mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
a2ff884512
All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
246 lines
8.0 KiB
C
246 lines
8.0 KiB
C
/*
|
|
* Header connecting the pieces of the SSH-2 transport layer.
|
|
*/
|
|
|
|
#ifndef PUTTY_SSH2TRANSPORT_H
|
|
#define PUTTY_SSH2TRANSPORT_H
|
|
|
|
#ifndef NO_GSSAPI
|
|
#include "gssc.h"
|
|
#include "gss.h"
|
|
#define MIN_CTXT_LIFETIME 5 /* Avoid rekey with short lifetime (seconds) */
|
|
#define GSS_KEX_CAPABLE (1<<0) /* Can do GSS KEX */
|
|
#define GSS_CRED_UPDATED (1<<1) /* Cred updated since previous delegation */
|
|
#define GSS_CTXT_EXPIRES (1<<2) /* Context expires before next timer */
|
|
#define GSS_CTXT_MAYFAIL (1<<3) /* Context may expire during handshake */
|
|
#endif
|
|
|
|
#define DH_MIN_SIZE 1024
|
|
#define DH_MAX_SIZE 8192
|
|
|
|
#define MAXKEXLIST 16
|
|
struct kexinit_algorithm {
|
|
const char *name;
|
|
union {
|
|
struct {
|
|
const ssh_kex *kex;
|
|
bool warn;
|
|
} kex;
|
|
struct {
|
|
const ssh_keyalg *hostkey;
|
|
unsigned hkflags;
|
|
bool warn;
|
|
} hk;
|
|
struct {
|
|
const ssh_cipheralg *cipher;
|
|
bool warn;
|
|
} cipher;
|
|
struct {
|
|
const ssh2_macalg *mac;
|
|
bool etm;
|
|
} mac;
|
|
struct {
|
|
const ssh_compression_alg *comp;
|
|
bool delayed;
|
|
} comp;
|
|
} u;
|
|
};
|
|
|
|
#define HOSTKEY_ALGORITHMS(X) \
|
|
X(HK_ED25519, ssh_ecdsa_ed25519) \
|
|
X(HK_ED448, ssh_ecdsa_ed448) \
|
|
X(HK_ECDSA, ssh_ecdsa_nistp256) \
|
|
X(HK_ECDSA, ssh_ecdsa_nistp384) \
|
|
X(HK_ECDSA, ssh_ecdsa_nistp521) \
|
|
X(HK_DSA, ssh_dsa) \
|
|
X(HK_RSA, ssh_rsa_sha512) \
|
|
X(HK_RSA, ssh_rsa_sha256) \
|
|
X(HK_RSA, ssh_rsa) \
|
|
/* end of list */
|
|
#define COUNT_HOSTKEY_ALGORITHM(type, alg) +1
|
|
#define N_HOSTKEY_ALGORITHMS (0 HOSTKEY_ALGORITHMS(COUNT_HOSTKEY_ALGORITHM))
|
|
|
|
struct ssh_signkey_with_user_pref_id {
|
|
const ssh_keyalg *alg;
|
|
int id;
|
|
};
|
|
extern const struct ssh_signkey_with_user_pref_id
|
|
ssh2_hostkey_algs[N_HOSTKEY_ALGORITHMS];
|
|
|
|
/*
|
|
* Enumeration of high-level classes of reason why we might need to do
|
|
* a repeat key exchange. A full detailed reason in human-readable
|
|
* string form for the Event Log is also provided, but this enum type
|
|
* is used to discriminate between classes of reason that the code
|
|
* needs to treat differently.
|
|
*
|
|
* RK_NONE == 0 is the value indicating that no rekey is currently
|
|
* needed at all. RK_INITIAL indicates that we haven't even done the
|
|
* _first_ key exchange yet. RK_SERVER indicates that we're rekeying
|
|
* because the server asked for it, not because we decided it
|
|
* ourselves. RK_NORMAL is the usual case. RK_GSS_UPDATE indicates
|
|
* that we're rekeying because we've just got new GSSAPI credentials
|
|
* (hence there's no point in doing a preliminary check for new GSS
|
|
* creds, because we already know the answer); RK_POST_USERAUTH
|
|
* indicates that _if_ we're going to need a post-userauth immediate
|
|
* rekey for any reason, this is the moment to do it.
|
|
*
|
|
* So RK_POST_USERAUTH only tells the transport layer to _consider_
|
|
* rekeying, not to definitely do it. Also, that one enum value is
|
|
* special in that the user-readable reason text is passed in to the
|
|
* transport layer as NULL, whereas fills in the reason text after it
|
|
* decides whether it needs a rekey at all. In the other cases,
|
|
* rekey_reason is passed in to the at the same time as rekey_class.
|
|
*/
|
|
typedef enum RekeyClass {
|
|
RK_NONE = 0,
|
|
RK_INITIAL,
|
|
RK_SERVER,
|
|
RK_NORMAL,
|
|
RK_POST_USERAUTH,
|
|
RK_GSS_UPDATE
|
|
} RekeyClass;
|
|
|
|
typedef struct transport_direction {
|
|
const ssh_cipheralg *cipher;
|
|
const ssh2_macalg *mac;
|
|
bool etm_mode;
|
|
const ssh_compression_alg *comp;
|
|
bool comp_delayed;
|
|
int mkkey_adjust;
|
|
} transport_direction;
|
|
|
|
struct ssh2_transport_state {
|
|
int crState, crStateKex;
|
|
|
|
PacketProtocolLayer *higher_layer;
|
|
PktInQueue pq_in_higher;
|
|
PktOutQueue pq_out_higher;
|
|
IdempotentCallback ic_pq_out_higher;
|
|
|
|
Conf *conf;
|
|
char *savedhost;
|
|
int savedport;
|
|
const char *rekey_reason;
|
|
enum RekeyClass rekey_class;
|
|
|
|
unsigned long max_data_size;
|
|
|
|
const ssh_kex *kex_alg;
|
|
const ssh_keyalg *hostkey_alg;
|
|
char *hostkey_str; /* string representation, for easy checking in rekeys */
|
|
unsigned char session_id[MAX_HASH_LEN];
|
|
int session_id_len;
|
|
int dh_min_size, dh_max_size;
|
|
bool dh_got_size_bounds;
|
|
dh_ctx *dh_ctx;
|
|
ssh_hash *exhash;
|
|
|
|
struct DataTransferStats *stats;
|
|
|
|
const SshServerConfig *ssc;
|
|
|
|
char *client_greeting, *server_greeting;
|
|
|
|
bool kex_in_progress;
|
|
unsigned long next_rekey, last_rekey;
|
|
const char *deferred_rekey_reason;
|
|
bool higher_layer_ok;
|
|
|
|
/*
|
|
* Fully qualified host name, which we need if doing GSSAPI.
|
|
*/
|
|
char *fullhostname;
|
|
|
|
/* shgss is outside the ifdef on purpose to keep APIs simple. If
|
|
* NO_GSSAPI is not defined, then it's just an opaque structure
|
|
* tag and the pointer will be NULL. */
|
|
struct ssh_connection_shared_gss_state *shgss;
|
|
#ifndef NO_GSSAPI
|
|
int gss_status;
|
|
time_t gss_cred_expiry; /* Re-delegate if newer */
|
|
unsigned long gss_ctxt_lifetime; /* Re-delegate when short */
|
|
#endif
|
|
ssh_transient_hostkey_cache *thc;
|
|
|
|
bool gss_kex_used;
|
|
|
|
int nbits, pbits;
|
|
bool warn_kex, warn_hk, warn_cscipher, warn_sccipher;
|
|
mp_int *p, *g, *e, *f, *K;
|
|
strbuf *outgoing_kexinit, *incoming_kexinit;
|
|
strbuf *client_kexinit, *server_kexinit; /* aliases to the above */
|
|
int kex_init_value, kex_reply_value;
|
|
transport_direction in, out, *cstrans, *sctrans;
|
|
ptrlen hostkeydata, sigdata;
|
|
strbuf *hostkeyblob;
|
|
char *keystr;
|
|
ssh_key *hkey; /* actual host key */
|
|
unsigned hkflags; /* signing flags, used in server */
|
|
RSAKey *rsa_kex_key; /* for RSA kex */
|
|
bool rsa_kex_key_needs_freeing;
|
|
ecdh_key *ecdh_key; /* for ECDH kex */
|
|
unsigned char exchange_hash[MAX_HASH_LEN];
|
|
bool can_gssapi_keyex;
|
|
bool need_gss_transient_hostkey;
|
|
bool warned_about_no_gss_transient_hostkey;
|
|
bool got_session_id;
|
|
bool can_send_ext_info, post_newkeys_ext_info;
|
|
SeatPromptResult spr;
|
|
bool guessok;
|
|
bool ignorepkt;
|
|
struct kexinit_algorithm kexlists[NKEXLIST][MAXKEXLIST];
|
|
#ifndef NO_GSSAPI
|
|
Ssh_gss_buf gss_buf;
|
|
Ssh_gss_buf gss_rcvtok, gss_sndtok;
|
|
Ssh_gss_stat gss_stat;
|
|
Ssh_gss_buf mic;
|
|
bool init_token_sent;
|
|
bool complete_rcvd;
|
|
bool gss_delegate;
|
|
#endif
|
|
|
|
/* List of crypto primitives below the warning threshold that the
|
|
* user has already clicked OK to, so that we don't keep asking
|
|
* about them again during rekeys. This directly stores pointers
|
|
* to the algorithm vtables, compared by pointer value (which is
|
|
* not a determinism hazard, because we're only using it as a
|
|
* set). */
|
|
tree234 *weak_algorithms_consented_to;
|
|
|
|
/*
|
|
* List of host key algorithms for which we _don't_ have a stored
|
|
* host key. These are indices into the main hostkey_algs[] array
|
|
*/
|
|
int uncert_hostkeys[N_HOSTKEY_ALGORITHMS];
|
|
int n_uncert_hostkeys;
|
|
|
|
/*
|
|
* Indicate that the current rekey is intended to finish with a
|
|
* newly cross-certified host key. To double-check that we
|
|
* certified the right one, we set this to point to the host key
|
|
* algorithm we expect it to be.
|
|
*/
|
|
const ssh_keyalg *cross_certifying;
|
|
|
|
ssh_key *const *hostkeys;
|
|
int nhostkeys;
|
|
|
|
PacketProtocolLayer ppl;
|
|
};
|
|
|
|
/* Helpers shared between transport and kex */
|
|
PktIn *ssh2_transport_pop(struct ssh2_transport_state *s);
|
|
void ssh2_transport_dialog_callback(void *, SeatPromptResult);
|
|
|
|
/* Provided by transport for use in kex */
|
|
void ssh2transport_finalise_exhash(struct ssh2_transport_state *s);
|
|
|
|
/* Provided by kex for use in transport. Must set the 'aborted' flag
|
|
* if it throws a connection-terminating error, so that the caller
|
|
* won't have to check that by looking inside its state parameter
|
|
* which might already have been freed. */
|
|
void ssh2kex_coroutine(struct ssh2_transport_state *s, bool *aborted);
|
|
|
|
#endif /* PUTTY_SSH2TRANSPORT_H */
|