mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
0112936ef7
Taking a leaf out of the LLVM code base: this macro still includes an assert(false) so that the message will show up in a typical build, but it follows it up with a call to a function explicitly marked as no- return. So this ought to do a better job of convincing compilers that once a code path hits this function it _really doesn't_ have to still faff about with making up a bogus return value or filling in a variable that 'might be used uninitialised' in the following code that won't be reached anyway. I've gone through the existing code looking for the assert(false) / assert(0) idiom and replaced all the ones I found with the new macro, which also meant I could remove a few pointless return statements and variable initialisations that I'd already had to put in to placate compiler front ends.
316 lines
11 KiB
C
316 lines
11 KiB
C
/*
|
|
* Header for misc.c.
|
|
*/
|
|
|
|
#ifndef PUTTY_MISC_H
|
|
#define PUTTY_MISC_H
|
|
|
|
#include "defs.h"
|
|
#include "puttymem.h"
|
|
#include "marshal.h"
|
|
|
|
#include <stdio.h> /* for FILE * */
|
|
#include <stdarg.h> /* for va_list */
|
|
#include <stdlib.h> /* for abort */
|
|
#include <time.h> /* for struct tm */
|
|
#include <limits.h> /* for INT_MAX/MIN */
|
|
#include <assert.h> /* for assert (obviously) */
|
|
|
|
unsigned long parse_blocksize(const char *bs);
|
|
char ctrlparse(char *s, char **next);
|
|
|
|
size_t host_strcspn(const char *s, const char *set);
|
|
char *host_strchr(const char *s, int c);
|
|
char *host_strrchr(const char *s, int c);
|
|
char *host_strduptrim(const char *s);
|
|
|
|
char *dupstr(const char *s);
|
|
char *dupcat(const char *s1, ...);
|
|
char *dupprintf(const char *fmt, ...)
|
|
#ifdef __GNUC__
|
|
__attribute__ ((format (printf, 1, 2)))
|
|
#endif
|
|
;
|
|
char *dupvprintf(const char *fmt, va_list ap);
|
|
void burnstr(char *string);
|
|
|
|
struct strbuf {
|
|
char *s;
|
|
unsigned char *u;
|
|
int len;
|
|
BinarySink_IMPLEMENTATION;
|
|
/* (also there's a surrounding implementation struct in misc.c) */
|
|
};
|
|
strbuf *strbuf_new(void);
|
|
void strbuf_free(strbuf *buf);
|
|
void *strbuf_append(strbuf *buf, size_t len);
|
|
char *strbuf_to_str(strbuf *buf); /* does free buf, but you must free result */
|
|
void strbuf_catf(strbuf *buf, const char *fmt, ...);
|
|
void strbuf_catfv(strbuf *buf, const char *fmt, va_list ap);
|
|
|
|
strbuf *strbuf_new_for_agent_query(void);
|
|
void strbuf_finalise_agent_query(strbuf *buf);
|
|
|
|
/* String-to-Unicode converters that auto-allocate the destination and
|
|
* work around the rather deficient interface of mb_to_wc.
|
|
*
|
|
* These actually live in miscucs.c, not misc.c (the distinction being
|
|
* that the former is only linked into tools that also have the main
|
|
* Unicode support). */
|
|
wchar_t *dup_mb_to_wc_c(int codepage, int flags, const char *string, int len);
|
|
wchar_t *dup_mb_to_wc(int codepage, int flags, const char *string);
|
|
|
|
static inline int toint(unsigned u)
|
|
{
|
|
/*
|
|
* Convert an unsigned to an int, without running into the
|
|
* undefined behaviour which happens by the strict C standard if
|
|
* the value overflows. You'd hope that sensible compilers would
|
|
* do the sensible thing in response to a cast, but actually I
|
|
* don't trust modern compilers not to do silly things like
|
|
* assuming that _obviously_ you wouldn't have caused an overflow
|
|
* and so they can elide an 'if (i < 0)' test immediately after
|
|
* the cast.
|
|
*
|
|
* Sensible compilers ought of course to optimise this entire
|
|
* function into 'just return the input value', and since it's
|
|
* also declared inline, elide it completely in their output.
|
|
*/
|
|
if (u <= (unsigned)INT_MAX)
|
|
return (int)u;
|
|
else if (u >= (unsigned)INT_MIN) /* wrap in cast _to_ unsigned is OK */
|
|
return INT_MIN + (int)(u - (unsigned)INT_MIN);
|
|
else
|
|
return INT_MIN; /* fallback; should never occur on binary machines */
|
|
}
|
|
|
|
char *fgetline(FILE *fp);
|
|
char *chomp(char *str);
|
|
bool strstartswith(const char *s, const char *t);
|
|
bool strendswith(const char *s, const char *t);
|
|
|
|
void base64_encode_atom(const unsigned char *data, int n, char *out);
|
|
int base64_decode_atom(const char *atom, unsigned char *out);
|
|
|
|
struct bufchain_granule;
|
|
struct bufchain_tag {
|
|
struct bufchain_granule *head, *tail;
|
|
int buffersize; /* current amount of buffered data */
|
|
IdempotentCallback *ic;
|
|
};
|
|
|
|
void bufchain_init(bufchain *ch);
|
|
void bufchain_clear(bufchain *ch);
|
|
int bufchain_size(bufchain *ch);
|
|
void bufchain_add(bufchain *ch, const void *data, int len);
|
|
void bufchain_prefix(bufchain *ch, void **data, int *len);
|
|
void bufchain_consume(bufchain *ch, int len);
|
|
void bufchain_fetch(bufchain *ch, void *data, int len);
|
|
void bufchain_fetch_consume(bufchain *ch, void *data, int len);
|
|
bool bufchain_try_fetch_consume(bufchain *ch, void *data, int len);
|
|
int bufchain_fetch_consume_up_to(bufchain *ch, void *data, int len);
|
|
|
|
void sanitise_term_data(bufchain *out, const void *vdata, int len);
|
|
|
|
bool validate_manual_hostkey(char *key);
|
|
|
|
struct tm ltime(void);
|
|
|
|
/*
|
|
* Special form of strcmp which can cope with NULL inputs. NULL is
|
|
* defined to sort before even the empty string.
|
|
*/
|
|
int nullstrcmp(const char *a, const char *b);
|
|
|
|
static inline ptrlen make_ptrlen(const void *ptr, size_t len)
|
|
{
|
|
ptrlen pl;
|
|
pl.ptr = ptr;
|
|
pl.len = len;
|
|
return pl;
|
|
}
|
|
|
|
static inline ptrlen ptrlen_from_asciz(const char *str)
|
|
{
|
|
return make_ptrlen(str, strlen(str));
|
|
}
|
|
|
|
static inline ptrlen ptrlen_from_strbuf(strbuf *sb)
|
|
{
|
|
return make_ptrlen(sb->u, sb->len);
|
|
}
|
|
|
|
bool ptrlen_eq_string(ptrlen pl, const char *str);
|
|
bool ptrlen_eq_ptrlen(ptrlen pl1, ptrlen pl2);
|
|
bool ptrlen_startswith(ptrlen whole, ptrlen prefix, ptrlen *tail);
|
|
char *mkstr(ptrlen pl);
|
|
int string_length_for_printf(size_t);
|
|
/* Derive two printf arguments from a ptrlen, suitable for "%.*s" */
|
|
#define PTRLEN_PRINTF(pl) \
|
|
string_length_for_printf((pl).len), (const char *)(pl).ptr
|
|
/* Make a ptrlen out of a compile-time string literal. We try to
|
|
* enforce that it _is_ a string literal by token-pasting "" on to it,
|
|
* which should provoke a compile error if it's any other kind of
|
|
* string. */
|
|
#define PTRLEN_LITERAL(stringlit) \
|
|
TYPECHECK("" stringlit "", make_ptrlen(stringlit, sizeof(stringlit)-1))
|
|
|
|
/* Wipe sensitive data out of memory that's about to be freed. Simpler
|
|
* than memset because we don't need the fill char parameter; also
|
|
* attempts (by fiddly use of volatile) to inhibit the compiler from
|
|
* over-cleverly trying to optimise the memset away because it knows
|
|
* the variable is going out of scope. */
|
|
void smemclr(void *b, size_t len);
|
|
|
|
/* Compare two fixed-length chunks of memory for equality, without
|
|
* data-dependent control flow (so an attacker with a very accurate
|
|
* stopwatch can't try to guess where the first mismatching byte was).
|
|
* Returns false for mismatch or true for equality (unlike memcmp),
|
|
* hinted at by the 'eq' in the name. */
|
|
bool smemeq(const void *av, const void *bv, size_t len);
|
|
|
|
char *buildinfo(const char *newline);
|
|
|
|
/*
|
|
* A function you can put at points in the code where execution should
|
|
* never reach in the first place. Better than assert(false), or even
|
|
* assert(false && "some explanatory message"), because some compilers
|
|
* don't interpret assert(false) as a declaration of unreachability,
|
|
* so they may still warn about pointless things like some variable
|
|
* not being initialised on the unreachable code path.
|
|
*
|
|
* I follow the assertion with a call to abort() just in case someone
|
|
* compiles with -DNDEBUG, and I wrap that abort inside my own
|
|
* function labelled NORETURN just in case some unusual kind of system
|
|
* header wasn't foresighted enough to label abort() itself that way.
|
|
*/
|
|
static inline NORETURN void unreachable_internal(void) { abort(); }
|
|
#define unreachable(msg) (assert(false && msg), unreachable_internal())
|
|
|
|
/*
|
|
* Debugging functions.
|
|
*
|
|
* Output goes to debug.log
|
|
*
|
|
* debug() is like printf().
|
|
*
|
|
* dmemdump() and dmemdumpl() both do memory dumps. The difference
|
|
* is that dmemdumpl() is more suited for when the memory address is
|
|
* important (say because you'll be recording pointer values later
|
|
* on). dmemdump() is more concise.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
void debug_printf(const char *fmt, ...);
|
|
void debug_memdump(const void *buf, int len, bool L);
|
|
#define debug(...) (debug_printf(__VA_ARGS__))
|
|
#define dmemdump(buf,len) debug_memdump (buf, len, false);
|
|
#define dmemdumpl(buf,len) debug_memdump (buf, len, true);
|
|
#else
|
|
#define debug(...)
|
|
#define dmemdump(buf,len)
|
|
#define dmemdumpl(buf,len)
|
|
#endif
|
|
|
|
#ifndef lenof
|
|
#define lenof(x) ( (sizeof((x))) / (sizeof(*(x))))
|
|
#endif
|
|
|
|
#ifndef min
|
|
#define min(x,y) ( (x) < (y) ? (x) : (y) )
|
|
#endif
|
|
#ifndef max
|
|
#define max(x,y) ( (x) > (y) ? (x) : (y) )
|
|
#endif
|
|
|
|
#define GET_64BIT_LSB_FIRST(cp) \
|
|
(((uint64_t)(unsigned char)(cp)[0]) | \
|
|
((uint64_t)(unsigned char)(cp)[1] << 8) | \
|
|
((uint64_t)(unsigned char)(cp)[2] << 16) | \
|
|
((uint64_t)(unsigned char)(cp)[3] << 24) | \
|
|
((uint64_t)(unsigned char)(cp)[4] << 32) | \
|
|
((uint64_t)(unsigned char)(cp)[5] << 40) | \
|
|
((uint64_t)(unsigned char)(cp)[6] << 48) | \
|
|
((uint64_t)(unsigned char)(cp)[7] << 56))
|
|
|
|
#define PUT_64BIT_LSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)(value), \
|
|
(cp)[1] = (unsigned char)((value) >> 8), \
|
|
(cp)[2] = (unsigned char)((value) >> 16), \
|
|
(cp)[3] = (unsigned char)((value) >> 24), \
|
|
(cp)[4] = (unsigned char)((value) >> 32), \
|
|
(cp)[5] = (unsigned char)((value) >> 40), \
|
|
(cp)[6] = (unsigned char)((value) >> 48), \
|
|
(cp)[7] = (unsigned char)((value) >> 56) )
|
|
|
|
#define GET_32BIT_LSB_FIRST(cp) \
|
|
(((uint32_t)(unsigned char)(cp)[0]) | \
|
|
((uint32_t)(unsigned char)(cp)[1] << 8) | \
|
|
((uint32_t)(unsigned char)(cp)[2] << 16) | \
|
|
((uint32_t)(unsigned char)(cp)[3] << 24))
|
|
|
|
#define PUT_32BIT_LSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)(value), \
|
|
(cp)[1] = (unsigned char)((value) >> 8), \
|
|
(cp)[2] = (unsigned char)((value) >> 16), \
|
|
(cp)[3] = (unsigned char)((value) >> 24) )
|
|
|
|
#define GET_16BIT_LSB_FIRST(cp) \
|
|
(((unsigned long)(unsigned char)(cp)[0]) | \
|
|
((unsigned long)(unsigned char)(cp)[1] << 8))
|
|
|
|
#define PUT_16BIT_LSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)(value), \
|
|
(cp)[1] = (unsigned char)((value) >> 8) )
|
|
|
|
#define GET_32BIT_MSB_FIRST(cp) \
|
|
(((uint32_t)(unsigned char)(cp)[0] << 24) | \
|
|
((uint32_t)(unsigned char)(cp)[1] << 16) | \
|
|
((uint32_t)(unsigned char)(cp)[2] << 8) | \
|
|
((uint32_t)(unsigned char)(cp)[3]))
|
|
|
|
#define GET_32BIT(cp) GET_32BIT_MSB_FIRST(cp)
|
|
|
|
#define PUT_32BIT_MSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)((value) >> 24), \
|
|
(cp)[1] = (unsigned char)((value) >> 16), \
|
|
(cp)[2] = (unsigned char)((value) >> 8), \
|
|
(cp)[3] = (unsigned char)(value) )
|
|
|
|
#define PUT_32BIT(cp, value) PUT_32BIT_MSB_FIRST(cp, value)
|
|
|
|
#define GET_64BIT_MSB_FIRST(cp) \
|
|
(((uint64_t)(unsigned char)(cp)[0] << 56) | \
|
|
((uint64_t)(unsigned char)(cp)[1] << 48) | \
|
|
((uint64_t)(unsigned char)(cp)[2] << 40) | \
|
|
((uint64_t)(unsigned char)(cp)[3] << 32) | \
|
|
((uint64_t)(unsigned char)(cp)[4] << 24) | \
|
|
((uint64_t)(unsigned char)(cp)[5] << 16) | \
|
|
((uint64_t)(unsigned char)(cp)[6] << 8) | \
|
|
((uint64_t)(unsigned char)(cp)[7]))
|
|
|
|
#define PUT_64BIT_MSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)((value) >> 56), \
|
|
(cp)[1] = (unsigned char)((value) >> 48), \
|
|
(cp)[2] = (unsigned char)((value) >> 40), \
|
|
(cp)[3] = (unsigned char)((value) >> 32), \
|
|
(cp)[4] = (unsigned char)((value) >> 24), \
|
|
(cp)[5] = (unsigned char)((value) >> 16), \
|
|
(cp)[6] = (unsigned char)((value) >> 8), \
|
|
(cp)[7] = (unsigned char)(value) )
|
|
|
|
#define GET_16BIT_MSB_FIRST(cp) \
|
|
(((unsigned long)(unsigned char)(cp)[0] << 8) | \
|
|
((unsigned long)(unsigned char)(cp)[1]))
|
|
|
|
#define PUT_16BIT_MSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)((value) >> 8), \
|
|
(cp)[1] = (unsigned char)(value) )
|
|
|
|
/* Replace NULL with the empty string, permitting an idiom in which we
|
|
* get a string (pointer,length) pair that might be NULL,0 and can
|
|
* then safely say things like printf("%.*s", length, NULLTOEMPTY(ptr)) */
|
|
#define NULLTOEMPTY(s) ((s)?(s):"")
|
|
|
|
#endif
|