mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 09:27:59 +00:00
16629d3bbc
This adds a ssh_hashalg defining SHAKE256 with a 32-byte output, in addition to the 114-byte output we already have. Also, it defines a new API for using SHAKE128 and SHAKE256 in the more general form of an extendable output function, which is to say that you still have to put in all the input before reading any output, but once you start reading output you can just keep going until you have enough. Both of these will be needed in an upcoming commit implementing ML-KEM.
402 lines
12 KiB
C
402 lines
12 KiB
C
/*
|
|
* SHA-3, as defined in FIPS PUB 202.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include "ssh.h"
|
|
|
|
static inline uint64_t rol(uint64_t x, unsigned shift)
|
|
{
|
|
unsigned L = (+shift) & 63;
|
|
unsigned R = (-shift) & 63;
|
|
return (x << L) | (x >> R);
|
|
}
|
|
|
|
/*
|
|
* General Keccak is defined such that its state is a 5x5 array of
|
|
* words which can be any power-of-2 size from 1 up to 64. SHA-3 fixes
|
|
* on 64, and so do we.
|
|
*
|
|
* The number of rounds is defined as 12 + 2k if the word size is 2^k.
|
|
* Here we have 64-bit words only, so k=6, so 24 rounds always.
|
|
*/
|
|
typedef uint64_t keccak_core_state[5][5];
|
|
#define NROUNDS 24 /* would differ for other word sizes */
|
|
static const uint64_t round_constants[NROUNDS];
|
|
static const unsigned rotation_counts[5][5];
|
|
|
|
/*
|
|
* Core Keccak transform: just squodge the state around internally,
|
|
* without adding or extracting any data from it.
|
|
*/
|
|
static void keccak_transform(keccak_core_state A)
|
|
{
|
|
union {
|
|
uint64_t C[5];
|
|
uint64_t B[5][5];
|
|
} u;
|
|
|
|
for (unsigned round = 0; round < NROUNDS; round++) {
|
|
/* theta step */
|
|
for (unsigned x = 0; x < 5; x++)
|
|
u.C[x] = A[x][0] ^ A[x][1] ^ A[x][2] ^ A[x][3] ^ A[x][4];
|
|
for (unsigned x = 0; x < 5; x++) {
|
|
uint64_t D = rol(u.C[(x+1) % 5], 1) ^ u.C[(x+4) % 5];
|
|
for (unsigned y = 0; y < 5; y++)
|
|
A[x][y] ^= D;
|
|
}
|
|
|
|
/* rho and pi steps */
|
|
for (unsigned x = 0; x < 5; x++)
|
|
for (unsigned y = 0; y < 5; y++)
|
|
u.B[y][(2*x+3*y) % 5] = rol(A[x][y], rotation_counts[x][y]);
|
|
|
|
/* chi step */
|
|
for (unsigned x = 0; x < 5; x++)
|
|
for (unsigned y = 0; y < 5; y++)
|
|
A[x][y] = u.B[x][y] ^ (u.B[(x+2)%5][y] & ~u.B[(x+1)%5][y]);
|
|
|
|
/* iota step */
|
|
A[0][0] ^= round_constants[round];
|
|
}
|
|
|
|
smemclr(&u, sizeof(u));
|
|
}
|
|
|
|
typedef struct {
|
|
keccak_core_state A;
|
|
unsigned char bytes[25*8];
|
|
unsigned char first_pad_byte;
|
|
size_t bytes_got, bytes_wanted, hash_bytes;
|
|
} keccak_state;
|
|
|
|
/*
|
|
* Keccak accumulation function: given a piece of message, add it to
|
|
* the hash.
|
|
*/
|
|
static void keccak_accumulate(keccak_state *s, const void *vdata, size_t len)
|
|
{
|
|
const unsigned char *data = (const unsigned char *)vdata;
|
|
|
|
while (len >= s->bytes_wanted - s->bytes_got) {
|
|
size_t b = s->bytes_wanted - s->bytes_got;
|
|
memcpy(s->bytes + s->bytes_got, data, b);
|
|
len -= b;
|
|
data += b;
|
|
|
|
size_t n = 0;
|
|
for (unsigned y = 0; y < 5; y++) {
|
|
for (unsigned x = 0; x < 5; x++) {
|
|
if (n >= s->bytes_wanted)
|
|
break;
|
|
|
|
s->A[x][y] ^= GET_64BIT_LSB_FIRST(s->bytes + n);
|
|
n += 8;
|
|
}
|
|
}
|
|
keccak_transform(s->A);
|
|
|
|
s->bytes_got = 0;
|
|
}
|
|
|
|
memcpy(s->bytes + s->bytes_got, data, len);
|
|
s->bytes_got += len;
|
|
}
|
|
|
|
/*
|
|
* Keccak output function.
|
|
*/
|
|
static void keccak_output(keccak_state *s, void *voutput)
|
|
{
|
|
unsigned char *output = (unsigned char *)voutput;
|
|
|
|
/*
|
|
* Add message padding.
|
|
*/
|
|
{
|
|
unsigned char padding[25*8];
|
|
size_t len = s->bytes_wanted - s->bytes_got;
|
|
if (len == 0)
|
|
len = s->bytes_wanted;
|
|
memset(padding, 0, len);
|
|
padding[0] |= s->first_pad_byte;
|
|
padding[len-1] |= 0x80;
|
|
keccak_accumulate(s, padding, len);
|
|
}
|
|
|
|
size_t n = 0;
|
|
for (unsigned y = 0; y < 5; y++) {
|
|
for (unsigned x = 0; x < 5; x++) {
|
|
size_t to_copy = s->hash_bytes - n;
|
|
if (to_copy == 0)
|
|
break;
|
|
if (to_copy > 8)
|
|
to_copy = 8;
|
|
unsigned char outbytes[8];
|
|
PUT_64BIT_LSB_FIRST(outbytes, s->A[x][y]);
|
|
memcpy(output + n, outbytes, to_copy);
|
|
n += to_copy;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void keccak_init(keccak_state *s, unsigned hashbits, unsigned ratebits,
|
|
unsigned char first_pad_byte)
|
|
{
|
|
int x, y;
|
|
|
|
assert(hashbits % 8 == 0);
|
|
assert(ratebits % 8 == 0);
|
|
|
|
s->hash_bytes = hashbits / 8;
|
|
s->bytes_wanted = (25 * 64 - ratebits) / 8;
|
|
s->bytes_got = 0;
|
|
s->first_pad_byte = first_pad_byte;
|
|
|
|
assert(s->bytes_wanted % 8 == 0);
|
|
|
|
for (y = 0; y < 5; y++)
|
|
for (x = 0; x < 5; x++)
|
|
s->A[x][y] = 0;
|
|
}
|
|
|
|
static void keccak_sha3_init(keccak_state *s, int hashbits)
|
|
{
|
|
keccak_init(s, hashbits, hashbits * 2, 0x06);
|
|
}
|
|
|
|
static void keccak_shake_init(keccak_state *s, int parambits, int hashbits)
|
|
{
|
|
keccak_init(s, hashbits, parambits * 2, 0x1f);
|
|
}
|
|
|
|
/*
|
|
* Keccak round constants, generated via the LFSR specified in the
|
|
* Keccak reference by the following piece of Python:
|
|
|
|
import textwrap
|
|
from functools import reduce
|
|
|
|
rbytes = [1]
|
|
while len(rbytes) < 7*24:
|
|
k = rbytes[-1] * 2
|
|
rbytes.append(k ^ (0x171 * (k >> 8)))
|
|
|
|
rbits = [byte & 1 for byte in rbytes]
|
|
|
|
rwords = [sum(rbits[i+j] << ((1 << j) - 1) for j in range(7))
|
|
for i in range(0, len(rbits), 7)]
|
|
|
|
print(textwrap.indent("\n".join(textwrap.wrap(", ".join(
|
|
map("0x{:016x}".format, rwords)))), " "*4))
|
|
|
|
*/
|
|
|
|
static const uint64_t round_constants[24] = {
|
|
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
|
|
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
|
|
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
|
|
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
|
|
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
|
|
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
|
|
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
|
|
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
|
|
};
|
|
|
|
/*
|
|
* Keccak per-element rotation counts, generated from the matrix
|
|
* formula in the Keccak reference by the following piece of Python:
|
|
|
|
coords = [1, 0]
|
|
while len(coords) < 26:
|
|
coords.append((2*coords[-2] + 3*coords[-1]) % 5)
|
|
|
|
matrix = { (coords[i], coords[i+1]) : i for i in range(24) }
|
|
matrix[0,0] = -1
|
|
|
|
f = lambda t: (t+1) * (t+2) // 2 % 64
|
|
|
|
for y in range(5):
|
|
print(" {{{}}},".format(", ".join("{:2d}".format(f(matrix[y,x]))
|
|
for x in range(5))))
|
|
|
|
*/
|
|
static const unsigned rotation_counts[5][5] = {
|
|
{ 0, 36, 3, 41, 18},
|
|
{ 1, 44, 10, 45, 2},
|
|
{62, 6, 43, 15, 61},
|
|
{28, 55, 25, 21, 56},
|
|
{27, 20, 39, 8, 14},
|
|
};
|
|
|
|
/*
|
|
* The PuTTY ssh_hashalg abstraction.
|
|
*/
|
|
struct keccak_hash {
|
|
keccak_state state;
|
|
ssh_hash hash;
|
|
BinarySink_IMPLEMENTATION;
|
|
};
|
|
|
|
static void keccak_BinarySink_write(BinarySink *bs, const void *p, size_t len)
|
|
{
|
|
struct keccak_hash *kh = BinarySink_DOWNCAST(bs, struct keccak_hash);
|
|
keccak_accumulate(&kh->state, p, len);
|
|
}
|
|
|
|
static ssh_hash *keccak_new(const ssh_hashalg *alg)
|
|
{
|
|
struct keccak_hash *kh = snew(struct keccak_hash);
|
|
kh->hash.vt = alg;
|
|
BinarySink_INIT(kh, keccak_BinarySink_write);
|
|
BinarySink_DELEGATE_INIT(&kh->hash, kh);
|
|
return ssh_hash_reset(&kh->hash);
|
|
}
|
|
|
|
static void keccak_free(ssh_hash *hash)
|
|
{
|
|
struct keccak_hash *kh = container_of(hash, struct keccak_hash, hash);
|
|
smemclr(kh, sizeof(*kh));
|
|
sfree(kh);
|
|
}
|
|
|
|
static void keccak_copyfrom(ssh_hash *hnew, ssh_hash *hold)
|
|
{
|
|
struct keccak_hash *khold = container_of(hold, struct keccak_hash, hash);
|
|
struct keccak_hash *khnew = container_of(hnew, struct keccak_hash, hash);
|
|
khnew->state = khold->state;
|
|
}
|
|
|
|
static void keccak_digest(ssh_hash *hash, unsigned char *output)
|
|
{
|
|
struct keccak_hash *kh = container_of(hash, struct keccak_hash, hash);
|
|
keccak_output(&kh->state, output);
|
|
}
|
|
|
|
static void sha3_reset(ssh_hash *hash)
|
|
{
|
|
struct keccak_hash *kh = container_of(hash, struct keccak_hash, hash);
|
|
keccak_sha3_init(&kh->state, hash->vt->hlen * 8);
|
|
}
|
|
|
|
#define DEFINE_SHA3(bits) \
|
|
const ssh_hashalg ssh_sha3_##bits = { \
|
|
.new = keccak_new, \
|
|
.reset = sha3_reset, \
|
|
.copyfrom = keccak_copyfrom, \
|
|
.digest = keccak_digest, \
|
|
.free = keccak_free, \
|
|
.hlen = bits/8, \
|
|
.blocklen = 200 - 2*(bits/8), \
|
|
HASHALG_NAMES_BARE("SHA3-" #bits), \
|
|
}
|
|
|
|
DEFINE_SHA3(224);
|
|
DEFINE_SHA3(256);
|
|
DEFINE_SHA3(384);
|
|
DEFINE_SHA3(512);
|
|
|
|
static void shake256_reset(ssh_hash *hash)
|
|
{
|
|
struct keccak_hash *kh = container_of(hash, struct keccak_hash, hash);
|
|
keccak_shake_init(&kh->state, 256, hash->vt->hlen * 8);
|
|
}
|
|
|
|
/*
|
|
* There is some confusion over the output length parameter for the
|
|
* SHAKE functions. By my reading, FIPS PUB 202 defines SHAKE256(M,d)
|
|
* to generate d _bits_ of output. But RFC 8032 (defining Ed448) talks
|
|
* about "SHAKE256(x,114)" in a context where it definitely means
|
|
* generating 114 _bytes_ of output.
|
|
*
|
|
* Our internal ID therefore suffixes the output length with "bytes",
|
|
* to be clear which we're talking about
|
|
*/
|
|
|
|
#define DEFINE_SHAKE(param, hashbytes) \
|
|
const ssh_hashalg ssh_shake##param##_##hashbytes##bytes = { \
|
|
.new = keccak_new, \
|
|
.reset = shake##param##_reset, \
|
|
.copyfrom = keccak_copyfrom, \
|
|
.digest = keccak_digest, \
|
|
.free = keccak_free, \
|
|
.hlen = hashbytes, \
|
|
.blocklen = 0, \
|
|
HASHALG_NAMES_BARE("SHAKE" #param), \
|
|
}
|
|
|
|
DEFINE_SHAKE(256, 114); /* used by Ed448 */
|
|
DEFINE_SHAKE(256, 32); /* used by ML-KEM */
|
|
|
|
struct ShakeXOF {
|
|
keccak_state state;
|
|
unsigned char *buf;
|
|
size_t bytes_per_transform, pos;
|
|
};
|
|
|
|
static ShakeXOF *shake_xof_from_input(unsigned bits, ptrlen data)
|
|
{
|
|
ShakeXOF *sx = snew_plus(ShakeXOF, 200 * 64);
|
|
sx->buf = snew_plus_get_aux(sx);
|
|
|
|
/* Initialise as if we were generating 0 bytes of hash. That way,
|
|
* keccak_output will do the final accumulation but generate no data. */
|
|
keccak_shake_init(&sx->state, bits, 0);
|
|
keccak_accumulate(&sx->state, data.ptr, data.len);
|
|
keccak_output(&sx->state, NULL);
|
|
|
|
sx->bytes_per_transform = 200 - bits/4;
|
|
sx->pos = 0;
|
|
|
|
return sx;
|
|
}
|
|
|
|
ShakeXOF *shake128_xof_from_input(ptrlen data)
|
|
{
|
|
return shake_xof_from_input(128, data);
|
|
}
|
|
|
|
ShakeXOF *shake256_xof_from_input(ptrlen data)
|
|
{
|
|
return shake_xof_from_input(256, data);
|
|
}
|
|
|
|
void shake_xof_read(ShakeXOF *sx, void *output_v, size_t size)
|
|
{
|
|
unsigned char *output = (unsigned char *)output_v;
|
|
|
|
while (size > 0) {
|
|
if (sx->pos == 0) {
|
|
/* Copy the 64-bit words from the Keccak state into the
|
|
* output buffer of bytes */
|
|
for (unsigned y = 0; y < 5; y++)
|
|
for (unsigned x = 0; x < 5; x++)
|
|
PUT_64BIT_LSB_FIRST(sx->buf + 8 * (5*y+x),
|
|
sx->state.A[x][y]);
|
|
}
|
|
|
|
/* Read a chunk from the byte buffer */
|
|
size_t this_size = sx->bytes_per_transform - sx->pos;
|
|
if (this_size > size)
|
|
this_size = size;
|
|
memcpy(output, sx->buf + sx->pos, this_size);
|
|
sx->pos += this_size;
|
|
output += this_size;
|
|
size -= this_size;
|
|
|
|
/* Retransform the Keccak state if we've run out of data */
|
|
if (sx->pos >= sx->bytes_per_transform) {
|
|
keccak_transform(sx->state.A);
|
|
sx->pos = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void shake_xof_free(ShakeXOF *sx)
|
|
{
|
|
smemclr(sx->buf, 200 * 64);
|
|
smemclr(sx, sizeof(*sx));
|
|
sfree(sx);
|
|
}
|