuf_free(blob); return ret; } char **ssh2_all_fingerprints(ssh_key *data) { strbuf *blob = strbuf_new(); ssh_key_public_blob(data, BinarySink_UPCAST(blob)); char **ret = ssh2_all_fingerprints_for_blob(ptrlen_from_strbuf(blob)); strbuf_free(blob); return ret; } void ssh2_free_all_fingerprints(char **fps) { for (unsigned i = 0; i < SSH_N_FPTYPES; i++) sfree(fps[i]); sfree(fps); } /* ---------------------------------------------------------------------- * Determine the type of a private key file. */ static int key_type_s_internal(BinarySource *src) { static const ptrlen public_std_sig = PTRLEN_DECL_LITERAL("---- BEGIN SSH2 PUBLIC KEY"); static const ptrlen putty2_sig = PTRLEN_DECL_LITERAL("PuTTY-User-Key-File-"); static const ptrlen sshcom_sig = PTRLEN_DECL_LITERAL("---- BEGIN SSH2 ENCRYPTED PRIVAT"); static const ptrlen openssh_new_sig = PTRLEN_DECL_LITERAL("-----BEGIN OPENSSH PRIVATE KEY"); static const ptrlen openssh_sig = PTRLEN_DECL_LITERAL("-----BEGIN "); if (BinarySource_REWIND(src), expect_signature(src, rsa1_signature)) return SSH_KEYTYPE_SSH1; if (BinarySource_REWIND(src), expect_signature(src, public_std_sig)) return SSH_KEYTYPE_SSH2_PUBLIC_RFC4716; if (BinarySource_REWIND(src), expect_signature(src, putty2_sig)) return SSH_KEYTYPE_SSH2; if (BinarySource_REWIND(src), expect_signature(src, openssh_new_sig)) return SSH_KEYTYPE_OPENSSH_NEW; if (BinarySource_REWIND(src), expect_signature(src, openssh_sig)) return SSH_KEYTYPE_OPENSSH_PEM; if (BinarySource_REWIND(src), expect_signature(src, sshcom_sig)) return SSH_KEYTYPE_SSHCOM; BinarySource_REWIND(src); if (get_chars(src, "0123456789").len > 0 && get_chars(src, " ").len == 1 && get_chars(src, "0123456789").len > 0 && get_chars(src, " ").len == 1 && get_chars(src, "0123456789").len > 0 && get_nonchars(src, " \n").len == 0) return SSH_KEYTYPE_SSH1_PUBLIC; BinarySource_REWIND(src); if (find_pubkey_alg_len(get_nonchars(src, " \n")) > 0 && get_chars(src, " ").len == 1 && get_chars(src, "0123456789ABCDEFGHIJKLMNOPQRSTUV" "WXYZabcdefghijklmnopqrstuvwxyz+/=").len > 0 && get_nonchars(src, " \n").len == 0) return SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH; return SSH_KEYTYPE_UNKNOWN; /* unrecognised or EOF */ } int key_type_s(BinarySource *src) { int toret = key_type_s_internal(src); BinarySource_REWIND(src); return toret; } int key_type(const Filename *filename) { LoadedFile *lf = lf_new(1024); if (lf_load(lf, filename) == LF_ERROR) { lf_free(lf); return SSH_KEYTYPE_UNOPENABLE; } int toret = key_type_s(BinarySource_UPCAST(lf)); lf_free(lf); return toret; } /* * Convert the type word to a string, for `wrong type' error * messages. */ const char *key_type_to_str(int type) { switch (type) { case SSH_KEYTYPE_UNOPENABLE: return "unable to open file"; case SSH_KEYTYPE_UNKNOWN: return "not a recognised key file format"; case SSH_KEYTYPE_SSH1_PUBLIC: return "SSH-1 public key"; case SSH_KEYTYPE_SSH2_PUBLIC_RFC4716: return "SSH-2 public key (RFC 4716 format)"; case SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH: return "SSH-2 public key (OpenSSH format)"; case SSH_KEYTYPE_SSH1: return "SSH-1 private key"; case SSH_KEYTYPE_SSH2: return "PuTTY SSH-2 private key"; case SSH_KEYTYPE_OPENSSH_PEM: return "OpenSSH SSH-2 private key (old PEM format)"; case SSH_KEYTYPE_OPENSSH_NEW: return "OpenSSH SSH-2 private key (new format)"; case SSH_KEYTYPE_SSHCOM: return "ssh.com SSH-2 private key"; /* * This function is called with a key type derived from * looking at an actual key file, so the output-only type * OPENSSH_AUTO should never get here, and is much an INTERNAL * ERROR as a code we don't even understand. */ case SSH_KEYTYPE_OPENSSH_AUTO: unreachable("OPENSSH_AUTO should never reach key_type_to_str"); default: unreachable("bad key type in key_type_to_str"); } }