1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/test/numbertheory.py
Simon Tatham 072d3c665a numbertheory.py: generalise SqrtModP to do other roots.
I'm about to want to solve quartics mod a prime, which means I'll need
to be able to take cube roots mod p as well as square roots.

This commit introduces a more general class which can take rth roots
for any prime r, and moreover, it can do it in a general cyclic group.
(You have to tell it the group's order and give it some primitives for
doing arithmetic, plus a way of iterating over the group elements that
it can use to look for a non-rth-power and roots of unity.)

That system makes it nicely easy to test, because you can give it a
cyclic group represented as the integers under _addition_, and then
you obviously know what all the right answers are. So I've also added
a unit test system checking that.
2020-02-28 20:40:08 +00:00

280 lines
9.3 KiB
Python

import numbers
import itertools
import unittest
def invert(a, b):
"Multiplicative inverse of a mod b. a,b must be coprime."
A = (a, 1, 0)
B = (b, 0, 1)
while B[0]:
q = A[0] // B[0]
A, B = B, tuple(Ai - q*Bi for Ai, Bi in zip(A, B))
assert abs(A[0]) == 1
return A[1]*A[0] % b
def jacobi(n,m):
"""Compute the Jacobi symbol.
The special case of this when m is prime is the Legendre symbol,
which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
non-zero square number mod m; -1 if n is not congruent to any
square mod m.
"""
assert m & 1
acc = 1
while True:
n %= m
if n == 0:
return 0
while not (n & 1):
n >>= 1
if (m & 7) not in {1,7}:
acc *= -1
if n == 1:
return acc
if (n & 3) == 3 and (m & 3) == 3:
acc *= -1
n, m = m, n
class CyclicGroupRootFinder(object):
"""Class for finding rth roots in a cyclic group. r must be prime."""
# Basic strategy:
#
# We write |G| = r^k u, with u coprime to r. This gives us a
# nested sequence of subgroups G = G_0 > G_1 > ... > G_k, each
# with index 3 in its predecessor. G_0 is the whole group, and the
# innermost G_k has order u.
#
# Within G_k, you can take an rth root by raising an element to
# the power of (r^{-1} mod u). If k=0 (so G = G_0 = G_k) then
# that's all that's needed: every element has a unique rth root.
# But if k>0, then things go differently.
#
# Define the 'rank' of an element g as the highest i such that
# g \in G_i. Elements of rank 0 are the non-rth-powers: they don't
# even _have_ an rth root. Elements of rank k are the easy ones to
# take rth roots of, as above.
#
# In between, you can follow an inductive process, as long as you
# know one element z of index 0. Suppose we're trying to take the
# rth root of some g with index i. Repeatedly multiply g by
# z^{r^i} until its index increases; then take the root of that
# (recursively), and divide off z^{r^{i-1}} once you're done.
def __init__(self, r, order):
self.order = order # order of G
self.r = r
self.k = next(k for k in itertools.count()
if self.order % (r**(k+1)) != 0)
self.u = self.order // (r**self.k)
self.z = next(z for z in self.iter_elements()
if self.index(z) == 0)
self.zinv = self.inverse(self.z)
self.root_power = invert(self.r, self.u) if self.u > 1 else 0
self.roots_of_unity = {self.identity()}
if self.k > 0:
exponent = self.order // self.r
for z in self.iter_elements():
root_of_unity = self.pow(z, exponent)
if root_of_unity not in self.roots_of_unity:
self.roots_of_unity.add(root_of_unity)
if len(self.roots_of_unity) == r:
break
def index(self, g):
h = self.pow(g, self.u)
for i in range(self.k+1):
if h == self.identity():
return self.k - i
h = self.pow(h, self.r)
assert False, ("Not a cyclic group! Raising {} to u r^k should give e."
.format(g))
def all_roots(self, g):
try:
r = self.root(g)
except ValueError:
return []
return {r * rou for rou in self.roots_of_unity}
def root(self, g):
i = self.index(g)
if i == 0 and self.k > 0:
raise ValueError("{} has no {}th root".format(g, self.r))
out = self.root_recurse(g, i)
assert self.pow(out, self.r) == g
return out
def root_recurse(self, g, i):
if i == self.k:
return self.pow(g, self.root_power)
z_in = self.pow(self.z, self.r**i)
z_out = self.pow(self.zinv, self.r**(i-1))
adjust = self.identity()
while True:
g = self.mul(g, z_in)
adjust = self.mul(adjust, z_out)
i2 = self.index(g)
if i2 > i:
return self.mul(self.root_recurse(g, i2), adjust)
class AdditiveGroupRootFinder(CyclicGroupRootFinder):
"""Trivial test subclass for CyclicGroupRootFinder.
Represents a cyclic group of any order additively, as the integers
mod n under addition. This makes root-finding trivial without
having to use the complicated algorithm above, and therefore it's
a good way to test the complicated algorithm under conditions
where the right answers are obvious."""
def __init__(self, r, order):
super().__init__(r, order)
def mul(self, x, y):
return (x + y) % self.order
def pow(self, x, n):
return (x * n) % self.order
def inverse(self, x):
return (-x) % self.order
def identity(self):
return 0
def iter_elements(self):
return range(self.order)
class TestCyclicGroupRootFinder(unittest.TestCase):
def testRootFinding(self):
for order in 10, 11, 12, 18:
grf = AdditiveGroupRootFinder(3, order)
for i in range(order):
try:
r = grf.root(i)
except ValueError:
r = None
if order % 3 == 0 and i % 3 != 0:
self.assertEqual(r, None)
else:
self.assertEqual(r*3 % order, i)
class RootModP(CyclicGroupRootFinder):
"""The live class that can take rth roots mod a prime."""
def __init__(self, r, p):
self.modulus = p
super().__init__(r, p-1)
def mul(self, x, y):
return (x * y) % self.modulus
def pow(self, x, n):
return pow(x, n, self.modulus)
def inverse(self, x):
return invert(x, self.modulus)
def identity(self):
return 1
def iter_elements(self):
return range(1, self.modulus)
def root(self, g):
return 0 if g == 0 else super().root(g)
class ModP(object):
"""Class that represents integers mod p as a field.
All the usual arithmetic operations are supported directly,
including division, so you can write formulas in a natural way
without having to keep saying '% p' everywhere or call a
cumbersome modular_inverse() function.
"""
def __init__(self, p, n=0):
self.p = p
if isinstance(n, type(self)):
self.check(n)
n = n.n
self.n = n % p
def check(self, other):
assert isinstance(other, type(self))
assert isinstance(self, type(other))
assert self.p == other.p
def coerce_to(self, other):
if not isinstance(other, type(self)):
other = type(self)(self.p, other)
else:
self.check(other)
return other
def __int__(self):
return self.n
def __add__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n + rhs.n) % self.p)
def __neg__(self):
return type(self)(self.p, -self.n % self.p)
def __radd__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n + rhs.n) % self.p)
def __sub__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n - rhs.n) % self.p)
def __rsub__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (rhs.n - self.n) % self.p)
def __mul__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n * rhs.n) % self.p)
def __rmul__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n * rhs.n) % self.p)
def __div__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n * invert(rhs.n, self.p)) % self.p)
def __rdiv__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (rhs.n * invert(self.n, self.p)) % self.p)
def __truediv__(self, rhs): return self.__div__(rhs)
def __rtruediv__(self, rhs): return self.__rdiv__(rhs)
def __pow__(self, exponent):
assert exponent >= 0
n, b_to_n = 1, self
total = type(self)(self.p, 1)
while True:
if exponent & n:
exponent -= n
total *= b_to_n
n *= 2
if n > exponent:
break
b_to_n *= b_to_n
return total
def __cmp__(self, rhs):
rhs = self.coerce_to(rhs)
return cmp(self.n, rhs.n)
def __eq__(self, rhs):
rhs = self.coerce_to(rhs)
return self.n == rhs.n
def __ne__(self, rhs):
rhs = self.coerce_to(rhs)
return self.n != rhs.n
def __lt__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __le__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __gt__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __ge__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __str__(self):
return "0x{:x}".format(self.n)
def __repr__(self):
return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
def __hash__(self):
return hash((type(self).__name__, self.p, self.n))
if __name__ == "__main__":
import sys
if sys.argv[1:] == ["--test"]:
sys.argv[1:2] = []
unittest.main()