1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 01:18:00 +00:00
putty-source/test/testcrypt.c
Simon Tatham 98200d1bfe Arm: turn on PSTATE.DIT if available and needed.
DIT, for 'Data-Independent Timing', is a bit you can set in the
processor state on sufficiently new Arm CPUs, which promises that a
long list of instructions will deliberately avoid varying their timing
based on the input register values. Just what you want for keeping
your constant-time crypto primitives constant-time.

As far as I'm aware, no CPU has _yet_ implemented any data-dependent
optimisations, so DIT is a safety precaution against them doing so in
future. It would be embarrassing to be caught without it if a future
CPU does do that, so we now turn on DIT in the PuTTY process state.

I've put a call to the new enable_dit() function at the start of every
main() and WinMain() belonging to a program that might do
cryptography (even testcrypt, in case someone uses it for something!),
and in case I missed one there, also added a second call at the first
moment that any cryptography-using part of the code looks as if it
might become active: when an instance of the SSH protocol object is
configured, when the system PRNG is initialised, and when selecting
any cryptographic authentication protocol in an HTTP or SOCKS proxy
connection. With any luck those precautions between them should ensure
it's on whenever we need it.

Arm's own recommendation is that you should carefully choose the
granularity at which you enable and disable DIT: there's a potential
time cost to turning it on and off (I'm not sure what, but plausibly
something of the order of a pipeline flush), so it's a performance hit
to do it _inside_ each individual crypto function, but if CPUs start
supporting significant data-dependent optimisation in future, then it
will also become a noticeable performance hit to just leave it on
across the whole process. So you'd like to do it somewhere in the
middle: for example, you might turn on DIT once around the whole
process of verifying and decrypting an SSH packet, instead of once for
decryption and once for MAC.

With all respect to that recommendation as a strategy for maximum
performance, I'm not following it here. I turn on DIT at the start of
the PuTTY process, and then leave it on. Rationale:

 1. PuTTY is not otherwise a performance-critical application: it's
    not likely to max out your CPU for any purpose _other_ than
    cryptography. The most CPU-intensive non-cryptographic thing I can
    imagine a PuTTY process doing is the complicated computation of
    font rendering in the terminal, and that will normally be cached
    (you don't recompute each glyph from its outline and hints for
    every time you display it).

 2. I think a bigger risk lies in accidental side channels from having
    DIT turned off when it should have been on. I can imagine lots of
    causes for that. Missing a crypto operation in some unswept corner
    of the code; confusing control flow (like my coroutine macros)
    jumping with DIT clear into the middle of a region of code that
    expected DIT to have been set at the beginning; having a reference
    counter of DIT requests and getting it out of sync.

In a more sophisticated programming language, it might be possible to
avoid the risk in #2 by cleverness with the type system. For example,
in Rust, you could have a zero-sized type that acts as a proof token
for DIT being enabled (it would be constructed by a function that also
sets DIT, have a Drop implementation that clears DIT, and be !Send so
you couldn't use it in a thread other than the one where DIT was set),
and then you could require all the actual crypto functions to take a
DitToken as an extra parameter, at zero runtime cost. Then "oops I
forgot to set DIT around this piece of crypto" would become a compile
error. Even so, you'd have to take some care with coroutine-structured
code (what happens if a Rust async function yields while holding a DIT
token?) and with nesting (if you have two DIT tokens, you don't want
dropping the inner one to clear DIT while the outer one is still there
to wrongly convince callees that it's set). Maybe in Rust you could
get this all to work reliably. But not in C!

DIT is an optional feature of the Arm architecture, so we must first
test to see if it's supported. This is done the same way as we already
do for the various Arm crypto accelerators: on ELF-based systems,
check the appropriate bit in the 'hwcap' words in the ELF aux vector;
on Mac, look for an appropriate sysctl flag.

On Windows I don't know of a way to query the DIT feature, _or_ of a
way to write the necessary enabling instruction in an MSVC-compatible
way. I've _heard_ that it might not be necessary, because Windows
might just turn on DIT unconditionally and leave it on, in an even
more extreme version of my own strategy. I don't have a source for
that - I heard it by word of mouth - but I _hope_ it's true, because
that would suit me very well! Certainly I can't write code to enable
DIT without knowing (a) how to do it, (b) how to know if it's safe.
Nonetheless, I've put the enable_dit() call in all the right places in
the Windows main programs as well as the Unix and cross-platform code,
so that if I later find out that I _can_ put in an explicit enable of
DIT in some way, I'll only have to arrange to set HAVE_ARM_DIT and
compile the enable_dit() function appropriately.
2024-12-19 08:52:47 +00:00

1762 lines
55 KiB
C

/*
* testcrypt: a standalone test program that provides direct access to
* PuTTY's cryptography and mp_int code.
*/
/*
* This program speaks a line-oriented protocol on standard input and
* standard output. It's a half-duplex protocol: it expects to read
* one line of command, and then produce a fixed amount of output
* (namely a line containing a decimal integer, followed by that many
* lines each containing one return value).
*
* The protocol is human-readable enough to make it debuggable, but
* verbose enough that you probably wouldn't want to speak it by hand
* at any great length. The Python program test/testcrypt.py wraps it
* to give a more useful user-facing API, by invoking this binary as a
* subprocess.
*
* (I decided that was a better idea than making this program an
* actual Python module, partly because you can rewrap the same binary
* in another scripting language if you prefer, but mostly because
* it's easy to attach a debugger to testcrypt or to run it under
* sanitisers or valgrind or what have you.)
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "defs.h"
#include "ssh.h"
#include "sshkeygen.h"
#include "misc.h"
#include "mpint.h"
#include "crypto/ecc.h"
#include "crypto/ntru.h"
#include "crypto/mlkem.h"
#include "proxy/cproxy.h"
static NORETURN PRINTF_LIKE(1, 2) void fatal_error(const char *p, ...)
{
va_list ap;
fprintf(stderr, "testcrypt: ");
va_start(ap, p);
vfprintf(stderr, p, ap);
va_end(ap);
fputc('\n', stderr);
exit(1);
}
void out_of_memory(void) { fatal_error("out of memory"); }
static bool old_keyfile_warning_given;
void old_keyfile_warning(void) { old_keyfile_warning_given = true; }
static bufchain random_data_queue;
static prng *test_prng;
void random_read(void *buf, size_t size)
{
if (test_prng) {
prng_read(test_prng, buf, size);
} else {
if (!bufchain_try_fetch_consume(&random_data_queue, buf, size))
fatal_error("No random data in queue");
}
}
uint64_t prng_reseed_time_ms(void)
{
static uint64_t previous_time = 0;
return previous_time += 200;
}
#define VALUE_TYPES(X) \
X(string, strbuf *, strbuf_free(v)) \
X(mpint, mp_int *, mp_free(v)) \
X(modsqrt, ModsqrtContext *, modsqrt_free(v)) \
X(monty, MontyContext *, monty_free(v)) \
X(wcurve, WeierstrassCurve *, ecc_weierstrass_curve_free(v)) \
X(wpoint, WeierstrassPoint *, ecc_weierstrass_point_free(v)) \
X(mcurve, MontgomeryCurve *, ecc_montgomery_curve_free(v)) \
X(mpoint, MontgomeryPoint *, ecc_montgomery_point_free(v)) \
X(ecurve, EdwardsCurve *, ecc_edwards_curve_free(v)) \
X(epoint, EdwardsPoint *, ecc_edwards_point_free(v)) \
X(hash, ssh_hash *, ssh_hash_free(v)) \
X(key, ssh_key *, ssh_key_free(v)) \
X(cipher, ssh_cipher *, ssh_cipher_free(v)) \
X(mac, ssh2_mac *, ssh2_mac_free(v)) \
X(dh, dh_ctx *, dh_cleanup(v)) \
X(ecdh, ecdh_key *, ecdh_key_free(v)) \
X(rsakex, RSAKey *, ssh_rsakex_freekey(v)) \
X(rsa, RSAKey *, rsa_free(v)) \
X(prng, prng *, prng_free(v)) \
X(keycomponents, key_components *, key_components_free(v)) \
X(pcs, PrimeCandidateSource *, pcs_free(v)) \
X(pgc, PrimeGenerationContext *, primegen_free_context(v)) \
X(pockle, Pockle *, pockle_free(v)) \
X(millerrabin, MillerRabin *, miller_rabin_free(v)) \
X(ntrukeypair, NTRUKeyPair *, ntru_keypair_free(v)) \
X(ntruencodeschedule, NTRUEncodeSchedule *, ntru_encode_schedule_free(v)) \
X(shakexof, ShakeXOF *, shake_xof_free(v)) \
/* end of list */
typedef struct Value Value;
enum ValueType {
#define VALTYPE_ENUM(n,t,f) VT_##n,
VALUE_TYPES(VALTYPE_ENUM)
#undef VALTYPE_ENUM
};
typedef enum ValueType ValueType;
static const char *const type_names[] = {
#define VALTYPE_NAME(n,t,f) #n,
VALUE_TYPES(VALTYPE_NAME)
#undef VALTYPE_NAME
};
#define VALTYPE_TYPEDEF(n,t,f) \
typedef t TD_val_##n; \
typedef t *TD_out_val_##n;
VALUE_TYPES(VALTYPE_TYPEDEF)
#undef VALTYPE_TYPEDEF
struct Value {
/*
* Protocol identifier assigned to this value when it was created.
* Lives in the same malloced block as this Value object itself.
*/
ptrlen id;
/*
* Type of the value.
*/
ValueType type;
/*
* Union of all the things it could hold.
*/
union {
#define VALTYPE_UNION(n,t,f) t vu_##n;
VALUE_TYPES(VALTYPE_UNION)
#undef VALTYPE_UNION
char *bare_string;
};
};
static int valuecmp(void *av, void *bv)
{
Value *a = (Value *)av, *b = (Value *)bv;
return ptrlen_strcmp(a->id, b->id);
}
static int valuefind(void *av, void *bv)
{
ptrlen *a = (ptrlen *)av;
Value *b = (Value *)bv;
return ptrlen_strcmp(*a, b->id);
}
static tree234 *values;
static Value *value_new(ValueType vt)
{
static uint64_t next_index = 0;
char *name = dupprintf("%s%"PRIu64, type_names[vt], next_index++);
size_t namelen = strlen(name);
Value *val = snew_plus(Value, namelen+1);
memcpy(snew_plus_get_aux(val), name, namelen+1);
val->id.ptr = snew_plus_get_aux(val);
val->id.len = namelen;
val->type = vt;
Value *added = add234(values, val);
assert(added == val);
sfree(name);
return val;
}
#define VALTYPE_RETURNFN(n,t,f) \
void return_val_##n(strbuf *out, t v) { \
Value *val = value_new(VT_##n); \
val->vu_##n = v; \
put_datapl(out, val->id); \
put_byte(out, '\n'); \
}
VALUE_TYPES(VALTYPE_RETURNFN)
#undef VALTYPE_RETURNFN
static ptrlen get_word(BinarySource *in)
{
ptrlen toret;
toret.ptr = get_ptr(in);
toret.len = 0;
while (get_avail(in) && get_byte(in) != ' ')
toret.len++;
return toret;
}
typedef uintmax_t TD_uint;
typedef bool TD_boolean;
typedef ptrlen TD_val_string_ptrlen;
typedef char *TD_val_string_asciz;
typedef BinarySource *TD_val_string_binarysource;
typedef unsigned *TD_out_uint;
typedef BinarySink *TD_out_val_string_binarysink;
typedef const char *TD_opt_val_string_asciz;
typedef char **TD_out_val_string_asciz;
typedef char **TD_out_opt_val_string_asciz;
typedef const char **TD_out_opt_val_string_asciz_const;
typedef const ssh_hashalg *TD_hashalg;
typedef const ssh2_macalg *TD_macalg;
typedef const ssh_keyalg *TD_keyalg;
typedef const ssh_cipheralg *TD_cipheralg;
typedef const ssh_kex *TD_dh_group;
typedef const ssh_kex *TD_ecdh_alg;
typedef RsaSsh1Order TD_rsaorder;
typedef key_components *TD_keycomponents;
typedef const PrimeGenerationPolicy *TD_primegenpolicy;
typedef struct mpint_list TD_mpint_list;
typedef struct int16_list *TD_int16_list;
typedef PockleStatus TD_pocklestatus;
typedef struct mr_result TD_mr_result;
typedef Argon2Flavour TD_argon2flavour;
typedef FingerprintType TD_fptype;
typedef HttpDigestHash TD_httpdigesthash;
typedef const mlkem_params *TD_mlkem_params;
#define BEGIN_ENUM_TYPE(name) \
static bool enum_translate_##name(ptrlen valname, TD_##name *out) { \
static const struct { \
const char *key; \
TD_##name value; \
} mapping[] = {
#define ENUM_VALUE(name, value) {name, value},
#define END_ENUM_TYPE(name) \
}; \
for (size_t i = 0; i < lenof(mapping); i++) \
if (ptrlen_eq_string(valname, mapping[i].key)) { \
if (out) \
*out = mapping[i].value; \
return true; \
} \
return false; \
} \
\
static TD_##name get_##name(BinarySource *in) { \
ptrlen valname = get_word(in); \
TD_##name out; \
if (enum_translate_##name(valname, &out)) \
return out; \
else \
fatal_error("%s '%.*s': not found", \
#name, PTRLEN_PRINTF(valname)); \
}
#include "testcrypt-enum.h"
#undef BEGIN_ENUM_TYPE
#undef ENUM_VALUE
#undef END_ENUM_TYPE
static uintmax_t get_uint(BinarySource *in)
{
ptrlen word = get_word(in);
char *string = mkstr(word);
uintmax_t toret = strtoumax(string, NULL, 0);
sfree(string);
return toret;
}
static bool get_boolean(BinarySource *in)
{
return ptrlen_eq_string(get_word(in), "true");
}
static Value *lookup_value(ptrlen word)
{
Value *val = find234(values, &word, valuefind);
if (!val)
fatal_error("id '%.*s': not found", PTRLEN_PRINTF(word));
return val;
}
static Value *get_value(BinarySource *in)
{
return lookup_value(get_word(in));
}
typedef void (*finaliser_fn_t)(strbuf *out, void *ctx);
struct finaliser {
finaliser_fn_t fn;
void *ctx;
};
static struct finaliser *finalisers;
static size_t nfinalisers, finalisersize;
static void add_finaliser(finaliser_fn_t fn, void *ctx)
{
sgrowarray(finalisers, finalisersize, nfinalisers);
finalisers[nfinalisers].fn = fn;
finalisers[nfinalisers].ctx = ctx;
nfinalisers++;
}
static void run_finalisers(strbuf *out)
{
for (size_t i = 0; i < nfinalisers; i++)
finalisers[i].fn(out, finalisers[i].ctx);
nfinalisers = 0;
}
static void finaliser_return_value(strbuf *out, void *ctx)
{
Value *val = (Value *)ctx;
put_datapl(out, val->id);
put_byte(out, '\n');
}
static void finaliser_sfree(strbuf *out, void *ctx)
{
sfree(ctx);
}
#define VALTYPE_GETFN(n,t,f) \
static Value *unwrap_value_##n(Value *val) { \
ValueType expected = VT_##n; \
if (expected != val->type) \
fatal_error("id '%.*s': expected %s, got %s", \
PTRLEN_PRINTF(val->id), \
type_names[expected], type_names[val->type]); \
return val; \
} \
static Value *get_value_##n(BinarySource *in) { \
return unwrap_value_##n(get_value(in)); \
} \
static t get_val_##n(BinarySource *in) { \
return get_value_##n(in)->vu_##n; \
}
VALUE_TYPES(VALTYPE_GETFN)
#undef VALTYPE_GETFN
static ptrlen get_val_string_ptrlen(BinarySource *in)
{
return ptrlen_from_strbuf(get_val_string(in));
}
static char *get_val_string_asciz(BinarySource *in)
{
return get_val_string(in)->s;
}
static strbuf *get_opt_val_string(BinarySource *in);
static char *get_opt_val_string_asciz(BinarySource *in)
{
strbuf *sb = get_opt_val_string(in);
return sb ? sb->s : NULL;
}
static mp_int **get_out_val_mpint(BinarySource *in)
{
Value *val = value_new(VT_mpint);
add_finaliser(finaliser_return_value, val);
return &val->vu_mpint;
}
struct mpint_list {
size_t n;
mp_int **integers;
};
static struct mpint_list get_mpint_list(BinarySource *in)
{
size_t n = get_uint(in);
struct mpint_list mpl;
mpl.n = n;
mpl.integers = snewn(n, mp_int *);
for (size_t i = 0; i < n; i++)
mpl.integers[i] = get_val_mpint(in);
add_finaliser(finaliser_sfree, mpl.integers);
return mpl;
}
typedef struct int16_list {
size_t n;
uint16_t *integers;
} int16_list;
static void finaliser_int16_list_free(strbuf *out, void *vlist)
{
int16_list *list = (int16_list *)vlist;
sfree(list->integers);
sfree(list);
}
static int16_list *make_int16_list(size_t n)
{
int16_list *list = snew(int16_list);
list->n = n;
list->integers = snewn(n, uint16_t);
add_finaliser(finaliser_int16_list_free, list);
return list;
}
static int16_list *get_int16_list(BinarySource *in)
{
size_t n = get_uint(in);
int16_list *list = make_int16_list(n);
for (size_t i = 0; i < n; i++)
list->integers[i] = get_uint(in);
return list;
}
static void return_int16_list(strbuf *out, int16_list *list)
{
for (size_t i = 0; i < list->n; i++) {
if (i > 0)
put_byte(out, ',');
put_fmt(out, "%d", (int)(int16_t)list->integers[i]);
}
put_byte(out, '\n');
}
static void finaliser_return_uint(strbuf *out, void *ctx)
{
unsigned *uval = (unsigned *)ctx;
put_fmt(out, "%u\n", *uval);
sfree(uval);
}
static unsigned *get_out_uint(BinarySource *in)
{
unsigned *uval = snew(unsigned);
add_finaliser(finaliser_return_uint, uval);
return uval;
}
static strbuf **get_out_val_string(BinarySource *in)
{
Value *val = value_new(VT_string);
val->vu_string = NULL;
add_finaliser(finaliser_return_value, val);
return &val->vu_string;
}
static BinarySink *get_out_val_string_binarysink(BinarySource *in)
{
strbuf *sb = strbuf_new();
*get_out_val_string(in) = sb;
return BinarySink_UPCAST(sb);
}
static void return_val_string_asciz_const(strbuf *out, const char *s);
static void return_val_string_asciz(strbuf *out, char *s);
static void finaliser_return_opt_string_asciz(strbuf *out, void *ctx)
{
char **valp = (char **)ctx;
char *val = *valp;
sfree(valp);
if (!val)
put_fmt(out, "NULL\n");
else
return_val_string_asciz(out, val);
}
static char **get_out_opt_val_string_asciz(BinarySource *in)
{
char **valp = snew(char *);
*valp = NULL;
add_finaliser(finaliser_return_opt_string_asciz, valp);
return valp;
}
static void finaliser_return_opt_string_asciz_const(strbuf *out, void *ctx)
{
const char **valp = (const char **)ctx;
const char *val = *valp;
sfree(valp);
if (!val)
put_fmt(out, "NULL\n");
else
return_val_string_asciz_const(out, val);
}
static const char **get_out_opt_val_string_asciz_const(BinarySource *in)
{
const char **valp = snew(const char *);
*valp = NULL;
add_finaliser(finaliser_return_opt_string_asciz_const, valp);
return valp;
}
static BinarySource *get_val_string_binarysource(BinarySource *in)
{
strbuf *sb = get_val_string(in);
BinarySource *src = snew(BinarySource);
BinarySource_BARE_INIT(src, sb->u, sb->len);
add_finaliser(finaliser_sfree, src);
return src;
}
#define GET_CONSUMED_FN(type) \
typedef TD_val_##type TD_consumed_val_##type; \
static TD_val_##type get_consumed_val_##type(BinarySource *in) \
{ \
Value *val = get_value_##type(in); \
TD_val_##type toret = val->vu_##type; \
del234(values, val); \
sfree(val); \
return toret; \
}
GET_CONSUMED_FN(hash)
GET_CONSUMED_FN(pcs)
static void return_int(strbuf *out, intmax_t u)
{
put_fmt(out, "%"PRIdMAX"\n", u);
}
static void return_uint(strbuf *out, uintmax_t u)
{
put_fmt(out, "0x%"PRIXMAX"\n", u);
}
static void return_boolean(strbuf *out, bool b)
{
put_fmt(out, "%s\n", b ? "true" : "false");
}
static void return_pocklestatus(strbuf *out, PockleStatus status)
{
switch (status) {
default:
put_fmt(out, "POCKLE_BAD_STATUS_VALUE\n");
break;
#define STATUS_CASE(id) \
case id: \
put_fmt(out, "%s\n", #id); \
break;
POCKLE_STATUSES(STATUS_CASE);
#undef STATUS_CASE
}
}
static void return_mr_result(strbuf *out, struct mr_result result)
{
if (!result.passed)
put_fmt(out, "failed\n");
else if (!result.potential_primitive_root)
put_fmt(out, "passed\n");
else
put_fmt(out, "passed+ppr\n");
}
static void return_val_string_asciz_const(strbuf *out, const char *s)
{
strbuf *sb = strbuf_new();
put_data(sb, s, strlen(s));
return_val_string(out, sb);
}
static void return_val_string_asciz(strbuf *out, char *s)
{
return_val_string_asciz_const(out, s);
sfree(s);
}
#define NULLABLE_RETURN_WRAPPER(type_name, c_type) \
static void return_opt_##type_name(strbuf *out, c_type ptr) \
{ \
if (!ptr) \
put_fmt(out, "NULL\n"); \
else \
return_##type_name(out, ptr); \
}
NULLABLE_RETURN_WRAPPER(val_string, strbuf *)
NULLABLE_RETURN_WRAPPER(val_string_asciz, char *)
NULLABLE_RETURN_WRAPPER(val_string_asciz_const, const char *)
NULLABLE_RETURN_WRAPPER(val_cipher, ssh_cipher *)
NULLABLE_RETURN_WRAPPER(val_mac, ssh2_mac *)
NULLABLE_RETURN_WRAPPER(val_hash, ssh_hash *)
NULLABLE_RETURN_WRAPPER(val_key, ssh_key *)
NULLABLE_RETURN_WRAPPER(val_mpint, mp_int *)
NULLABLE_RETURN_WRAPPER(int16_list, int16_list *)
static void handle_hello(BinarySource *in, strbuf *out)
{
put_fmt(out, "hello, world\n");
}
static void rsa_free(RSAKey *rsa)
{
freersakey(rsa);
sfree(rsa);
}
static void free_value(Value *val)
{
switch (val->type) {
#define VALTYPE_FREE(n,t,f) case VT_##n: { t v = val->vu_##n; (f); break; }
VALUE_TYPES(VALTYPE_FREE)
#undef VALTYPE_FREE
}
sfree(val);
}
static void handle_free(BinarySource *in, strbuf *out)
{
Value *val = get_value(in);
del234(values, val);
free_value(val);
}
static void handle_newstring(BinarySource *in, strbuf *out)
{
strbuf *sb = strbuf_new();
while (get_avail(in)) {
char c = get_byte(in);
if (c == '%') {
char hex[3];
hex[0] = get_byte(in);
if (hex[0] != '%') {
hex[1] = get_byte(in);
hex[2] = '\0';
c = strtoul(hex, NULL, 16);
}
}
put_byte(sb, c);
}
return_val_string(out, sb);
}
static void handle_getstring(BinarySource *in, strbuf *out)
{
strbuf *sb = get_val_string(in);
for (size_t i = 0; i < sb->len; i++) {
char c = sb->s[i];
if (c > ' ' && c < 0x7F && c != '%') {
put_byte(out, c);
} else {
put_fmt(out, "%%%02X", 0xFFU & (unsigned)c);
}
}
put_byte(out, '\n');
}
static void handle_mp_literal(BinarySource *in, strbuf *out)
{
ptrlen pl = get_word(in);
char *str = mkstr(pl);
mp_int *mp = mp__from_string_literal(str);
sfree(str);
return_val_mpint(out, mp);
}
static void handle_mp_dump(BinarySource *in, strbuf *out)
{
mp_int *mp = get_val_mpint(in);
for (size_t i = mp_max_bytes(mp); i-- > 0 ;)
put_fmt(out, "%02X", mp_get_byte(mp, i));
put_byte(out, '\n');
}
static void handle_checkenum(BinarySource *in, strbuf *out)
{
ptrlen type = get_word(in);
ptrlen value = get_word(in);
bool ok = false;
#define BEGIN_ENUM_TYPE(name) \
if (ptrlen_eq_string(type, #name)) \
ok = enum_translate_##name(value, NULL);
#define ENUM_VALUE(name, value)
#define END_ENUM_TYPE(name)
#include "testcrypt-enum.h"
#undef BEGIN_ENUM_TYPE
#undef ENUM_VALUE
#undef END_ENUM_TYPE
put_dataz(out, ok ? "ok\n" : "bad\n");
}
static void random_queue(ptrlen pl)
{
bufchain_add(&random_data_queue, pl.ptr, pl.len);
}
static size_t random_queue_len(void)
{
return bufchain_size(&random_data_queue);
}
static void random_clear(void)
{
if (test_prng) {
prng_free(test_prng);
test_prng = NULL;
}
bufchain_clear(&random_data_queue);
}
static void random_make_prng(const ssh_hashalg *hashalg, ptrlen seed)
{
random_clear();
test_prng = prng_new(hashalg);
prng_seed_begin(test_prng);
put_datapl(test_prng, seed);
prng_seed_finish(test_prng);
}
mp_int *monty_identity_wrapper(MontyContext *mc)
{
return mp_copy(monty_identity(mc));
}
mp_int *monty_modulus_wrapper(MontyContext *mc)
{
return mp_copy(monty_modulus(mc));
}
strbuf *ssh_hash_digest_wrapper(ssh_hash *h)
{
strbuf *sb = strbuf_new();
void *p = strbuf_append(sb, ssh_hash_alg(h)->hlen);
ssh_hash_digest(h, p);
return sb;
}
strbuf *ssh_hash_final_wrapper(ssh_hash *h)
{
strbuf *sb = strbuf_new();
void *p = strbuf_append(sb, ssh_hash_alg(h)->hlen);
ssh_hash_final(h, p);
return sb;
}
strbuf *shake_xof_read_wrapper(ShakeXOF *sx, TD_uint size)
{
strbuf *sb = strbuf_new();
void *p = strbuf_append(sb, size);
shake_xof_read(sx, p, size);
return sb;
}
void ssh_cipher_setiv_wrapper(ssh_cipher *c, ptrlen iv)
{
if (iv.len != ssh_cipher_alg(c)->blksize)
fatal_error("ssh_cipher_setiv: needs exactly %d bytes",
ssh_cipher_alg(c)->blksize);
ssh_cipher_setiv(c, iv.ptr);
}
void ssh_cipher_setkey_wrapper(ssh_cipher *c, ptrlen key)
{
if (key.len != ssh_cipher_alg(c)->padded_keybytes)
fatal_error("ssh_cipher_setkey: needs exactly %d bytes",
ssh_cipher_alg(c)->padded_keybytes);
ssh_cipher_setkey(c, key.ptr);
}
strbuf *ssh_cipher_encrypt_wrapper(ssh_cipher *c, ptrlen input)
{
if (input.len % ssh_cipher_alg(c)->blksize)
fatal_error("ssh_cipher_encrypt: needs a multiple of %d bytes",
ssh_cipher_alg(c)->blksize);
strbuf *sb = strbuf_dup(input);
ssh_cipher_encrypt(c, sb->u, sb->len);
return sb;
}
strbuf *ssh_cipher_decrypt_wrapper(ssh_cipher *c, ptrlen input)
{
if (input.len % ssh_cipher_alg(c)->blksize)
fatal_error("ssh_cipher_decrypt: needs a multiple of %d bytes",
ssh_cipher_alg(c)->blksize);
strbuf *sb = strbuf_dup(input);
ssh_cipher_decrypt(c, sb->u, sb->len);
return sb;
}
strbuf *ssh_cipher_encrypt_length_wrapper(ssh_cipher *c, ptrlen input,
unsigned long seq)
{
if (input.len != 4)
fatal_error("ssh_cipher_encrypt_length: needs exactly 4 bytes");
strbuf *sb = strbuf_dup(input);
ssh_cipher_encrypt_length(c, sb->u, sb->len, seq);
return sb;
}
strbuf *ssh_cipher_decrypt_length_wrapper(ssh_cipher *c, ptrlen input,
unsigned long seq)
{
if (input.len != 4)
fatal_error("ssh_cipher_decrypt_length: needs exactly 4 bytes");
strbuf *sb = strbuf_dup(input);
ssh_cipher_decrypt_length(c, sb->u, sb->len, seq);
return sb;
}
strbuf *ssh2_mac_genresult_wrapper(ssh2_mac *m)
{
strbuf *sb = strbuf_new();
void *u = strbuf_append(sb, ssh2_mac_alg(m)->len);
ssh2_mac_genresult(m, u);
return sb;
}
ssh_key *ssh_key_base_key_wrapper(ssh_key *key)
{
/* To avoid having to explain the borrowed reference to Python,
* just clone the key unconditionally */
return ssh_key_clone(ssh_key_base_key(key));
}
void ssh_key_ca_public_blob_wrapper(ssh_key *key, BinarySink *out)
{
/* Wrap to avoid null-pointer dereference */
if (!key->vt->is_certificate)
fatal_error("ssh_key_ca_public_blob: needs a certificate");
ssh_key_ca_public_blob(key, out);
}
void ssh_key_cert_id_string_wrapper(ssh_key *key, BinarySink *out)
{
/* Wrap to avoid null-pointer dereference */
if (!key->vt->is_certificate)
fatal_error("ssh_key_cert_id_string: needs a certificate");
ssh_key_cert_id_string(key, out);
}
static bool ssh_key_check_cert_wrapper(
ssh_key *key, bool host, ptrlen principal, uint64_t time, ptrlen optstr,
BinarySink *error)
{
/* Wrap to avoid null-pointer dereference */
if (!key->vt->is_certificate)
fatal_error("ssh_key_cert_id_string: needs a certificate");
ca_options opts;
opts.permit_rsa_sha1 = true;
opts.permit_rsa_sha256 = true;
opts.permit_rsa_sha512 = true;
while (optstr.len) {
ptrlen word = ptrlen_get_word(&optstr, ",");
ptrlen key = word, value = PTRLEN_LITERAL("");
const char *comma = memchr(word.ptr, '=', word.len);
if (comma) {
key.len = comma - (const char *)word.ptr;
value.ptr = comma + 1;
value.len = word.len - key.len - 1;
}
if (ptrlen_eq_string(key, "permit_rsa_sha1"))
opts.permit_rsa_sha1 = ptrlen_eq_string(value, "true");
if (ptrlen_eq_string(key, "permit_rsa_sha256"))
opts.permit_rsa_sha256 = ptrlen_eq_string(value, "true");
if (ptrlen_eq_string(key, "permit_rsa_sha512"))
opts.permit_rsa_sha512 = ptrlen_eq_string(value, "true");
}
return ssh_key_check_cert(key, host, principal, time, &opts, error);
}
bool dh_validate_f_wrapper(dh_ctx *dh, mp_int *f)
{
return dh_validate_f(dh, f) == NULL;
}
void ssh_hash_update(ssh_hash *h, ptrlen pl)
{
put_datapl(h, pl);
}
void ssh2_mac_update(ssh2_mac *m, ptrlen pl)
{
put_datapl(m, pl);
}
static RSAKey *rsa_new(void)
{
RSAKey *rsa = snew(RSAKey);
memset(rsa, 0, sizeof(RSAKey));
return rsa;
}
strbuf *ecdh_key_getkey_wrapper(ecdh_key *ek, ptrlen remoteKey)
{
/* Fold the boolean return value in C into the string return value
* for this purpose, by returning NULL on failure */
strbuf *sb = strbuf_new();
if (!ecdh_key_getkey(ek, remoteKey, BinarySink_UPCAST(sb))) {
strbuf_free(sb);
return NULL;
}
return sb;
}
static void int16_list_resize(int16_list *list, unsigned p)
{
list->integers = sresize(list->integers, p, uint16_t);
for (size_t i = list->n; i < p; i++)
list->integers[i] = 0;
}
#if 0
static int16_list ntru_ring_to_list_and_free(uint16_t *out, unsigned p)
{
struct mpint_list mpl;
mpl.n = p;
mpl->integers = snewn(p, mp_int *);
for (unsigned i = 0; i < p; i++)
mpl->integers[i] = mp_from_integer((int16_t)out[i]);
sfree(out);
add_finaliser(finaliser_sfree, mpl->integers);
return mpl;
}
#endif
int16_list *ntru_ring_multiply_wrapper(
int16_list *a, int16_list *b, unsigned p, unsigned q)
{
int16_list_resize(a, p);
int16_list_resize(b, p);
int16_list *out = make_int16_list(p);
ntru_ring_multiply(out->integers, a->integers, b->integers, p, q);
return out;
}
int16_list *ntru_ring_invert_wrapper(int16_list *in, unsigned p, unsigned q)
{
int16_list_resize(in, p);
int16_list *out = make_int16_list(p);
unsigned success = ntru_ring_invert(out->integers, in->integers, p, q);
if (!success)
return NULL;
return out;
}
int16_list *ntru_mod3_wrapper(int16_list *in, unsigned p, unsigned q)
{
int16_list_resize(in, p);
int16_list *out = make_int16_list(p);
ntru_mod3(out->integers, in->integers, p, q);
return out;
}
int16_list *ntru_round3_wrapper(int16_list *in, unsigned p, unsigned q)
{
int16_list_resize(in, p);
int16_list *out = make_int16_list(p);
ntru_round3(out->integers, in->integers, p, q);
return out;
}
int16_list *ntru_bias_wrapper(int16_list *in, unsigned bias,
unsigned p, unsigned q)
{
int16_list_resize(in, p);
int16_list *out = make_int16_list(p);
ntru_bias(out->integers, in->integers, bias, p, q);
return out;
}
int16_list *ntru_scale_wrapper(int16_list *in, unsigned scale,
unsigned p, unsigned q)
{
int16_list_resize(in, p);
int16_list *out = make_int16_list(p);
ntru_scale(out->integers, in->integers, scale, p, q);
return out;
}
NTRUEncodeSchedule *ntru_encode_schedule_wrapper(int16_list *in)
{
return ntru_encode_schedule(in->integers, in->n);
}
void ntru_encode_wrapper(NTRUEncodeSchedule *sched, int16_list *rs,
BinarySink *bs)
{
ntru_encode(sched, rs->integers, bs);
}
int16_list *ntru_decode_wrapper(NTRUEncodeSchedule *sched, ptrlen data)
{
int16_list *out = make_int16_list(ntru_encode_schedule_nvals(sched));
ntru_decode(sched, out->integers, data);
return out;
}
int16_list *ntru_gen_short_wrapper(unsigned p, unsigned w)
{
int16_list *out = make_int16_list(p);
ntru_gen_short(out->integers, p, w);
return out;
}
int16_list *ntru_pubkey_wrapper(NTRUKeyPair *keypair)
{
unsigned p = ntru_keypair_p(keypair);
int16_list *out = make_int16_list(p);
memcpy(out->integers, ntru_pubkey(keypair), p*sizeof(uint16_t));
return out;
}
int16_list *ntru_encrypt_wrapper(int16_list *plaintext, int16_list *pubkey,
unsigned p, unsigned q)
{
int16_list *out = make_int16_list(p);
ntru_encrypt(out->integers, plaintext->integers, pubkey->integers, p, q);
return out;
}
int16_list *ntru_decrypt_wrapper(int16_list *ciphertext, NTRUKeyPair *keypair)
{
unsigned p = ntru_keypair_p(keypair);
int16_list *out = make_int16_list(p);
ntru_decrypt(out->integers, ciphertext->integers, keypair);
return out;
}
void mlkem_keygen_internal_wrapper(
BinarySink *ek, BinarySink *dk, const mlkem_params *params,
ptrlen d, ptrlen z)
{
assert(d.len == 32 && "Invalid d length");
assert(z.len == 32 && "Invalid z length");
mlkem_keygen_internal(ek, dk, params, d.ptr, z.ptr);
}
void mlkem_keygen_rho_sigma_wrapper(
BinarySink *ek, BinarySink *dk, const mlkem_params *params,
ptrlen rho, ptrlen sigma, ptrlen z)
{
assert(rho.len == 32 && "Invalid rho length");
assert(sigma.len == 32 && "Invalid sigma length");
assert(z.len == 32 && "Invalid z length");
mlkem_keygen_rho_sigma(ek, dk, params, rho.ptr, sigma.ptr, z.ptr);
}
bool mlkem_encaps_internal_wrapper(BinarySink *ciphertext, BinarySink *kout,
const mlkem_params *params, ptrlen ek,
ptrlen m)
{
assert(m.len == 32 && "Invalid m length");
return mlkem_encaps_internal(ciphertext, kout, params, ek, m.ptr);
}
strbuf *rsa_ssh1_encrypt_wrapper(ptrlen input, RSAKey *key)
{
/* Fold the boolean return value in C into the string return value
* for this purpose, by returning NULL on failure */
strbuf *sb = strbuf_new();
put_datapl(sb, input);
put_padding(sb, key->bytes - input.len, 0);
if (!rsa_ssh1_encrypt(sb->u, input.len, key)) {
strbuf_free(sb);
return NULL;
}
return sb;
}
strbuf *rsa_ssh1_decrypt_pkcs1_wrapper(mp_int *input, RSAKey *key)
{
/* Again, return "" on failure */
strbuf *sb = strbuf_new();
if (!rsa_ssh1_decrypt_pkcs1(input, key, sb))
strbuf_clear(sb);
return sb;
}
strbuf *des_encrypt_xdmauth_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 7)
fatal_error("des_encrypt_xdmauth: key must be 7 bytes long");
if (data.len % 8 != 0)
fatal_error("des_encrypt_xdmauth: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_dup(data);
des_encrypt_xdmauth(key.ptr, sb->u, sb->len);
return sb;
}
strbuf *des_decrypt_xdmauth_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 7)
fatal_error("des_decrypt_xdmauth: key must be 7 bytes long");
if (data.len % 8 != 0)
fatal_error("des_decrypt_xdmauth: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_dup(data);
des_decrypt_xdmauth(key.ptr, sb->u, sb->len);
return sb;
}
strbuf *des3_encrypt_pubkey_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 16)
fatal_error("des3_encrypt_pubkey: key must be 16 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_encrypt_pubkey: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_dup(data);
des3_encrypt_pubkey(key.ptr, sb->u, sb->len);
return sb;
}
strbuf *des3_decrypt_pubkey_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 16)
fatal_error("des3_decrypt_pubkey: key must be 16 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_decrypt_pubkey: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_dup(data);
des3_decrypt_pubkey(key.ptr, sb->u, sb->len);
return sb;
}
strbuf *des3_encrypt_pubkey_ossh_wrapper(ptrlen key, ptrlen iv, ptrlen data)
{
if (key.len != 24)
fatal_error("des3_encrypt_pubkey_ossh: key must be 24 bytes long");
if (iv.len != 8)
fatal_error("des3_encrypt_pubkey_ossh: iv must be 8 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_encrypt_pubkey_ossh: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_dup(data);
des3_encrypt_pubkey_ossh(key.ptr, iv.ptr, sb->u, sb->len);
return sb;
}
strbuf *des3_decrypt_pubkey_ossh_wrapper(ptrlen key, ptrlen iv, ptrlen data)
{
if (key.len != 24)
fatal_error("des3_decrypt_pubkey_ossh: key must be 24 bytes long");
if (iv.len != 8)
fatal_error("des3_encrypt_pubkey_ossh: iv must be 8 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_decrypt_pubkey_ossh: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_dup(data);
des3_decrypt_pubkey_ossh(key.ptr, iv.ptr, sb->u, sb->len);
return sb;
}
strbuf *aes256_encrypt_pubkey_wrapper(ptrlen key, ptrlen iv, ptrlen data)
{
if (key.len != 32)
fatal_error("aes256_encrypt_pubkey: key must be 32 bytes long");
if (iv.len != 16)
fatal_error("aes256_encrypt_pubkey: iv must be 16 bytes long");
if (data.len % 16 != 0)
fatal_error("aes256_encrypt_pubkey: data must be a multiple of 16 bytes");
strbuf *sb = strbuf_dup(data);
aes256_encrypt_pubkey(key.ptr, iv.ptr, sb->u, sb->len);
return sb;
}
strbuf *aes256_decrypt_pubkey_wrapper(ptrlen key, ptrlen iv, ptrlen data)
{
if (key.len != 32)
fatal_error("aes256_decrypt_pubkey: key must be 32 bytes long");
if (iv.len != 16)
fatal_error("aes256_encrypt_pubkey: iv must be 16 bytes long");
if (data.len % 16 != 0)
fatal_error("aes256_decrypt_pubkey: data must be a multiple of 16 bytes");
strbuf *sb = strbuf_dup(data);
aes256_decrypt_pubkey(key.ptr, iv.ptr, sb->u, sb->len);
return sb;
}
strbuf *prng_read_wrapper(prng *pr, size_t size)
{
strbuf *sb = strbuf_new();
prng_read(pr, strbuf_append(sb, size), size);
return sb;
}
void prng_seed_update(prng *pr, ptrlen data)
{
put_datapl(pr, data);
}
bool crcda_detect(ptrlen packet, ptrlen iv)
{
if (iv.len != 0 && iv.len != 8)
fatal_error("crcda_detect: iv must be empty or 8 bytes long");
if (packet.len % 8 != 0)
fatal_error("crcda_detect: packet must be a multiple of 8 bytes");
struct crcda_ctx *ctx = crcda_make_context();
bool toret = detect_attack(ctx, packet.ptr, packet.len,
iv.len ? iv.ptr : NULL);
crcda_free_context(ctx);
return toret;
}
ssh_key *ppk_load_s_wrapper(BinarySource *src, char **comment,
const char *passphrase, const char **errorstr)
{
ssh2_userkey *uk = ppk_load_s(src, passphrase, errorstr);
if (uk == SSH2_WRONG_PASSPHRASE) {
/* Fudge this special return value */
*errorstr = "SSH2_WRONG_PASSPHRASE";
return NULL;
}
if (uk == NULL)
return NULL;
ssh_key *toret = uk->key;
*comment = uk->comment;
sfree(uk);
return toret;
}
int rsa1_load_s_wrapper(BinarySource *src, RSAKey *rsa, char **comment,
const char *passphrase, const char **errorstr)
{
int toret = rsa1_load_s(src, rsa, passphrase, errorstr);
*comment = rsa->comment;
rsa->comment = NULL;
return toret;
}
strbuf *ppk_save_sb_wrapper(
ssh_key *key, const char *comment, const char *passphrase,
unsigned fmt_version, Argon2Flavour flavour,
uint32_t mem, uint32_t passes, uint32_t parallel)
{
/*
* For repeatable testing purposes, we never want a timing-dependent
* choice of password hashing parameters, so this is easy.
*/
ppk_save_parameters save_params;
memset(&save_params, 0, sizeof(save_params));
save_params.fmt_version = fmt_version;
save_params.argon2_flavour = flavour;
save_params.argon2_mem = mem;
save_params.argon2_passes_auto = false;
save_params.argon2_passes = passes;
save_params.argon2_parallelism = parallel;
ssh2_userkey uk;
uk.key = key;
uk.comment = dupstr(comment);
strbuf *toret = ppk_save_sb(&uk, passphrase, &save_params);
sfree(uk.comment);
return toret;
}
strbuf *rsa1_save_sb_wrapper(RSAKey *key, const char *comment,
const char *passphrase)
{
key->comment = dupstr(comment);
strbuf *toret = rsa1_save_sb(key, passphrase);
sfree(key->comment);
key->comment = NULL;
return toret;
}
#define return_void(out, expression) (expression)
static ProgressReceiver null_progress = { .vt = &null_progress_vt };
mp_int *primegen_generate_wrapper(
PrimeGenerationContext *ctx, PrimeCandidateSource *pcs)
{
return primegen_generate(ctx, pcs, &null_progress);
}
RSAKey *rsa1_generate(int bits, bool strong, PrimeGenerationContext *pgc)
{
RSAKey *rsakey = snew(RSAKey);
rsa_generate(rsakey, bits, strong, pgc, &null_progress);
rsakey->comment = NULL;
return rsakey;
}
ssh_key *rsa_generate_wrapper(int bits, bool strong,
PrimeGenerationContext *pgc)
{
return &rsa1_generate(bits, strong, pgc)->sshk;
}
ssh_key *dsa_generate_wrapper(int bits, PrimeGenerationContext *pgc)
{
struct dsa_key *dsakey = snew(struct dsa_key);
dsa_generate(dsakey, bits, pgc, &null_progress);
return &dsakey->sshk;
}
ssh_key *ecdsa_generate_wrapper(int bits)
{
struct ecdsa_key *ek = snew(struct ecdsa_key);
if (!ecdsa_generate(ek, bits)) {
sfree(ek);
return NULL;
}
return &ek->sshk;
}
ssh_key *eddsa_generate_wrapper(int bits)
{
struct eddsa_key *ek = snew(struct eddsa_key);
if (!eddsa_generate(ek, bits)) {
sfree(ek);
return NULL;
}
return &ek->sshk;
}
size_t key_components_count(key_components *kc) { return kc->ncomponents; }
const char *key_components_nth_name(key_components *kc, size_t n)
{
return (n >= kc->ncomponents ? NULL :
kc->components[n].name);
}
strbuf *key_components_nth_str(key_components *kc, size_t n)
{
if (n >= kc->ncomponents)
return NULL;
if (kc->components[n].type != KCT_TEXT &&
kc->components[n].type != KCT_BINARY)
return NULL;
return strbuf_dup(ptrlen_from_strbuf(kc->components[n].str));
}
mp_int *key_components_nth_mp(key_components *kc, size_t n)
{
return (n >= kc->ncomponents ? NULL :
kc->components[n].type != KCT_MPINT ? NULL :
mp_copy(kc->components[n].mp));
}
PockleStatus pockle_add_prime_wrapper(Pockle *pockle, mp_int *p,
struct mpint_list mpl, mp_int *witness)
{
return pockle_add_prime(pockle, p, mpl.integers, mpl.n, witness);
}
strbuf *argon2_wrapper(Argon2Flavour flavour, uint32_t mem, uint32_t passes,
uint32_t parallel, uint32_t taglen,
ptrlen P, ptrlen S, ptrlen K, ptrlen X)
{
strbuf *out = strbuf_new();
argon2(flavour, mem, passes, parallel, taglen, P, S, K, X, out);
return out;
}
strbuf *openssh_bcrypt_wrapper(ptrlen passphrase, ptrlen salt,
unsigned rounds, unsigned outbytes)
{
strbuf *out = strbuf_new();
openssh_bcrypt(passphrase, salt, rounds,
strbuf_append(out, outbytes), outbytes);
return out;
}
strbuf *get_implementations_commasep(ptrlen alg)
{
strbuf *out = strbuf_new();
put_datapl(out, alg);
if (ptrlen_startswith(alg, PTRLEN_LITERAL("aesgcm"), NULL)) {
put_fmt(out, ",%.*s_sw", PTRLEN_PRINTF(alg));
put_fmt(out, ",%.*s_ref_poly", PTRLEN_PRINTF(alg));
#if HAVE_CLMUL
put_fmt(out, ",%.*s_clmul", PTRLEN_PRINTF(alg));
#endif
#if HAVE_NEON_PMULL
put_fmt(out, ",%.*s_neon", PTRLEN_PRINTF(alg));
#endif
} else if (ptrlen_startswith(alg, PTRLEN_LITERAL("aes"), NULL)) {
put_fmt(out, ",%.*s_sw", PTRLEN_PRINTF(alg));
#if HAVE_AES_NI
put_fmt(out, ",%.*s_ni", PTRLEN_PRINTF(alg));
#endif
#if HAVE_NEON_CRYPTO
put_fmt(out, ",%.*s_neon", PTRLEN_PRINTF(alg));
#endif
} else if (ptrlen_startswith(alg, PTRLEN_LITERAL("sha256"), NULL) ||
ptrlen_startswith(alg, PTRLEN_LITERAL("sha1"), NULL)) {
put_fmt(out, ",%.*s_sw", PTRLEN_PRINTF(alg));
#if HAVE_SHA_NI
put_fmt(out, ",%.*s_ni", PTRLEN_PRINTF(alg));
#endif
#if HAVE_NEON_CRYPTO
put_fmt(out, ",%.*s_neon", PTRLEN_PRINTF(alg));
#endif
} else if (ptrlen_startswith(alg, PTRLEN_LITERAL("sha512"), NULL)) {
put_fmt(out, ",%.*s_sw", PTRLEN_PRINTF(alg));
#if HAVE_NEON_SHA512
put_fmt(out, ",%.*s_neon", PTRLEN_PRINTF(alg));
#endif
}
return out;
}
#define OPTIONAL_PTR_FUNC(type) \
typedef TD_val_##type TD_opt_val_##type; \
static TD_opt_val_##type get_opt_val_##type(BinarySource *in) { \
ptrlen word = get_word(in); \
if (ptrlen_eq_string(word, "NULL")) \
return NULL; \
return unwrap_value_##type(lookup_value(word))->vu_##type; \
}
OPTIONAL_PTR_FUNC(cipher)
OPTIONAL_PTR_FUNC(mpint)
OPTIONAL_PTR_FUNC(string)
/*
* HERE BE DRAGONS: the horrible C preprocessor business that reads
* testcrypt-func.h and generates a marshalling wrapper for each
* exported function.
*
* In an ideal world, we would start from a specification like this in
* testcrypt-func.h
*
* FUNC(val_foo, example, ARG(val_bar, bar), ARG(uint, n))
*
* and generate a wrapper function looking like this:
*
* static void handle_example(BinarySource *in, strbuf *out) {
* TD_val_bar bar = get_val_bar(in);
* TD_uint n = get_uint(in);
* return_val_foo(out, example(bar, n));
* }
*
* which would read the marshalled form of each function argument in
* turn from the input BinarySource via the get_<type>() function
* family defined in this file; assign each argument to a local
* variable; call the underlying C function with all those arguments;
* and then call a function of the return_<type>() family to marshal
* the output value into the output strbuf to be sent to standard
* output.
*
* With a more general macro processor such as m4, or custom code in
* Perl or Python, or a helper program like llvm-tblgen, we could just
* do that directly, reading function specifications from
* testcrypt-func.h and writing out exactly the above. But we don't
* have a fully general macro processor (since everything in that
* category introduces an extra build dependency that's awkward on
* plain Windows, or requires compiling and running a helper program
* which is awkward in a cross-compile). We only have cpp. And in cpp,
* a macro can't expand one of its arguments differently in two parts
* of its own expansion. So we have to be more clever.
*
* In place of the above code, I instead generate three successive
* declarations for each function. In simplified form they would look
* like this:
*
* typedef struct ARGS_example {
* TD_val_bar bar;
* TD_uint n;
* } ARGS_example;
*
* static inline ARGS_example get_args_example(BinarySource *in) {
* ARGS_example args;
* args.bar = get_val_bar(in);
* args.n = get_uint(in);
* return args;
* }
*
* static void handle_example(BinarySource *in, strbuf *out) {
* ARGS_example args = get_args_example(in);
* return_val_foo(out, example(args.bar, args.n));
* }
*
* Each of these mentions the arguments and their types just _once_,
* so each one can be generated by a single expansion of the FUNC(...)
* specification in testcrypt-func.h, with FUNC and ARG and VOID
* defined to appropriate values.
*
* Or ... *nearly*. In fact, I left out several details there, but
* it's a good starting point to understand the full version.
*
* To begin with, several of the variable names shown above are
* actually named with an ugly leading underscore, to minimise the
* chance of them colliding with real parameter names. (You could
* easily imagine 'out' being the name of a parameter to one of the
* wrapped functions.) Also, we memset the whole structure to zero at
* the start of get_args_example() to avoid compiler warnings about
* uninitialised stuff, and insert a precautionary '(void)args;' in
* handle_example to avoid a similar warning about _unused_ stuff.
*
* The big problem is the commas that have to appear between arguments
* in the final call to the actual C function. Those can't be
* generated by expanding the ARG macro itself, or you'd get one too
* many - either a leading comma or a trailing comma. Trailing commas
* are legal in a Python function call, but unfortunately C is not yet
* so enlightened. (C permits a trailing comma in a struct or array
* initialiser, and is coming round to it in enums, but hasn't yet
* seen the light about function calls or function prototypes.)
*
* So the commas must appear _between_ ARG(...) specifiers. And that
* means they unavoidably appear in _every_ expansion of FUNC() (or
* rather, every expansion that uses the variadic argument list at
* all). Therefore, we need to ensure they're harmless in the other
* two functions as well.
*
* In the get_args_example() function above, there's no real problem.
* The list of assignments can perfectly well be separated by commas
* instead of semicolons, so that it becomes a single expression-
* statement instead of a sequence of them; the comma operator still
* defines a sequence point, so it's fine.
*
* But what about the structure definition of ARGS_example?
*
* To get round that, we fill the structure with pointless extra
* cruft, in the form of an extra 'int' field before and after each
* actually useful argument field. So the real structure definition
* ends up looking more like this:
*
* typedef struct ARGS_example {
* int _predummy_bar;
* TD_val_bar bar;
* int _postdummy_bar, _predummy_n;
* TD_uint n;
* int _postdummy_n;
* } ARGS_example;
*
* Those extra 'int' fields are ignored completely at run time. They
* might cause a runtime space cost if the struct doesn't get
* completely optimised away when get_args_example is inlined into
* handle_example, but even if so, that's OK, this is a test program
* whose memory usage isn't critical. The real point is that, in
* between each pair of real arguments, there's a declaration
* containing *two* int variables, and in between them is the vital
* comma that we need!
*
* So in that pass through testcrypt-func.h, the ARG(type, name) macro
* has to expand to the weird piece of text
*
* _predummy_name; // terminating the previous int declaration
* TD_type name; // declaring the thing we actually wanted
* int _postdummy_name // new declaration ready to see a comma
*
* so that a comma-separated list of pieces of expansion like that
* will fall into just the right form to be the core of the above
* expanded structure definition. Then we just need to put in the
* 'int' after the open brace, and the ';' before the closing brace,
* and we've got everything we need to make it all syntactically legal.
*
* Finally, what if a wrapped function has _no_ arguments? Two out of
* three uses of the argument list here need some kind of special case
* for that. That's why you have to write 'VOID' explicitly in an
* empty argument list in testcrypt-func.h: we make VOID expand to
* whatever is needed to avoid a syntax error in that special case.
*/
/*
* Workarounds for an awkwardness in Visual Studio's preprocessor,
* which disagrees with everyone else about what happens if you expand
* __VA_ARGS__ into the argument list of another macro. gcc and clang
* will treat the commas expanding from __VA_ARGS__ as argument
* separators, whereas VS will make them all part of a single argument
* to the secondary macro. We want the former behaviour, so we use
* the following workaround to enforce it.
*
* Each of these JUXTAPOSE macros simply places its arguments side by
* side. But the arguments are macro-expanded before JUXTAPOSE is
* called at all, so we can do this:
*
* JUXTAPOSE(macroname, (__VA_ARGS__))
* -> JUXTAPOSE(macroname, (foo, bar, baz))
* -> macroname (foo, bar, baz)
*
* and this preliminary expansion causes the commas to be treated
* normally by the time VS gets round to expanding the inner macro.
*
* We need two differently named JUXTAPOSE macros, because we have to
* do this trick twice: once to turn FUNC and FUNC_WRAPPED in
* testcrypt-funcs.h into the underlying common FUNC_INNER, and again
* to expand the final function call. And you can't expand a macro
* inside text expanded from the _same_ macro, so we have to do the
* outer and inner instances of this trick using macros of different
* names.
*/
#define JUXTAPOSE1(first, second) first second
#define JUXTAPOSE2(first, second) first second
#define FUNC(outtype, fname, ...) \
JUXTAPOSE1(FUNC_INNER, (outtype, fname, fname, __VA_ARGS__))
#define FUNC_WRAPPED(outtype, fname, ...) \
JUXTAPOSE1(FUNC_INNER, (outtype, fname, fname##_wrapper, __VA_ARGS__))
#define ARG(type, arg) _predummy_##arg; TD_##type arg; int _postdummy_##arg
#define VOID _voiddummy
#define FUNC_INNER(outtype, fname, realname, ...) \
typedef struct ARGS_##fname { \
int __VA_ARGS__; \
} ARGS_##fname;
#include "testcrypt-func.h"
#undef FUNC_INNER
#undef ARG
#undef VOID
#define ARG(type, arg) _args.arg = get_##type(_in)
#define VOID ((void)0)
#define FUNC_INNER(outtype, fname, realname, ...) \
static inline ARGS_##fname get_args_##fname(BinarySource *_in) { \
ARGS_##fname _args; \
memset(&_args, 0, sizeof(_args)); \
__VA_ARGS__; \
return _args; \
}
#include "testcrypt-func.h"
#undef FUNC_INNER
#undef ARG
#undef VOID
#define ARG(type, arg) _args.arg
#define VOID
#define FUNC_INNER(outtype, fname, realname, ...) \
static void handle_##fname(BinarySource *_in, strbuf *_out) { \
ARGS_##fname _args = get_args_##fname(_in); \
(void)_args; /* suppress warning if no actual arguments */ \
return_##outtype(_out, JUXTAPOSE2(realname, (__VA_ARGS__))); \
}
#include "testcrypt-func.h"
#undef FUNC_INNER
#undef ARG
static void process_line(BinarySource *in, strbuf *out)
{
ptrlen id = get_word(in);
#define DISPATCH_INTERNAL(cmdname, handler) do { \
if (ptrlen_eq_string(id, cmdname)) { \
handler(in, out); \
return; \
} \
} while (0)
#define DISPATCH_COMMAND(cmd) DISPATCH_INTERNAL(#cmd, handle_##cmd)
DISPATCH_COMMAND(hello);
DISPATCH_COMMAND(free);
DISPATCH_COMMAND(newstring);
DISPATCH_COMMAND(getstring);
DISPATCH_COMMAND(mp_literal);
DISPATCH_COMMAND(mp_dump);
DISPATCH_COMMAND(checkenum);
#undef DISPATCH_COMMAND
#define FUNC_INNER(outtype, fname, realname, ...) \
DISPATCH_INTERNAL(#fname,handle_##fname);
#include "testcrypt-func.h"
#undef FUNC_INNER
#undef DISPATCH_INTERNAL
fatal_error("command '%.*s': unrecognised", PTRLEN_PRINTF(id));
}
static void free_all_values(void)
{
for (Value *val; (val = delpos234(values, 0)) != NULL ;)
free_value(val);
freetree234(values);
}
void dputs(const char *buf)
{
fputs(buf, stderr);
}
int main(int argc, char **argv)
{
const char *infile = NULL, *outfile = NULL;
bool doing_opts = true;
enable_dit(); /* in case this is used as a crypto helper (Hyrum's Law) */
while (--argc > 0) {
char *p = *++argv;
if (p[0] == '-' && doing_opts) {
if (!strcmp(p, "-o")) {
if (--argc <= 0) {
fprintf(stderr, "'-o' expects a filename\n");
return 1;
}
outfile = *++argv;
} else if (!strcmp(p, "--")) {
doing_opts = false;
} else if (!strcmp(p, "--help")) {
printf("usage: testcrypt [INFILE] [-o OUTFILE]\n");
printf(" also: testcrypt --help display this text\n");
return 0;
} else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else if (!infile) {
infile = p;
} else {
fprintf(stderr, "can only handle one input file name\n");
return 1;
}
}
FILE *infp = stdin;
if (infile) {
infp = fopen(infile, "r");
if (!infp) {
fprintf(stderr, "%s: open: %s\n", infile, strerror(errno));
return 1;
}
}
FILE *outfp = stdout;
if (outfile) {
outfp = fopen(outfile, "w");
if (!outfp) {
fprintf(stderr, "%s: open: %s\n", outfile, strerror(errno));
return 1;
}
}
values = newtree234(valuecmp);
atexit(free_all_values);
for (char *line; (line = chomp(fgetline(infp))) != NULL ;) {
BinarySource src[1];
BinarySource_BARE_INIT(src, line, strlen(line));
strbuf *sb = strbuf_new();
process_line(src, sb);
run_finalisers(sb);
size_t lines = 0;
for (size_t i = 0; i < sb->len; i++)
if (sb->s[i] == '\n')
lines++;
fprintf(outfp, "%"SIZEu"\n%s", lines, sb->s);
fflush(outfp);
strbuf_free(sb);
sfree(line);
}
if (infp != stdin)
fclose(infp);
if (outfp != stdin)
fclose(outfp);
return 0;
}