1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/crypto/kex-hybrid.c
Simon Tatham a3f22a2cf9 Use the new 'HYBRID' names for the hybrid KEX packets.
draft-kampanakis-curdle-ssh-pq-ke defines the packet names
SSH_MSG_KEX_HYBRID_INIT and SSH_MSG_KEX_HYBRID_REPLY. They have the
same numbers as ECDH_INIT and ECDH_REPLY, and don't change anything
else, so this is just a naming change. But I think it's a good one,
because the post-quantum KEMs are less symmetric than ECDH (they're
much more like Ben's RSA kex in concept, though very different in
detail), and shouldn't try to pretend they're the same kind of thing.
Also this enables logparse.pl to give a warning about the fact that
one string in each packet contains two separate keys glomphed together.

For the latter reason (and also because it's easier in my code
structure) I've also switched to using the HYBRID naming for the
existing NTRU + Curve25519 hybrid method, even though the
Internet-Draft for that one still uses the ECDH names. Sorry, but I
think it's clearer!
2024-12-08 10:42:34 +00:00

392 lines
12 KiB
C

/*
* Centralised machinery for hybridised post-quantum + classical key
* exchange setups, using the same message structure as ECDH but the
* strings sent each way are the concatenation of a key or ciphertext
* of each type, and the output shared secret is obtained by hashing
* together both of the sub-methods' outputs.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "putty.h"
#include "ssh.h"
#include "mpint.h"
/* ----------------------------------------------------------------------
* Common definitions between client and server sides.
*/
typedef struct hybrid_alg hybrid_alg;
struct hybrid_alg {
const ssh_hashalg *combining_hash;
const pq_kemalg *pq_alg;
const ssh_kex *classical_alg;
void (*reformat)(ptrlen input, BinarySink *output);
};
static char *hybrid_description(const ssh_kex *kex)
{
const struct hybrid_alg *alg = kex->extra;
/* Bit of a bodge, but think up a short name to describe the
* classical algorithm */
const char *classical_name;
if (alg->classical_alg == &ssh_ec_kex_curve25519)
classical_name = "Curve25519";
else if (alg->classical_alg == &ssh_ec_kex_nistp256)
classical_name = "NIST P256";
else if (alg->classical_alg == &ssh_ec_kex_nistp384)
classical_name = "NIST P384";
else
unreachable("don't have a name for this classical alg");
return dupprintf("%s / %s hybrid key exchange",
alg->pq_alg->description, classical_name);
}
static void reformat_mpint_be(ptrlen input, BinarySink *output, size_t bytes)
{
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, input);
mp_int *mp = get_mp_ssh2(src);
assert(!get_err(src));
assert(get_avail(src) == 0);
for (size_t i = bytes; i-- > 0 ;)
put_byte(output, mp_get_byte(mp, i));
mp_free(mp);
}
static void reformat_mpint_be_32(ptrlen input, BinarySink *output)
{
reformat_mpint_be(input, output, 32);
}
static void reformat_mpint_be_48(ptrlen input, BinarySink *output)
{
reformat_mpint_be(input, output, 48);
}
/* ----------------------------------------------------------------------
* Client side.
*/
typedef struct hybrid_client_state hybrid_client_state;
static const ecdh_keyalg hybrid_client_vt;
struct hybrid_client_state {
const hybrid_alg *alg;
strbuf *pq_ek;
pq_kem_dk *pq_dk;
ecdh_key *classical;
ecdh_key ek;
};
static ecdh_key *hybrid_client_new(const ssh_kex *kex, bool is_server)
{
assert(!is_server);
hybrid_client_state *s = snew(hybrid_client_state);
s->alg = kex->extra;
s->ek.vt = &hybrid_client_vt;
s->pq_ek = strbuf_new();
s->pq_dk = pq_kem_keygen(s->alg->pq_alg, BinarySink_UPCAST(s->pq_ek));
s->classical = ecdh_key_new(s->alg->classical_alg, is_server);
return &s->ek;
}
static void hybrid_client_free(ecdh_key *ek)
{
hybrid_client_state *s = container_of(ek, hybrid_client_state, ek);
strbuf_free(s->pq_ek);
pq_kem_free_dk(s->pq_dk);
ecdh_key_free(s->classical);
sfree(s);
}
/*
* In the client, getpublic is called first: we make up a KEM key
* pair, and send the public key along with a classical DH value.
*/
static void hybrid_client_getpublic(ecdh_key *ek, BinarySink *bs)
{
hybrid_client_state *s = container_of(ek, hybrid_client_state, ek);
put_datapl(bs, ptrlen_from_strbuf(s->pq_ek));
ecdh_key_getpublic(s->classical, bs);
}
/*
* In the client, getkey is called second, after the server sends its
* response: we use our KEM private key to decapsulate the server's
* ciphertext.
*/
static bool hybrid_client_getkey(ecdh_key *ek, ptrlen remoteKey, BinarySink *bs)
{
hybrid_client_state *s = container_of(ek, hybrid_client_state, ek);
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, remoteKey);
ssh_hash *h = ssh_hash_new(s->alg->combining_hash);
ptrlen pq_ciphertext = get_data(src, s->alg->pq_alg->c_len);
if (get_err(src)) {
ssh_hash_free(h);
return false; /* not enough data */
}
if (!pq_kem_decaps(s->pq_dk, BinarySink_UPCAST(h), pq_ciphertext)) {
ssh_hash_free(h);
return false; /* pq ciphertext didn't validate */
}
ptrlen classical_data = get_data(src, get_avail(src));
strbuf *classical_key = strbuf_new();
if (!ecdh_key_getkey(s->classical, classical_data,
BinarySink_UPCAST(classical_key))) {
ssh_hash_free(h);
return false; /* classical DH key didn't validate */
}
s->alg->reformat(ptrlen_from_strbuf(classical_key), BinarySink_UPCAST(h));
strbuf_free(classical_key);
/*
* Finish up: compute the final output hash and return it encoded
* as a string.
*/
unsigned char hashdata[MAX_HASH_LEN];
ssh_hash_final(h, hashdata);
put_stringpl(bs, make_ptrlen(hashdata, s->alg->combining_hash->hlen));
smemclr(hashdata, sizeof(hashdata));
return true;
}
static const ecdh_keyalg hybrid_client_vt = {
.new = hybrid_client_new, /* but normally the selector calls this */
.free = hybrid_client_free,
.getpublic = hybrid_client_getpublic,
.getkey = hybrid_client_getkey,
.description = hybrid_description,
.packet_naming_ctx = SSH2_PKTCTX_HYBRIDKEX,
};
/* ----------------------------------------------------------------------
* Server side.
*/
typedef struct hybrid_server_state hybrid_server_state;
static const ecdh_keyalg hybrid_server_vt;
struct hybrid_server_state {
const hybrid_alg *alg;
strbuf *pq_ciphertext;
ecdh_key *classical;
ecdh_key ek;
};
static ecdh_key *hybrid_server_new(const ssh_kex *kex, bool is_server)
{
assert(is_server);
hybrid_server_state *s = snew(hybrid_server_state);
s->alg = kex->extra;
s->ek.vt = &hybrid_server_vt;
s->pq_ciphertext = strbuf_new_nm();
s->classical = ecdh_key_new(s->alg->classical_alg, is_server);
return &s->ek;
}
static void hybrid_server_free(ecdh_key *ek)
{
hybrid_server_state *s = container_of(ek, hybrid_server_state, ek);
strbuf_free(s->pq_ciphertext);
ecdh_key_free(s->classical);
sfree(s);
}
/*
* In the server, getkey is called first: we receive a KEM encryption
* key from the client and encapsulate a secret with it. We write the
* output secret to bs; the data we'll send to the client is saved to
* return from getpublic.
*/
static bool hybrid_server_getkey(ecdh_key *ek, ptrlen remoteKey, BinarySink *bs)
{
hybrid_server_state *s = container_of(ek, hybrid_server_state, ek);
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, remoteKey);
ssh_hash *h = ssh_hash_new(s->alg->combining_hash);
ptrlen pq_ek = get_data(src, s->alg->pq_alg->ek_len);
if (get_err(src)) {
ssh_hash_free(h);
return false; /* not enough data */
}
if (!pq_kem_encaps(s->alg->pq_alg,
BinarySink_UPCAST(s->pq_ciphertext),
BinarySink_UPCAST(h), pq_ek)) {
ssh_hash_free(h);
return false; /* pq encryption key didn't validate */
}
ptrlen classical_data = get_data(src, get_avail(src));
strbuf *classical_key = strbuf_new();
if (!ecdh_key_getkey(s->classical, classical_data,
BinarySink_UPCAST(classical_key))) {
ssh_hash_free(h);
return false; /* classical DH key didn't validate */
}
s->alg->reformat(ptrlen_from_strbuf(classical_key), BinarySink_UPCAST(h));
strbuf_free(classical_key);
/*
* Finish up: compute the final output hash and return it encoded
* as a string.
*/
unsigned char hashdata[MAX_HASH_LEN];
ssh_hash_final(h, hashdata);
put_stringpl(bs, make_ptrlen(hashdata, s->alg->combining_hash->hlen));
smemclr(hashdata, sizeof(hashdata));
return true;
}
static void hybrid_server_getpublic(ecdh_key *ek, BinarySink *bs)
{
hybrid_server_state *s = container_of(ek, hybrid_server_state, ek);
put_datapl(bs, ptrlen_from_strbuf(s->pq_ciphertext));
ecdh_key_getpublic(s->classical, bs);
}
static const ecdh_keyalg hybrid_server_vt = {
.new = hybrid_server_new, /* but normally the selector calls this */
.free = hybrid_server_free,
.getkey = hybrid_server_getkey,
.getpublic = hybrid_server_getpublic,
.description = hybrid_description,
.packet_naming_ctx = SSH2_PKTCTX_HYBRIDKEX,
};
/* ----------------------------------------------------------------------
* Selector vtable that instantiates the appropriate one of the above,
* depending on is_server.
*/
static ecdh_key *hybrid_selector_new(const ssh_kex *kex, bool is_server)
{
if (is_server)
return hybrid_server_new(kex, is_server);
else
return hybrid_client_new(kex, is_server);
}
static const ecdh_keyalg hybrid_selector_vt = {
/* This is a never-instantiated vtable which only implements the
* functions that don't require an instance. */
.new = hybrid_selector_new,
.description = hybrid_description,
.packet_naming_ctx = SSH2_PKTCTX_HYBRIDKEX,
};
/* ----------------------------------------------------------------------
* Actual KEX methods.
*/
static const hybrid_alg ssh_ntru_curve25519_hybrid = {
.combining_hash = &ssh_sha512,
.pq_alg = &ssh_ntru,
.classical_alg = &ssh_ec_kex_curve25519,
.reformat = reformat_mpint_be_32,
};
static const ssh_kex ssh_ntru_curve25519 = {
.name = "sntrup761x25519-sha512",
.main_type = KEXTYPE_ECDH,
.hash = &ssh_sha512,
.ecdh_vt = &hybrid_selector_vt,
.extra = &ssh_ntru_curve25519_hybrid,
};
static const ssh_kex ssh_ntru_curve25519_openssh = {
.name = "sntrup761x25519-sha512@openssh.com",
.main_type = KEXTYPE_ECDH,
.hash = &ssh_sha512,
.ecdh_vt = &hybrid_selector_vt,
.extra = &ssh_ntru_curve25519_hybrid,
};
static const ssh_kex *const ntru_hybrid_list[] = {
&ssh_ntru_curve25519,
&ssh_ntru_curve25519_openssh,
};
const ssh_kexes ssh_ntru_hybrid_kex = {
lenof(ntru_hybrid_list), ntru_hybrid_list,
};
static const hybrid_alg ssh_mlkem768_curve25519_hybrid = {
.combining_hash = &ssh_sha256,
.pq_alg = &ssh_mlkem768,
.classical_alg = &ssh_ec_kex_curve25519,
.reformat = reformat_mpint_be_32,
};
static const ssh_kex ssh_mlkem768_curve25519 = {
.name = "mlkem768x25519-sha256",
.main_type = KEXTYPE_ECDH,
.hash = &ssh_sha256,
.ecdh_vt = &hybrid_selector_vt,
.extra = &ssh_mlkem768_curve25519_hybrid,
};
static const ssh_kex *const mlkem_curve25519_hybrid_list[] = {
&ssh_mlkem768_curve25519,
};
const ssh_kexes ssh_mlkem_curve25519_hybrid_kex = {
lenof(mlkem_curve25519_hybrid_list), mlkem_curve25519_hybrid_list,
};
static const hybrid_alg ssh_mlkem768_p256_hybrid = {
.combining_hash = &ssh_sha256,
.pq_alg = &ssh_mlkem768,
.classical_alg = &ssh_ec_kex_nistp256,
.reformat = reformat_mpint_be_32,
};
static const ssh_kex ssh_mlkem768_p256 = {
.name = "mlkem768nistp256-sha256",
.main_type = KEXTYPE_ECDH,
.hash = &ssh_sha256,
.ecdh_vt = &hybrid_selector_vt,
.extra = &ssh_mlkem768_p256_hybrid,
};
static const hybrid_alg ssh_mlkem1024_p384_hybrid = {
.combining_hash = &ssh_sha384,
.pq_alg = &ssh_mlkem1024,
.classical_alg = &ssh_ec_kex_nistp384,
.reformat = reformat_mpint_be_48,
};
static const ssh_kex ssh_mlkem1024_p384 = {
.name = "mlkem1024nistp384-sha384",
.main_type = KEXTYPE_ECDH,
.hash = &ssh_sha384,
.ecdh_vt = &hybrid_selector_vt,
.extra = &ssh_mlkem1024_p384_hybrid,
};
static const ssh_kex *const mlkem_nist_hybrid_list[] = {
&ssh_mlkem1024_p384,
&ssh_mlkem768_p256,
};
const ssh_kexes ssh_mlkem_nist_hybrid_kex = {
lenof(mlkem_nist_hybrid_list), mlkem_nist_hybrid_list,
};