1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-24 16:52:24 +00:00
putty-source/windows/handle-socket.c
Simon Tatham c1d9da67a2 Pass the calling Socket to plug_log.
This enables plug_log to run query methods on the socket in order to
find out useful information to log. I don't expect it's sensible to do
anything else with it.
2024-06-29 12:00:12 +01:00

518 lines
14 KiB
C

/*
* General mechanism for wrapping up reading/writing of Windows
* HANDLEs into a PuTTY Socket abstraction.
*/
#include <stdio.h>
#include <assert.h>
#include <limits.h>
#include "tree234.h"
#include "putty.h"
#include "network.h"
/*
* Freezing one of these sockets is a slightly fiddly business,
* because the reads from the handle are happening in a separate
* thread as blocking system calls and so once one is in progress it
* can't sensibly be interrupted. Hence, after the user tries to
* freeze one of these sockets, it's unavoidable that we may receive
* one more load of data before we manage to get handle-io.c to stop
* reading.
*/
typedef enum HandleSocketFreezeState {
UNFROZEN, /* reading as normal */
FREEZING, /* have been set to frozen but winhandl is still reading */
FROZEN, /* really frozen - winhandl has been throttled */
THAWING /* we're gradually releasing our remaining data */
} HandleSocketFreezeState;
typedef struct HandleSocket {
union {
struct {
HANDLE send_H, recv_H, stderr_H;
struct handle *send_h, *recv_h, *stderr_h;
HandleSocketFreezeState frozen;
/* We buffer data here if we receive it from winhandl
* while frozen. */
bufchain inputdata;
/* Handle logging proxy error messages from stderr_H, if
* we have one */
ProxyStderrBuf psb;
bool defer_close, deferred_close; /* in case of re-entrance */
};
struct {
DeferredSocketOpener *opener;
/* We buffer data here if we receive it via sk_write
* before the socket is opened. */
bufchain outputdata;
bool output_eof_pending;
bool start_frozen;
};
};
char *error;
SockAddr *addr;
int port;
Plug *plug;
Socket sock;
} HandleSocket;
static size_t handle_gotdata(
struct handle *h, const void *data, size_t len, int err)
{
HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);
if (err) {
plug_closing_error(hs->plug, "Read error from handle");
return 0;
} else if (len == 0) {
plug_closing_normal(hs->plug);
return 0;
} else {
assert(hs->frozen != FROZEN && hs->frozen != THAWING);
if (hs->frozen == FREEZING) {
/*
* If we've received data while this socket is supposed to
* be frozen (because the read handle-io.c started before
* sk_set_frozen was called has now returned) then buffer
* the data for when we unfreeze.
*/
bufchain_add(&hs->inputdata, data, len);
hs->frozen = FROZEN;
/*
* And return a very large backlog, to prevent further
* data arriving from winhandl until we unfreeze.
*/
return INT_MAX;
} else {
plug_receive(hs->plug, 0, data, len);
return 0;
}
}
}
static size_t handle_stderr(
struct handle *h, const void *data, size_t len, int err)
{
HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);
if (!err && len > 0)
log_proxy_stderr(hs->plug, &hs->sock, &hs->psb, data, len);
return 0;
}
static void handle_sentdata(struct handle *h, size_t new_backlog, int err,
bool close)
{
HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);
if (close) {
if (hs->send_H != INVALID_HANDLE_VALUE)
CloseHandle(hs->send_H);
if (hs->recv_H != INVALID_HANDLE_VALUE && hs->recv_H != hs->send_H)
CloseHandle(hs->recv_H);
hs->send_H = hs->recv_H = INVALID_HANDLE_VALUE;
}
if (err) {
plug_closing_system_error(hs->plug, err);
return;
}
plug_sent(hs->plug, new_backlog);
}
static Plug *sk_handle_plug(Socket *s, Plug *p)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
Plug *ret = hs->plug;
if (p)
hs->plug = p;
return ret;
}
static void sk_handle_close(Socket *s)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
if (hs->defer_close) {
hs->deferred_close = true;
return;
}
handle_free(hs->send_h);
handle_free(hs->recv_h);
if (hs->send_H != INVALID_HANDLE_VALUE)
CloseHandle(hs->send_H);
if (hs->recv_H != INVALID_HANDLE_VALUE && hs->recv_H != hs->send_H)
CloseHandle(hs->recv_H);
bufchain_clear(&hs->inputdata);
if (hs->addr)
sk_addr_free(hs->addr);
delete_callbacks_for_context(hs);
sfree(hs);
}
static size_t sk_handle_write(Socket *s, const void *data, size_t len)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
return handle_write(hs->send_h, data, len);
}
static size_t sk_handle_write_oob(Socket *s, const void *data, size_t len)
{
/*
* oob data is treated as inband; nasty, but nothing really
* better we can do
*/
return sk_handle_write(s, data, len);
}
static void sk_handle_write_eof(Socket *s)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
handle_write_eof(hs->send_h);
}
static void handle_socket_unfreeze(void *hsv)
{
HandleSocket *hs = (HandleSocket *)hsv;
/*
* If we've been put into a state other than THAWING since the
* last callback, then we're done.
*/
if (hs->frozen != THAWING)
return;
/*
* Get some of the data we've buffered.
*/
ptrlen data = bufchain_prefix(&hs->inputdata);
assert(data.len > 0);
/*
* Hand it off to the plug. Be careful of re-entrance - that might
* have the effect of trying to close this socket.
*/
hs->defer_close = true;
plug_receive(hs->plug, 0, data.ptr, data.len);
bufchain_consume(&hs->inputdata, data.len);
hs->defer_close = false;
if (hs->deferred_close) {
sk_handle_close(&hs->sock);
return;
}
if (bufchain_size(&hs->inputdata) > 0) {
/*
* If there's still data in our buffer, stay in THAWING state,
* and reschedule ourself.
*/
queue_toplevel_callback(handle_socket_unfreeze, hs);
} else {
/*
* Otherwise, we've successfully thawed!
*/
hs->frozen = UNFROZEN;
handle_unthrottle(hs->recv_h, 0);
}
}
static void sk_handle_set_frozen(Socket *s, bool is_frozen)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
if (is_frozen) {
switch (hs->frozen) {
case FREEZING:
case FROZEN:
return; /* nothing to do */
case THAWING:
/*
* We were in the middle of emptying our bufchain, and got
* frozen again. In that case, handle-io.c is already
* throttled, so just return to FROZEN state. The toplevel
* callback will notice and disable itself.
*/
hs->frozen = FROZEN;
break;
case UNFROZEN:
/*
* The normal case. Go to FREEZING, and expect one more
* load of data from winhandl if we're unlucky.
*/
hs->frozen = FREEZING;
break;
}
} else {
switch (hs->frozen) {
case UNFROZEN:
case THAWING:
return; /* nothing to do */
case FREEZING:
/*
* If winhandl didn't send us any data throughout the time
* we were frozen, then we'll still be in this state and
* can just unfreeze in the trivial way.
*/
assert(bufchain_size(&hs->inputdata) == 0);
hs->frozen = UNFROZEN;
break;
case FROZEN:
/*
* If we have buffered data, go to THAWING and start
* releasing it in top-level callbacks.
*/
hs->frozen = THAWING;
queue_toplevel_callback(handle_socket_unfreeze, hs);
}
}
}
static const char *sk_handle_socket_error(Socket *s)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
return hs->error;
}
static SocketEndpointInfo *sk_handle_endpoint_info(Socket *s, bool peer)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
ULONG pid;
static HMODULE kernel32_module;
DECL_WINDOWS_FUNCTION(static, BOOL, GetNamedPipeClientProcessId,
(HANDLE, PULONG));
if (!peer)
return NULL;
if (!kernel32_module) {
kernel32_module = load_system32_dll("kernel32.dll");
#if !HAVE_GETNAMEDPIPECLIENTPROCESSID
/* For older Visual Studio, and MinGW too (at least as of
* Ubuntu 16.04), this function isn't available in the header
* files to type-check. Ditto the toolchain I use for
* Coveritying the Windows code. */
GET_WINDOWS_FUNCTION_NO_TYPECHECK(
kernel32_module, GetNamedPipeClientProcessId);
#else
GET_WINDOWS_FUNCTION(
kernel32_module, GetNamedPipeClientProcessId);
#endif
}
/*
* Of course, not all handles managed by this module will be
* server ends of named pipes, but if they are, then it's useful
* to log what we can find out about the client end.
*/
if (p_GetNamedPipeClientProcessId &&
p_GetNamedPipeClientProcessId(hs->send_H, &pid)) {
SocketEndpointInfo *pi = snew(SocketEndpointInfo);
pi->addressfamily = ADDRTYPE_LOCAL;
pi->addr_text = NULL;
pi->port = -1;
pi->log_text = dupprintf("process id %lu", (unsigned long)pid);
return pi;
}
return NULL;
}
static const SocketVtable HandleSocket_sockvt = {
.plug = sk_handle_plug,
.close = sk_handle_close,
.write = sk_handle_write,
.write_oob = sk_handle_write_oob,
.write_eof = sk_handle_write_eof,
.set_frozen = sk_handle_set_frozen,
.socket_error = sk_handle_socket_error,
.endpoint_info = sk_handle_endpoint_info,
};
static void sk_handle_connect_success_callback(void *ctx)
{
HandleSocket *hs = (HandleSocket *)ctx;
plug_log(hs->plug, &hs->sock, PLUGLOG_CONNECT_SUCCESS, hs->addr, hs->port,
NULL, 0);
}
Socket *make_handle_socket(HANDLE send_H, HANDLE recv_H, HANDLE stderr_H,
SockAddr *addr, int port, Plug *plug,
bool overlapped)
{
HandleSocket *hs;
int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0);
hs = snew(HandleSocket);
hs->sock.vt = &HandleSocket_sockvt;
hs->addr = addr;
hs->port = port;
hs->plug = plug;
hs->error = NULL;
hs->frozen = UNFROZEN;
bufchain_init(&hs->inputdata);
psb_init(&hs->psb);
hs->recv_H = recv_H;
hs->recv_h = handle_input_new(hs->recv_H, handle_gotdata, hs, flags);
hs->send_H = send_H;
hs->send_h = handle_output_new(hs->send_H, handle_sentdata, hs, flags);
hs->stderr_H = stderr_H;
if (hs->stderr_H)
hs->stderr_h = handle_input_new(hs->stderr_H, handle_stderr,
hs, flags);
hs->defer_close = hs->deferred_close = false;
queue_toplevel_callback(sk_handle_connect_success_callback, hs);
return &hs->sock;
}
void handle_socket_set_psb_prefix(Socket *s, const char *prefix)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
assert(hs->sock.vt == &HandleSocket_sockvt);
psb_set_prefix(&hs->psb, prefix);
}
static void sk_handle_deferred_close(Socket *s)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
deferred_socket_opener_free(hs->opener);
bufchain_clear(&hs->outputdata);
if (hs->addr)
sk_addr_free(hs->addr);
delete_callbacks_for_context(hs);
sfree(hs);
}
static size_t sk_handle_deferred_write(Socket *s, const void *data, size_t len)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
assert(!hs->output_eof_pending);
bufchain_add(&hs->outputdata, data, len);
return bufchain_size(&hs->outputdata);
}
static void sk_handle_deferred_write_eof(Socket *s)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
assert(!hs->output_eof_pending);
hs->output_eof_pending = true;
}
static void sk_handle_deferred_set_frozen(Socket *s, bool is_frozen)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
hs->frozen = is_frozen;
}
static SocketEndpointInfo *sk_handle_deferred_endpoint_info(
Socket *s, bool peer)
{
return NULL;
}
static const SocketVtable HandleSocket_deferred_sockvt = {
.plug = sk_handle_plug,
.close = sk_handle_deferred_close,
.write = sk_handle_deferred_write,
.write_oob = sk_handle_deferred_write,
.write_eof = sk_handle_deferred_write_eof,
.set_frozen = sk_handle_deferred_set_frozen,
.socket_error = sk_handle_socket_error,
.endpoint_info = sk_handle_deferred_endpoint_info,
};
Socket *make_deferred_handle_socket(DeferredSocketOpener *opener,
SockAddr *addr, int port, Plug *plug)
{
HandleSocket *hs = snew(HandleSocket);
hs->sock.vt = &HandleSocket_deferred_sockvt;
hs->addr = addr;
hs->port = port;
hs->plug = plug;
hs->error = NULL;
hs->opener = opener;
bufchain_init(&hs->outputdata);
hs->output_eof_pending = false;
hs->start_frozen = false;
return &hs->sock;
}
void setup_handle_socket(Socket *s, HANDLE send_H, HANDLE recv_H,
HANDLE stderr_H, bool overlapped)
{
HandleSocket *hs = container_of(s, HandleSocket, sock);
assert(hs->sock.vt == &HandleSocket_deferred_sockvt);
int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0);
struct handle *recv_h = handle_input_new(
recv_H, handle_gotdata, hs, flags);
struct handle *send_h = handle_output_new(
send_H, handle_sentdata, hs, flags);
struct handle *stderr_h = !stderr_H ? NULL : handle_input_new(
stderr_H, handle_stderr, hs, flags);
while (bufchain_size(&hs->outputdata)) {
ptrlen data = bufchain_prefix(&hs->outputdata);
handle_write(send_h, data.ptr, data.len);
bufchain_consume(&hs->outputdata, data.len);
}
if (hs->output_eof_pending)
handle_write_eof(send_h);
bool start_frozen = hs->start_frozen;
deferred_socket_opener_free(hs->opener);
bufchain_clear(&hs->outputdata);
hs->sock.vt = &HandleSocket_sockvt;
hs->frozen = start_frozen ? FREEZING : UNFROZEN;
bufchain_init(&hs->inputdata);
psb_init(&hs->psb);
hs->recv_H = recv_H;
hs->recv_h = recv_h;
hs->send_H = send_H;
hs->send_h = send_h;
hs->stderr_H = stderr_H;
hs->stderr_h = stderr_h;
hs->defer_close = hs->deferred_close = false;
queue_toplevel_callback(sk_handle_connect_success_callback, hs);
}