1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/test/eccref.py
Simon Tatham 122d785283 eccref.py: move support routines into a new file.
I'm about to want to expand the underlying number-theory code, so I'll
start by moving it into a file where it has room to grow without
swamping the main purpose of eccref.py.
2020-02-28 20:40:08 +00:00

233 lines
9.1 KiB
Python

import numbers
import itertools
from numbertheory import *
class AffinePoint(object):
"""Base class for points on an elliptic curve."""
def __init__(self, curve, *args):
self.curve = curve
if len(args) == 0:
self.infinite = True
self.x = self.y = None
else:
assert len(args) == 2
self.infinite = False
self.x = ModP(self.curve.p, args[0])
self.y = ModP(self.curve.p, args[1])
self.check_equation()
def __neg__(self):
if self.infinite:
return self
return type(self)(self.curve, self.x, -self.y)
def __mul__(self, rhs):
if not isinstance(rhs, numbers.Integral):
raise ValueError("Elliptic curve points can only be multiplied by integers")
P = self
if rhs < 0:
rhs = -rhs
P = -P
toret = self.curve.point()
n = 1
nP = P
while rhs != 0:
if rhs & n:
rhs -= n
toret += nP
n += n
nP += nP
return toret
def __rmul__(self, rhs):
return self * rhs
def __sub__(self, rhs):
return self + (-rhs)
def __rsub__(self, rhs):
return (-self) + rhs
def __str__(self):
if self.infinite:
return "inf"
else:
return "({},{})".format(self.x, self.y)
def __repr__(self):
if self.infinite:
args = ""
else:
args = ", {}, {}".format(self.x, self.y)
return "{}.Point({}{})".format(type(self.curve).__name__,
self.curve, args)
def __eq__(self, rhs):
if self.infinite or rhs.infinite:
return self.infinite and rhs.infinite
return (self.x, self.y) == (rhs.x, rhs.y)
def __ne__(self, rhs):
return not (self == rhs)
def __lt__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __le__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __gt__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __ge__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __hash__(self):
if self.infinite:
return hash((True,))
else:
return hash((False, self.x, self.y))
class CurveBase(object):
def point(self, *args):
return self.Point(self, *args)
class WeierstrassCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
assert (self.y*self.y ==
self.x*self.x*self.x +
self.curve.a*self.x + self.curve.b)
def __add__(self, rhs):
if self.infinite:
return rhs
if rhs.infinite:
return self
if self.x == rhs.x and self.y != rhs.y:
return self.curve.point()
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
xdiff = x2-x1
if xdiff != 0:
slope = (y2-y1) / xdiff
else:
assert y1 == y2
slope = (3*x1*x1 + self.curve.a) / (2*y1)
xp = slope*slope - x1 - x2
yp = -(y1 + slope * (xp-x1))
return self.curve.point(xp, yp)
def __init__(self, p, a, b):
self.p = p
self.a = ModP(p, a)
self.b = ModP(p, b)
def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p)
rhs = x**3 + self.a.n * x + self.b.n
y = self.sqrtmodp.sqrt(rhs)
if (y - yparity) % 2:
y = -y
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.a, self.b)
class MontgomeryCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
assert (self.curve.b*self.y*self.y ==
self.x*self.x*self.x +
self.curve.a*self.x*self.x + self.x)
def __add__(self, rhs):
if self.infinite:
return rhs
if rhs.infinite:
return self
if self.x == rhs.x and self.y != rhs.y:
return self.curve.point()
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
xdiff = x2-x1
if xdiff != 0:
slope = (y2-y1) / xdiff
elif y1 != 0:
assert y1 == y2
slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
else:
# If y1 was 0 as well, then we must have found an
# order-2 point that doubles to the identity.
return self.curve.point()
xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
yp = -(y1 + slope * (xp-x1))
return self.curve.point(xp, yp)
def __init__(self, p, a, b):
self.p = p
self.a = ModP(p, a)
self.b = ModP(p, b)
def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p)
rhs = (x**3 + self.a.n * x**2 + x) / self.b
y = self.sqrtmodp.sqrt(int(rhs))
if (y - yparity) % 2:
y = -y
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.a, self.b)
class TwistedEdwardsCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
x2, y2 = self.x*self.x, self.y*self.y
assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
def __neg__(self):
return type(self)(self.curve, -self.x, self.y)
def __add__(self, rhs):
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
dxxyy = self.curve.d*x1x2*y1y2
return self.curve.point((x1y2+y1x2)/(1+dxxyy),
(y1y2-self.curve.a*x1x2)/(1-dxxyy))
def __init__(self, p, d, a):
self.p = p
self.d = ModP(p, d)
self.a = ModP(p, a)
def point(self, *args):
# This curve form represents the identity using finite
# numbers, so it doesn't need the special infinity flag.
# Detect a no-argument call to point() and substitute the pair
# of integers that gives the identity.
if len(args) == 0:
args = [0, 1]
return super(TwistedEdwardsCurve, self).point(*args)
def cpoint(self, y, xparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p)
y = ModP(self.p, y)
y2 = y**2
radicand = (y2 - 1) / (self.d * y2 - self.a)
x = self.sqrtmodp.sqrt(radicand.n)
if (x - xparity) % 2:
x = -x
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.d, self.a)
p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
curve25519.G = curve25519.cpoint(9)
ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed