1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/sshsha.c
Simon Tatham 0e3082ee89 New centralised binary-data marshalling system.
I've finally got tired of all the code throughout PuTTY that repeats
the same logic about how to format the SSH binary primitives like
uint32, string, mpint. We've got reasonably organised code in ssh.c
that appends things like that to 'struct Packet'; something similar in
sftp.c which repeats a lot of the work; utility functions in various
places to format an mpint to feed to one or another hash function; and
no end of totally ad-hoc stuff in functions like public key blob
formatters which actually have to _count up_ the size of data
painstakingly, then malloc exactly that much and mess about with
PUT_32BIT.

It's time to bring all of that into one place, and stop repeating
myself in error-prone ways everywhere. The new marshal.h defines a
system in which I centralise all the actual marshalling functions, and
then layer a touch of C macro trickery on top to allow me to (look as
if I) pass a wide range of different types to those functions, as long
as the target type has been set up in the right way to have a write()
function.

This commit adds the new header and source file, and sets up some
general centralised types (strbuf and the various hash-function
contexts like SHA_State), but doesn't use the new calls for anything
yet.

(I've also renamed some internal functions in import.c which were
using the same names that I've just defined macros over. That won't
last long - those functions are going to go away soon, so the changed
names are strictly temporary.)
2018-05-25 14:36:16 +01:00

773 lines
20 KiB
C

/*
* SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
* also used as a `stirring' function for the PuTTY random number
* pool. Implemented directly from the specification by Simon
* Tatham.
*/
#include "ssh.h"
#include <assert.h>
/* ----------------------------------------------------------------------
* Core SHA algorithm: processes 16-word blocks into a message digest.
*/
#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
static void sha1_sw(SHA_State * s, const unsigned char *q, int len);
static void sha1_ni(SHA_State * s, const unsigned char *q, int len);
static void SHA_Core_Init(uint32 h[5])
{
h[0] = 0x67452301;
h[1] = 0xefcdab89;
h[2] = 0x98badcfe;
h[3] = 0x10325476;
h[4] = 0xc3d2e1f0;
}
void SHATransform(word32 * digest, word32 * block)
{
word32 w[80];
word32 a, b, c, d, e;
int t;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf("SHATransform:");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf(" +");
for (i = 0; i < 16; i++)
printf(" %08x", block[i]);
}
}
#endif
for (t = 0; t < 16; t++)
w[t] = block[t];
for (t = 16; t < 80; t++) {
word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = rol(tmp, 1);
}
a = digest[0];
b = digest[1];
c = digest[2];
d = digest[3];
e = digest[4];
for (t = 0; t < 20; t++) {
word32 tmp =
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 20; t < 40; t++) {
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 40; t < 60; t++) {
word32 tmp = rol(a,
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
0x8f1bbcdc;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 60; t < 80; t++) {
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf(" =");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf("\n");
}
}
#endif
}
/* ----------------------------------------------------------------------
* Outer SHA algorithm: take an arbitrary length byte string,
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core SHA algorithm.
*/
static void SHA_BinarySink_write(BinarySink *bs,
const void *data, size_t len)
{
struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
SHA_Bytes(s, data, len);
}
void SHA_Init(SHA_State * s)
{
SHA_Core_Init(s->h);
s->blkused = 0;
s->lenhi = s->lenlo = 0;
if (supports_sha_ni())
s->sha1 = &sha1_ni;
else
s->sha1 = &sha1_sw;
BinarySink_INIT(s, SHA_BinarySink_write);
}
void SHA_Bytes(SHA_State * s, const void *p, int len)
{
const unsigned char *q = (const unsigned char *) p;
uint32 lenw = len;
/*
* Update the length field.
*/
s->lenlo += lenw;
s->lenhi += (s->lenlo < lenw);
(*(s->sha1))(s, q, len);
}
static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
{
uint32 wordblock[16];
int i;
if (s->blkused && s->blkused + len < 64) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= 64) {
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Now process the block. Gather bytes big-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
(((uint32) s->block[i * 4 + 0]) << 24) |
(((uint32) s->block[i * 4 + 1]) << 16) |
(((uint32) s->block[i * 4 + 2]) << 8) |
(((uint32) s->block[i * 4 + 3]) << 0);
}
SHATransform(s->h, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
}
void SHA_Final(SHA_State * s, unsigned char *output)
{
int i;
int pad;
unsigned char c[64];
uint32 lenhi, lenlo;
if (s->blkused >= 56)
pad = 56 + 64 - s->blkused;
else
pad = 56 - s->blkused;
lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
lenlo = (s->lenlo << 3);
memset(c, 0, pad);
c[0] = 0x80;
SHA_Bytes(s, &c, pad);
c[0] = (lenhi >> 24) & 0xFF;
c[1] = (lenhi >> 16) & 0xFF;
c[2] = (lenhi >> 8) & 0xFF;
c[3] = (lenhi >> 0) & 0xFF;
c[4] = (lenlo >> 24) & 0xFF;
c[5] = (lenlo >> 16) & 0xFF;
c[6] = (lenlo >> 8) & 0xFF;
c[7] = (lenlo >> 0) & 0xFF;
SHA_Bytes(s, &c, 8);
for (i = 0; i < 5; i++) {
output[i * 4] = (s->h[i] >> 24) & 0xFF;
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
output[i * 4 + 3] = (s->h[i]) & 0xFF;
}
}
void SHA_Simple(const void *p, int len, unsigned char *output)
{
SHA_State s;
SHA_Init(&s);
SHA_Bytes(&s, p, len);
SHA_Final(&s, output);
smemclr(&s, sizeof(s));
}
/*
* Thin abstraction for things where hashes are pluggable.
*/
static void *sha1_init(void)
{
SHA_State *s;
s = snew(SHA_State);
SHA_Init(s);
return s;
}
static void *sha1_copy(const void *vold)
{
const SHA_State *old = (const SHA_State *)vold;
SHA_State *s;
s = snew(SHA_State);
*s = *old;
BinarySink_COPIED(s);
return s;
}
static void sha1_free(void *handle)
{
SHA_State *s = handle;
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha1_bytes(void *handle, const void *p, int len)
{
SHA_State *s = handle;
SHA_Bytes(s, p, len);
}
static void sha1_final(void *handle, unsigned char *output)
{
SHA_State *s = handle;
SHA_Final(s, output);
sha1_free(s);
}
const struct ssh_hash ssh_sha1 = {
sha1_init, sha1_copy, sha1_bytes, sha1_final, sha1_free, 20, "SHA-1"
};
/* ----------------------------------------------------------------------
* The above is the SHA-1 algorithm itself. Now we implement the
* HMAC wrapper on it.
*/
static void *sha1_make_context(void *cipher_ctx)
{
return snewn(3, SHA_State);
}
static void sha1_free_context(void *handle)
{
smemclr(handle, 3 * sizeof(SHA_State));
sfree(handle);
}
static void sha1_key_internal(void *handle, unsigned char *key, int len)
{
SHA_State *keys = (SHA_State *)handle;
unsigned char foo[64];
int i;
memset(foo, 0x36, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA_Init(&keys[0]);
SHA_Bytes(&keys[0], foo, 64);
memset(foo, 0x5C, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA_Init(&keys[1]);
SHA_Bytes(&keys[1], foo, 64);
smemclr(foo, 64); /* burn the evidence */
}
static void sha1_key(void *handle, unsigned char *key)
{
sha1_key_internal(handle, key, 20);
}
static void sha1_key_buggy(void *handle, unsigned char *key)
{
sha1_key_internal(handle, key, 16);
}
static void hmacsha1_start(void *handle)
{
SHA_State *keys = (SHA_State *)handle;
keys[2] = keys[0]; /* structure copy */
BinarySink_COPIED(&keys[2]);
}
static void hmacsha1_bytes(void *handle, unsigned char const *blk, int len)
{
SHA_State *keys = (SHA_State *)handle;
SHA_Bytes(&keys[2], (void *)blk, len);
}
static void hmacsha1_genresult(void *handle, unsigned char *hmac)
{
SHA_State *keys = (SHA_State *)handle;
SHA_State s;
unsigned char intermediate[20];
s = keys[2]; /* structure copy */
BinarySink_COPIED(&s);
SHA_Final(&s, intermediate);
s = keys[1]; /* structure copy */
BinarySink_COPIED(&s);
SHA_Bytes(&s, intermediate, 20);
SHA_Final(&s, hmac);
}
static void sha1_do_hmac(void *handle, unsigned char *blk, int len,
unsigned long seq, unsigned char *hmac)
{
unsigned char seqbuf[4];
PUT_32BIT_MSB_FIRST(seqbuf, seq);
hmacsha1_start(handle);
hmacsha1_bytes(handle, seqbuf, 4);
hmacsha1_bytes(handle, blk, len);
hmacsha1_genresult(handle, hmac);
}
static void sha1_generate(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
sha1_do_hmac(handle, blk, len, seq, blk + len);
}
static int hmacsha1_verresult(void *handle, unsigned char const *hmac)
{
unsigned char correct[20];
hmacsha1_genresult(handle, correct);
return smemeq(correct, hmac, 20);
}
static int sha1_verify(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char correct[20];
sha1_do_hmac(handle, blk, len, seq, correct);
return smemeq(correct, blk + len, 20);
}
static void hmacsha1_96_genresult(void *handle, unsigned char *hmac)
{
unsigned char full[20];
hmacsha1_genresult(handle, full);
memcpy(hmac, full, 12);
}
static void sha1_96_generate(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char full[20];
sha1_do_hmac(handle, blk, len, seq, full);
memcpy(blk + len, full, 12);
}
static int hmacsha1_96_verresult(void *handle, unsigned char const *hmac)
{
unsigned char correct[20];
hmacsha1_genresult(handle, correct);
return smemeq(correct, hmac, 12);
}
static int sha1_96_verify(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char correct[20];
sha1_do_hmac(handle, blk, len, seq, correct);
return smemeq(correct, blk + len, 12);
}
void hmac_sha1_simple(void *key, int keylen, void *data, int datalen,
unsigned char *output) {
SHA_State states[2];
unsigned char intermediate[20];
sha1_key_internal(states, key, keylen);
SHA_Bytes(&states[0], data, datalen);
SHA_Final(&states[0], intermediate);
SHA_Bytes(&states[1], intermediate, 20);
SHA_Final(&states[1], output);
}
const struct ssh_mac ssh_hmac_sha1 = {
sha1_make_context, sha1_free_context, sha1_key,
sha1_generate, sha1_verify,
hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,
"hmac-sha1", "hmac-sha1-etm@openssh.com",
20, 20,
"HMAC-SHA1"
};
const struct ssh_mac ssh_hmac_sha1_96 = {
sha1_make_context, sha1_free_context, sha1_key,
sha1_96_generate, sha1_96_verify,
hmacsha1_start, hmacsha1_bytes,
hmacsha1_96_genresult, hmacsha1_96_verresult,
"hmac-sha1-96", "hmac-sha1-96-etm@openssh.com",
12, 20,
"HMAC-SHA1-96"
};
const struct ssh_mac ssh_hmac_sha1_buggy = {
sha1_make_context, sha1_free_context, sha1_key_buggy,
sha1_generate, sha1_verify,
hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,
"hmac-sha1", NULL,
20, 16,
"bug-compatible HMAC-SHA1"
};
const struct ssh_mac ssh_hmac_sha1_96_buggy = {
sha1_make_context, sha1_free_context, sha1_key_buggy,
sha1_96_generate, sha1_96_verify,
hmacsha1_start, hmacsha1_bytes,
hmacsha1_96_genresult, hmacsha1_96_verresult,
"hmac-sha1-96", NULL,
12, 16,
"bug-compatible HMAC-SHA1-96"
};
#ifdef COMPILER_SUPPORTS_SHA_NI
#if defined _MSC_VER && defined _M_AMD64
# include <intrin.h>
#endif
/*
* Set target architecture for Clang and GCC
*/
#if !defined(__clang__) && defined(__GNUC__)
# pragma GCC target("sha")
# pragma GCC target("sse4.1")
#endif
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
#else
# define FUNC_ISA
#endif
#include <wmmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
#if defined(__clang__) || defined(__GNUC__)
#include <shaintrin.h>
#endif
/*
* Determinators of CPU type
*/
#if defined(__clang__) || defined(__GNUC__)
#include <cpuid.h>
int supports_sha_ni(void)
{
unsigned int CPUInfo[4];
__cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
if (CPUInfo[0] < 7)
return 0;
__cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
return CPUInfo[1] & (1 << 29); /* SHA */
}
#else /* defined(__clang__) || defined(__GNUC__) */
int supports_sha_ni(void)
{
unsigned int CPUInfo[4];
__cpuid(CPUInfo, 0);
if (CPUInfo[0] < 7)
return 0;
__cpuidex(CPUInfo, 7, 0);
return CPUInfo[1] & (1 << 29); /* Check SHA */
}
#endif /* defined(__clang__) || defined(__GNUC__) */
/* SHA1 implementation using new instructions
The code is based on Jeffrey Walton's SHA1 implementation:
https://github.com/noloader/SHA-Intrinsics
*/
FUNC_ISA
static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
{
if (s->blkused && s->blkused + len < 64) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
ABCD = _mm_loadu_si128((const __m128i*) s->h);
E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= 64)
{
__m128i MSG0, MSG1, MSG2, MSG3;
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Save current state */
ABCD_SAVE = ABCD;
E0_SAVE = E0;
/* Rounds 0-3 */
MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0));
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
E0 = _mm_add_epi32(E0, MSG0);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
/* Rounds 4-7 */
MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16));
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */
MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32));
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 12-15 */
MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48));
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 16-19 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 20-23 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 24-27 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 28-31 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 32-35 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 36-39 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 40-43 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 44-47 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 48-51 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 52-55 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 56-59 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 60-63 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 64-67 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 68-71 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 72-75 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
/* Rounds 76-79 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
/* Combine state */
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
s->blkused = 0;
}
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
/* Save state */
_mm_storeu_si128((__m128i*) s->h, ABCD);
s->h[4] = _mm_extract_epi32(E0, 3);
memcpy(s->block, q, len);
s->blkused = len;
}
}
/*
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
*/
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
{
sha1_ni_(s, q, len);
}
#else /* COMPILER_SUPPORTS_AES_NI */
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
{
assert(0);
}
int supports_sha_ni(void)
{
return 0;
}
#endif /* COMPILER_SUPPORTS_AES_NI */