mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-08 08:58:00 +00:00
d5af33da53
This reallocs an existing mp_int to have a different physical size, e.g. to make sure there's enough space at the top of it. Trivial, but I'm a little surprised I haven't needed it until now!
459 lines
18 KiB
C
459 lines
18 KiB
C
#ifndef PUTTY_MPINT_H
|
|
#define PUTTY_MPINT_H
|
|
|
|
/*
|
|
* PuTTY's multiprecision integer library.
|
|
*
|
|
* This library is written with the aim of avoiding leaking the input
|
|
* numbers via timing and cache side channels. This means avoiding
|
|
* making any control flow change, or deciding the address of any
|
|
* memory access, based on the value of potentially secret input data.
|
|
*
|
|
* But in a library that has to handle numbers of arbitrary size, you
|
|
* can't avoid your control flow depending on the _size_ of the input!
|
|
* So the rule is that an mp_int has a nominal size that need not be
|
|
* its mathematical size: i.e. if you call (say) mp_from_bytes_be to
|
|
* turn an array of 256 bytes into an integer, and all but the last of
|
|
* those bytes is zero, then you get an mp_int which has space for 256
|
|
* bytes of data but just happens to store the value 1. So the
|
|
* _nominal_ sizes of input data - e.g. the size in bits of some
|
|
* public-key modulus - are not considered secret, and control flow is
|
|
* allowed to do what it likes based on those sizes. But the same
|
|
* function, called with the same _nominally sized_ arguments
|
|
* containing different values, should run in the same length of time.
|
|
*
|
|
* When a function returns an 'mp_int *', it is newly allocated to an
|
|
* appropriate nominal size (which, again, depends only on the nominal
|
|
* sizes of the inputs). Other functions have 'into' in their name,
|
|
* and they instead overwrite the contents of an existing mp_int.
|
|
*
|
|
* Functions in this API which return values that are logically
|
|
* boolean return them as 'unsigned' rather than the C99 bool type.
|
|
* That's because C99 bool does an implicit test for non-zero-ness
|
|
* when converting any other integer type to it, which compilers might
|
|
* well implement using data-dependent control flow.
|
|
*/
|
|
|
|
/*
|
|
* Create and destroy mp_ints. A newly created one is initialised to
|
|
* zero. mp_clear also resets an existing number to zero.
|
|
*/
|
|
mp_int *mp_new(size_t maxbits);
|
|
void mp_free(mp_int *);
|
|
void mp_clear(mp_int *x);
|
|
|
|
/*
|
|
* Resize the physical size of existing mp_int, e.g. so that you have
|
|
* room to transform it in place to a larger value. Destroys the old
|
|
* mp_int in the process.
|
|
*/
|
|
mp_int *mp_resize(mp_int *, size_t newmaxbits);
|
|
|
|
/*
|
|
* Create mp_ints from various sources: little- and big-endian binary
|
|
* data, an ordinary C unsigned integer type, a decimal or hex string
|
|
* (given either as a ptrlen or a C NUL-terminated string), and
|
|
* another mp_int.
|
|
*
|
|
* The decimal and hex conversion functions have running time
|
|
* dependent on the length of the input data, of course.
|
|
*/
|
|
mp_int *mp_from_bytes_le(ptrlen bytes);
|
|
mp_int *mp_from_bytes_be(ptrlen bytes);
|
|
mp_int *mp_from_integer(uintmax_t n);
|
|
mp_int *mp_from_decimal_pl(ptrlen decimal);
|
|
mp_int *mp_from_decimal(const char *decimal);
|
|
mp_int *mp_from_hex_pl(ptrlen hex);
|
|
mp_int *mp_from_hex(const char *hex);
|
|
mp_int *mp_copy(mp_int *x);
|
|
|
|
/*
|
|
* A macro for declaring large fixed numbers in source code (such as
|
|
* elliptic curve parameters, or standard Diffie-Hellman moduli). The
|
|
* idea is that you just write something like
|
|
*
|
|
* mp_int *value = MP_LITERAL(0x19284376283754638745693467245);
|
|
*
|
|
* and it newly allocates you an mp_int containing that number.
|
|
*
|
|
* Internally, the macro argument is stringified and passed to
|
|
* mp_from_hex. That's not as fast as it could be if I had instead set
|
|
* up some kind of mp_from_array_of_uint64_t() function, but I think
|
|
* this system is valuable for the fact that the literal integers
|
|
* appear in a very natural syntax that can be pasted directly out
|
|
* into, say, Python if you want to cross-check a calculation.
|
|
*/
|
|
static inline mp_int *mp__from_string_literal(const char *lit)
|
|
{
|
|
/* Don't call this directly; it's not equipped to deal with
|
|
* hostile data. Use only via the MP_LITERAL macro. */
|
|
if (lit[0] && (lit[1] == 'x' || lit[1] == 'X'))
|
|
return mp_from_hex(lit+2);
|
|
else
|
|
return mp_from_decimal(lit);
|
|
}
|
|
#define MP_LITERAL(number) mp__from_string_literal(#number)
|
|
|
|
/*
|
|
* Create an mp_int with the value 2^power.
|
|
*/
|
|
mp_int *mp_power_2(size_t power);
|
|
|
|
/*
|
|
* Retrieve the value of a particular bit or byte of an mp_int. The
|
|
* byte / bit index is not considered to be secret data. Out-of-range
|
|
* byte/bit indices are handled cleanly and return zero.
|
|
*/
|
|
uint8_t mp_get_byte(mp_int *x, size_t byte);
|
|
unsigned mp_get_bit(mp_int *x, size_t bit);
|
|
|
|
/*
|
|
* Retrieve the value of an mp_int as a uintmax_t, assuming it's small
|
|
* enough to fit.
|
|
*/
|
|
uintmax_t mp_get_integer(mp_int *x);
|
|
|
|
/*
|
|
* Set an mp_int bit. Again, the bit index is not considered secret.
|
|
* Do not pass an out-of-range index, on pain of assertion failure.
|
|
*/
|
|
void mp_set_bit(mp_int *x, size_t bit, unsigned val);
|
|
|
|
/*
|
|
* Return the nominal size of an mp_int, in terms of the maximum
|
|
* number of bytes or bits that can fit in it.
|
|
*/
|
|
size_t mp_max_bytes(mp_int *x);
|
|
size_t mp_max_bits(mp_int *x);
|
|
|
|
/*
|
|
* Return the _mathematical_ bit count of an mp_int (not its nominal
|
|
* size), i.e. a value n such that 2^{n-1} <= x < 2^n.
|
|
*
|
|
* This function is supposed to run in constant time for a given
|
|
* nominal input size. Of course it's likely that clients of this
|
|
* function will promptly need to use the result as the limit of some
|
|
* loop (e.g. marshalling an mp_int into an SSH packet, which doesn't
|
|
* permit extra prefix zero bytes). But that's up to the caller to
|
|
* decide the safety of.
|
|
*/
|
|
size_t mp_get_nbits(mp_int *x);
|
|
|
|
/*
|
|
* Return the value of an mp_int as a decimal or hex string. The
|
|
* result is dynamically allocated, and the caller is responsible for
|
|
* freeing it.
|
|
*
|
|
* These functions should run in constant time for a given nominal
|
|
* input size, even though the exact number of digits returned is
|
|
* variable. They always allocate enough space for the largest output
|
|
* that might be needed, but they don't always fill it.
|
|
*/
|
|
char *mp_get_decimal(mp_int *x);
|
|
char *mp_get_hex(mp_int *x);
|
|
char *mp_get_hex_uppercase(mp_int *x);
|
|
|
|
/*
|
|
* Compare two mp_ints, or compare one mp_int against a C integer. The
|
|
* 'eq' functions return 1 if the two inputs are equal, or 0
|
|
* otherwise; the 'hs' functions return 1 if the first input is >= the
|
|
* second, and 0 otherwise.
|
|
*/
|
|
unsigned mp_cmp_hs(mp_int *a, mp_int *b);
|
|
unsigned mp_cmp_eq(mp_int *a, mp_int *b);
|
|
unsigned mp_hs_integer(mp_int *x, uintmax_t n);
|
|
unsigned mp_eq_integer(mp_int *x, uintmax_t n);
|
|
|
|
/*
|
|
* Take the minimum or maximum of two mp_ints, without using a
|
|
* conditional branch.
|
|
*/
|
|
void mp_min_into(mp_int *r, mp_int *x, mp_int *y);
|
|
void mp_max_into(mp_int *r, mp_int *x, mp_int *y);
|
|
mp_int *mp_min(mp_int *x, mp_int *y);
|
|
mp_int *mp_max(mp_int *x, mp_int *y);
|
|
|
|
/*
|
|
* Diagnostic function. Writes out x in hex to the supplied stdio
|
|
* stream, preceded by the string 'prefix' and followed by 'suffix'.
|
|
*
|
|
* This is useful to put temporarily into code, but it's also
|
|
* potentially useful to call from a debugger.
|
|
*/
|
|
void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix);
|
|
|
|
/*
|
|
* Overwrite one mp_int with another, or with a plain integer.
|
|
*/
|
|
void mp_copy_into(mp_int *dest, mp_int *src);
|
|
void mp_copy_integer_into(mp_int *dest, uintmax_t n);
|
|
|
|
/*
|
|
* Conditional selection. Overwrites dest with either src0 or src1,
|
|
* according to the value of 'choose_src1'. choose_src1 should be 0 or
|
|
* 1; if it's 1, then dest is set to src1, otherwise src0.
|
|
*
|
|
* The value of choose_src1 is considered to be secret data, so
|
|
* control flow and memory access should not depend on it.
|
|
*/
|
|
void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
|
|
unsigned choose_src1);
|
|
|
|
/*
|
|
* Addition, subtraction and multiplication, either targeting an
|
|
* existing mp_int or making a new one large enough to hold whatever
|
|
* the output might be..
|
|
*/
|
|
void mp_add_into(mp_int *r, mp_int *a, mp_int *b);
|
|
void mp_sub_into(mp_int *r, mp_int *a, mp_int *b);
|
|
void mp_mul_into(mp_int *r, mp_int *a, mp_int *b);
|
|
mp_int *mp_add(mp_int *x, mp_int *y);
|
|
mp_int *mp_sub(mp_int *x, mp_int *y);
|
|
mp_int *mp_mul(mp_int *x, mp_int *y);
|
|
|
|
/*
|
|
* Bitwise operations.
|
|
*/
|
|
void mp_and_into(mp_int *r, mp_int *a, mp_int *b);
|
|
void mp_or_into(mp_int *r, mp_int *a, mp_int *b);
|
|
void mp_xor_into(mp_int *r, mp_int *a, mp_int *b);
|
|
void mp_bic_into(mp_int *r, mp_int *a, mp_int *b);
|
|
|
|
/*
|
|
* Addition, subtraction and multiplication with one argument small
|
|
* enough to fit in a C integer. For mp_mul_integer_into, it has to be
|
|
* even smaller than that.
|
|
*/
|
|
void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n);
|
|
void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n);
|
|
void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n);
|
|
|
|
/*
|
|
* Conditional addition/subtraction. If yes == 1, sets r to a+b or a-b
|
|
* (respectively). If yes == 0, sets r to just a. 'yes' is considered
|
|
* secret data.
|
|
*/
|
|
void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes);
|
|
void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes);
|
|
|
|
/*
|
|
* Swap x0 and x1 if swap == 1, and not if swap == 0. 'swap' is
|
|
* considered secret.
|
|
*/
|
|
void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap);
|
|
|
|
/*
|
|
* Set x to 0 if clear == 1, and otherwise leave it unchanged. 'clear'
|
|
* is considered secret.
|
|
*/
|
|
void mp_cond_clear(mp_int *x, unsigned clear);
|
|
|
|
/*
|
|
* Division. mp_divmod_into divides n by d, and writes the quotient
|
|
* into q and the remainder into r. You can pass either of q and r as
|
|
* NULL if you don't need one of the outputs.
|
|
*
|
|
* mp_div and mp_mod are wrappers that return one or other of those
|
|
* outputs as a freshly allocated mp_int of the appropriate size.
|
|
*
|
|
* Division by zero gives no error, and returns a quotient of 0 and a
|
|
* remainder of n (so as to still satisfy the division identity that
|
|
* n=qd+r).
|
|
*/
|
|
void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q, mp_int *r);
|
|
mp_int *mp_div(mp_int *n, mp_int *d);
|
|
mp_int *mp_mod(mp_int *x, mp_int *modulus);
|
|
|
|
/*
|
|
* Compute the residue of x mod m, where m is a small integer. x is
|
|
* kept secret, but m is not.
|
|
*/
|
|
uint32_t mp_mod_known_integer(mp_int *x, uint32_t m);
|
|
|
|
/*
|
|
* Integer nth root. mp_nthroot returns the largest integer x such
|
|
* that x^n <= y, and if 'remainder' is non-NULL then it fills it with
|
|
* the residue (y - x^n).
|
|
*
|
|
* Currently, n has to be small enough that the largest binomial
|
|
* coefficient (n choose k) fits in 16 bits, which works out to at
|
|
* most 18.
|
|
*/
|
|
mp_int *mp_nthroot(mp_int *y, unsigned n, mp_int *remainder);
|
|
|
|
/*
|
|
* Trivially easy special case of mp_mod: reduce a number mod a power
|
|
* of two.
|
|
*/
|
|
void mp_reduce_mod_2to(mp_int *x, size_t p);
|
|
|
|
/*
|
|
* Modular inverses. mp_invert computes the inverse of x mod modulus
|
|
* (and will expect the two to be coprime). mp_invert_mod_2to computes
|
|
* the inverse of x mod 2^p, and is a great deal faster.
|
|
*/
|
|
mp_int *mp_invert_mod_2to(mp_int *x, size_t p);
|
|
mp_int *mp_invert(mp_int *x, mp_int *modulus);
|
|
|
|
/*
|
|
* Greatest common divisor.
|
|
*
|
|
* mp_gcd_into also returns a pair of Bezout coefficients, namely A,B
|
|
* such that a*A - b*B = gcd. (The minus sign is so that both returned
|
|
* coefficients can be positive.)
|
|
*
|
|
* You can pass any of mp_gcd_into's output pointers as NULL if you
|
|
* don't need that output value.
|
|
*
|
|
* mp_gcd is a wrapper with a less cumbersome API, for the case where
|
|
* the only output value you need is the gcd itself. mp_coprime is
|
|
* even easier, if all you care about is whether or not that gcd is 1.
|
|
*/
|
|
mp_int *mp_gcd(mp_int *a, mp_int *b);
|
|
void mp_gcd_into(mp_int *a, mp_int *b,
|
|
mp_int *gcd_out, mp_int *A_out, mp_int *B_out);
|
|
unsigned mp_coprime(mp_int *a, mp_int *b);
|
|
|
|
/*
|
|
* System for taking square roots modulo an odd prime.
|
|
*
|
|
* In order to do this efficiently, you need to provide an extra piece
|
|
* of information at setup time, namely a number which is not
|
|
* congruent mod p to any square. Given p and that non-square, you can
|
|
* use modsqrt_new to make a context containing all the necessary
|
|
* equipment for actually calculating the square roots, and then you
|
|
* can call mp_modsqrt as many times as you like on that context
|
|
* before freeing it.
|
|
*
|
|
* The output parameter '*success' will be filled in with 1 if the
|
|
* operation was successful, or 0 if the input number doesn't have a
|
|
* square root mod p at all. In the latter case, the returned mp_int
|
|
* will be nonsense and you shouldn't depend on it.
|
|
*
|
|
* ==== WARNING ====
|
|
*
|
|
* This function DOES NOT TREAT THE PRIME MODULUS AS SECRET DATA! It
|
|
* will protect the number you're taking the square root _of_, but not
|
|
* the number you're taking the root of it _mod_.
|
|
*
|
|
* (This is because the algorithm requires a number of loop iterations
|
|
* equal to the number of factors of 2 in p-1. And the expected use of
|
|
* this function is for elliptic-curve point decompression, in which
|
|
* the modulus is always a well-known one written down in standards
|
|
* documents.)
|
|
*/
|
|
typedef struct ModsqrtContext ModsqrtContext;
|
|
ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p);
|
|
void modsqrt_free(ModsqrtContext *);
|
|
mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success);
|
|
|
|
/*
|
|
* Functions for Montgomery multiplication, a fast technique for doing
|
|
* a long series of modular multiplications all with the same modulus
|
|
* (which has to be odd).
|
|
*
|
|
* You start by calling monty_new to set up a context structure
|
|
* containing all the precomputed bits and pieces needed by the
|
|
* algorithm. Then, any numbers you want to work with must first be
|
|
* transformed into the internal Montgomery representation using
|
|
* monty_import; having done that, you can use monty_mul and monty_pow
|
|
* to operate on them efficiently; and finally, monty_export will
|
|
* convert numbers back out of Montgomery representation to give their
|
|
* ordinary values.
|
|
*
|
|
* Addition and subtraction are not optimised by the Montgomery trick,
|
|
* but monty_add and monty_sub are provided anyway for convenience.
|
|
*
|
|
* There are also monty_invert and monty_modsqrt, which are analogues
|
|
* of mp_invert and mp_modsqrt which take their inputs in Montgomery
|
|
* representation. For mp_modsqrt, the prime modulus of the
|
|
* ModsqrtContext must be the same as the modulus of the MontyContext.
|
|
*
|
|
* The query functions monty_modulus and monty_identity return numbers
|
|
* stored inside the MontyContext, without copying them. The returned
|
|
* pointers are still owned by the MontyContext, so don't free them!
|
|
*/
|
|
MontyContext *monty_new(mp_int *modulus);
|
|
void monty_free(MontyContext *mc);
|
|
mp_int *monty_modulus(MontyContext *mc); /* doesn't transfer ownership */
|
|
mp_int *monty_identity(MontyContext *mc); /* doesn't transfer ownership */
|
|
void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x);
|
|
mp_int *monty_import(MontyContext *mc, mp_int *x);
|
|
void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x);
|
|
mp_int *monty_export(MontyContext *mc, mp_int *x);
|
|
void monty_mul_into(MontyContext *, mp_int *r, mp_int *, mp_int *);
|
|
mp_int *monty_add(MontyContext *, mp_int *, mp_int *);
|
|
mp_int *monty_sub(MontyContext *, mp_int *, mp_int *);
|
|
mp_int *monty_mul(MontyContext *, mp_int *, mp_int *);
|
|
mp_int *monty_pow(MontyContext *, mp_int *base, mp_int *exponent);
|
|
mp_int *monty_invert(MontyContext *, mp_int *);
|
|
mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *mx, unsigned *success);
|
|
|
|
/*
|
|
* Modular arithmetic functions which don't use an explicit
|
|
* MontyContext. mp_modpow will use one internally (on the assumption
|
|
* that the exponent is likely to be large enough to make it
|
|
* worthwhile); the other three will just do ordinary non-Montgomery-
|
|
* optimised modular reduction. Use mp_modmul if you only have one
|
|
* product to compute; if you have a lot, consider using a
|
|
* MontyContext in the client code.
|
|
*/
|
|
mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus);
|
|
mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus);
|
|
mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus);
|
|
mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus);
|
|
|
|
/*
|
|
* Shift an mp_int by a given number of bits. The shift count is
|
|
* considered to be secret data, and as a result, the algorithm takes
|
|
* O(n log n) time instead of the obvious O(n).
|
|
*
|
|
* There's no mp_lshift_safe, because the size of mp_int to allocate
|
|
* would not be able to avoid depending on the shift count. So if you
|
|
* need to behave independently of the size of a left shift, you have
|
|
* to know a bound on the space you'll need by some other means.
|
|
*/
|
|
void mp_lshift_safe_into(mp_int *r, mp_int *x, size_t shift);
|
|
void mp_rshift_safe_into(mp_int *r, mp_int *x, size_t shift);
|
|
mp_int *mp_rshift_safe(mp_int *x, size_t shift);
|
|
|
|
/*
|
|
* Shift an mp_int left or right by a fixed number of bits. The shift
|
|
* count is NOT considered to be secret data! Use this if you're
|
|
* always dividing by 2, for example, but don't use it to shift by a
|
|
* variable amount derived from another secret number.
|
|
*
|
|
* The upside is that these functions run in sensible linear time.
|
|
*/
|
|
void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t shift);
|
|
void mp_rshift_fixed_into(mp_int *r, mp_int *x, size_t shift);
|
|
mp_int *mp_lshift_fixed(mp_int *x, size_t shift);
|
|
mp_int *mp_rshift_fixed(mp_int *x, size_t shift);
|
|
|
|
/*
|
|
* Generate a random mp_int.
|
|
*
|
|
* The _function_ definitions here will expect to be given a gen_data
|
|
* function that provides random data. Normally you'd use this using
|
|
* random_read() from sshrand.c, and the macro wrappers automate that.
|
|
*
|
|
* (This is a bit of a dodge to avoid mpint.c having a link-time
|
|
* dependency on sshrand.c, so that programs can link against one but
|
|
* not the other: if a client of this header uses one of these macros
|
|
* then _they_ have link-time dependencies on both modules.)
|
|
*
|
|
* mp_random_bits[_fn] returns an integer 0 <= n < 2^bits.
|
|
* mp_random_upto[_fn](limit) returns an integer 0 <= n < limit.
|
|
* mp_random_in_range[_fn](lo,hi) returns an integer lo <= n < hi.
|
|
*/
|
|
typedef void (*random_read_fn_t)(void *, size_t);
|
|
mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t randfn);
|
|
mp_int *mp_random_upto_fn(mp_int *limit, random_read_fn_t randfn);
|
|
mp_int *mp_random_in_range_fn(
|
|
mp_int *lo_inclusive, mp_int *hi_exclusive, random_read_fn_t randfn);
|
|
#define mp_random_bits(bits) mp_random_bits_fn(bits, random_read)
|
|
#define mp_random_upto(limit) mp_random_upto_fn(limit, random_read)
|
|
#define mp_random_in_range(lo, hi) mp_random_in_range_fn(lo, hi, random_read)
|
|
|
|
#endif /* PUTTY_MPINT_H */
|