mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-24 16:52:24 +00:00
82a7e8c4ac
A user reports that Visual Studio 2013 and earlier have printf implementations in their C library that don't support the 'z' modifier to indicate that an integer argument is size_t. The 'I' modifier apparently works in place of it. To avoid littering ifdefs everywhere, I've invented my own inttypes.h style macros to wrap size_t formatting directives, which are defined to %zu and %zx normally, or %Iu and %Ix in old-VS mode. Those are in defs.h, and they're used everywhere that a %z might otherwise get into the Windows build.
1046 lines
29 KiB
C
1046 lines
29 KiB
C
/*
|
|
* RSA implementation for PuTTY.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "mpint.h"
|
|
#include "misc.h"
|
|
|
|
void BinarySource_get_rsa_ssh1_pub(
|
|
BinarySource *src, RSAKey *rsa, RsaSsh1Order order)
|
|
{
|
|
unsigned bits;
|
|
mp_int *e, *m;
|
|
|
|
bits = get_uint32(src);
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
e = get_mp_ssh1(src);
|
|
m = get_mp_ssh1(src);
|
|
} else {
|
|
m = get_mp_ssh1(src);
|
|
e = get_mp_ssh1(src);
|
|
}
|
|
|
|
if (rsa) {
|
|
rsa->bits = bits;
|
|
rsa->exponent = e;
|
|
rsa->modulus = m;
|
|
rsa->bytes = (mp_get_nbits(m) + 7) / 8;
|
|
} else {
|
|
mp_free(e);
|
|
mp_free(m);
|
|
}
|
|
}
|
|
|
|
void BinarySource_get_rsa_ssh1_priv(
|
|
BinarySource *src, RSAKey *rsa)
|
|
{
|
|
rsa->private_exponent = get_mp_ssh1(src);
|
|
}
|
|
|
|
RSAKey *BinarySource_get_rsa_ssh1_priv_agent(BinarySource *src)
|
|
{
|
|
RSAKey *rsa = snew(RSAKey);
|
|
memset(rsa, 0, sizeof(RSAKey));
|
|
|
|
get_rsa_ssh1_pub(src, rsa, RSA_SSH1_MODULUS_FIRST);
|
|
get_rsa_ssh1_priv(src, rsa);
|
|
|
|
/* SSH-1 names p and q the other way round, i.e. we have the
|
|
* inverse of p mod q and not of q mod p. We swap the names,
|
|
* because our internal RSA wants iqmp. */
|
|
rsa->iqmp = get_mp_ssh1(src);
|
|
rsa->q = get_mp_ssh1(src);
|
|
rsa->p = get_mp_ssh1(src);
|
|
|
|
return rsa;
|
|
}
|
|
|
|
bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key)
|
|
{
|
|
mp_int *b1, *b2;
|
|
int i;
|
|
unsigned char *p;
|
|
|
|
if (key->bytes < length + 4)
|
|
return false; /* RSA key too short! */
|
|
|
|
memmove(data + key->bytes - length, data, length);
|
|
data[0] = 0;
|
|
data[1] = 2;
|
|
|
|
size_t npad = key->bytes - length - 3;
|
|
/*
|
|
* Generate a sequence of nonzero padding bytes. We do this in a
|
|
* reasonably uniform way and without having to loop round
|
|
* retrying the random number generation, by first generating an
|
|
* integer in [0,2^n) for an appropriately large n; then we
|
|
* repeatedly multiply by 255 to give an integer in [0,255*2^n),
|
|
* extract the top 8 bits to give an integer in [0,255), and mask
|
|
* those bits off before multiplying up again for the next digit.
|
|
* This gives us a sequence of numbers in [0,255), and of course
|
|
* adding 1 to each of them gives numbers in [1,256) as we wanted.
|
|
*
|
|
* (You could imagine this being a sort of fixed-point operation:
|
|
* given a uniformly random binary _fraction_, multiplying it by k
|
|
* and subtracting off the integer part will yield you a sequence
|
|
* of integers each in [0,k). I'm just doing that scaled up by a
|
|
* power of 2 to avoid the fractions.)
|
|
*/
|
|
size_t random_bits = (npad + 16) * 8;
|
|
mp_int *randval = mp_new(random_bits + 8);
|
|
mp_int *tmp = mp_random_bits(random_bits);
|
|
mp_copy_into(randval, tmp);
|
|
mp_free(tmp);
|
|
for (i = 2; i < key->bytes - length - 1; i++) {
|
|
mp_mul_integer_into(randval, randval, 255);
|
|
uint8_t byte = mp_get_byte(randval, random_bits / 8);
|
|
assert(byte != 255);
|
|
data[i] = byte + 1;
|
|
mp_reduce_mod_2to(randval, random_bits);
|
|
}
|
|
mp_free(randval);
|
|
data[key->bytes - length - 1] = 0;
|
|
|
|
b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes));
|
|
|
|
b2 = mp_modpow(b1, key->exponent, key->modulus);
|
|
|
|
p = data;
|
|
for (i = key->bytes; i--;) {
|
|
*p++ = mp_get_byte(b2, i);
|
|
}
|
|
|
|
mp_free(b1);
|
|
mp_free(b2);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
|
|
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
|
|
* Uses Chinese Remainder Theorem to speed computation up over the
|
|
* obvious implementation of a single big modpow.
|
|
*/
|
|
mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod,
|
|
mp_int *p, mp_int *q, mp_int *iqmp)
|
|
{
|
|
mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult;
|
|
mp_int *diff, *multiplier, *ret0, *ret;
|
|
|
|
/*
|
|
* Reduce the exponent mod phi(p) and phi(q), to save time when
|
|
* exponentiating mod p and mod q respectively. Of course, since p
|
|
* and q are prime, phi(p) == p-1 and similarly for q.
|
|
*/
|
|
pm1 = mp_copy(p);
|
|
mp_sub_integer_into(pm1, pm1, 1);
|
|
qm1 = mp_copy(q);
|
|
mp_sub_integer_into(qm1, qm1, 1);
|
|
pexp = mp_mod(exp, pm1);
|
|
qexp = mp_mod(exp, qm1);
|
|
|
|
/*
|
|
* Do the two modpows.
|
|
*/
|
|
mp_int *base_mod_p = mp_mod(base, p);
|
|
presult = mp_modpow(base_mod_p, pexp, p);
|
|
mp_free(base_mod_p);
|
|
mp_int *base_mod_q = mp_mod(base, q);
|
|
qresult = mp_modpow(base_mod_q, qexp, q);
|
|
mp_free(base_mod_q);
|
|
|
|
/*
|
|
* Recombine the results. We want a value which is congruent to
|
|
* qresult mod q, and to presult mod p.
|
|
*
|
|
* We know that iqmp * q is congruent to 1 * mod p (by definition
|
|
* of iqmp) and to 0 mod q (obviously). So we start with qresult
|
|
* (which is congruent to qresult mod both primes), and add on
|
|
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
|
|
* to presult mod p without affecting its value mod q.
|
|
*
|
|
* (If presult-qresult < 0, we add p to it to keep it positive.)
|
|
*/
|
|
unsigned presult_too_small = mp_cmp_hs(qresult, presult);
|
|
mp_cond_add_into(presult, presult, p, presult_too_small);
|
|
|
|
diff = mp_sub(presult, qresult);
|
|
multiplier = mp_mul(iqmp, q);
|
|
ret0 = mp_mul(multiplier, diff);
|
|
mp_add_into(ret0, ret0, qresult);
|
|
|
|
/*
|
|
* Finally, reduce the result mod n.
|
|
*/
|
|
ret = mp_mod(ret0, mod);
|
|
|
|
/*
|
|
* Free all the intermediate results before returning.
|
|
*/
|
|
mp_free(pm1);
|
|
mp_free(qm1);
|
|
mp_free(pexp);
|
|
mp_free(qexp);
|
|
mp_free(presult);
|
|
mp_free(qresult);
|
|
mp_free(diff);
|
|
mp_free(multiplier);
|
|
mp_free(ret0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Wrapper on crt_modpow that looks up all the right values from an
|
|
* RSAKey.
|
|
*/
|
|
static mp_int *rsa_privkey_op(mp_int *input, RSAKey *key)
|
|
{
|
|
return crt_modpow(input, key->private_exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
}
|
|
|
|
mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key)
|
|
{
|
|
return rsa_privkey_op(input, key);
|
|
}
|
|
|
|
bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key,
|
|
strbuf *outbuf)
|
|
{
|
|
strbuf *data = strbuf_new_nm();
|
|
bool success = false;
|
|
BinarySource src[1];
|
|
|
|
{
|
|
mp_int *b = rsa_ssh1_decrypt(input, key);
|
|
for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) {
|
|
put_byte(data, mp_get_byte(b, i));
|
|
}
|
|
mp_free(b);
|
|
}
|
|
|
|
BinarySource_BARE_INIT(src, data->u, data->len);
|
|
|
|
/* Check PKCS#1 formatting prefix */
|
|
if (get_byte(src) != 0) goto out;
|
|
if (get_byte(src) != 2) goto out;
|
|
while (1) {
|
|
unsigned char byte = get_byte(src);
|
|
if (get_err(src)) goto out;
|
|
if (byte == 0)
|
|
break;
|
|
}
|
|
|
|
/* Everything else is the payload */
|
|
success = true;
|
|
put_data(outbuf, get_ptr(src), get_avail(src));
|
|
|
|
out:
|
|
strbuf_free(data);
|
|
return success;
|
|
}
|
|
|
|
static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
|
|
{
|
|
if (sb->len > 0)
|
|
put_byte(sb, ',');
|
|
put_data(sb, "0x", 2);
|
|
char *hex = mp_get_hex(x);
|
|
size_t hexlen = strlen(hex);
|
|
put_data(sb, hex, hexlen);
|
|
smemclr(hex, hexlen);
|
|
sfree(hex);
|
|
}
|
|
|
|
char *rsastr_fmt(RSAKey *key)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
|
|
append_hex_to_strbuf(sb, key->exponent);
|
|
append_hex_to_strbuf(sb, key->modulus);
|
|
|
|
return strbuf_to_str(sb);
|
|
}
|
|
|
|
/*
|
|
* Generate a fingerprint string for the key. Compatible with the
|
|
* OpenSSH fingerprint code.
|
|
*/
|
|
char *rsa_ssh1_fingerprint(RSAKey *key)
|
|
{
|
|
unsigned char digest[16];
|
|
strbuf *out;
|
|
int i;
|
|
|
|
/*
|
|
* The hash preimage for SSH-1 key fingerprinting consists of the
|
|
* modulus and exponent _without_ any preceding length field -
|
|
* just the minimum number of bytes to represent each integer,
|
|
* stored big-endian, concatenated with no marker at the division
|
|
* between them.
|
|
*/
|
|
|
|
ssh_hash *hash = ssh_hash_new(&ssh_md5);
|
|
for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;)
|
|
put_byte(hash, mp_get_byte(key->modulus, i));
|
|
for (size_t i = (mp_get_nbits(key->exponent) + 7) / 8; i-- > 0 ;)
|
|
put_byte(hash, mp_get_byte(key->exponent, i));
|
|
ssh_hash_final(hash, digest);
|
|
|
|
out = strbuf_new();
|
|
strbuf_catf(out, "%"SIZEu" ", mp_get_nbits(key->modulus));
|
|
for (i = 0; i < 16; i++)
|
|
strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]);
|
|
if (key->comment)
|
|
strbuf_catf(out, " %s", key->comment);
|
|
return strbuf_to_str(out);
|
|
}
|
|
|
|
/*
|
|
* Verify that the public data in an RSA key matches the private
|
|
* data. We also check the private data itself: we ensure that p >
|
|
* q and that iqmp really is the inverse of q mod p.
|
|
*/
|
|
bool rsa_verify(RSAKey *key)
|
|
{
|
|
mp_int *n, *ed, *pm1, *qm1;
|
|
unsigned ok = 1;
|
|
|
|
/* Preliminary checks: p,q can't be 0 or 1. (Of course no other
|
|
* very small value is any good either, but these are the values
|
|
* we _must_ check for to avoid assertion failures further down
|
|
* this function.) */
|
|
if (!(mp_hs_integer(key->p, 2) & mp_hs_integer(key->q, 2)))
|
|
return false;
|
|
|
|
/* n must equal pq. */
|
|
n = mp_mul(key->p, key->q);
|
|
ok &= mp_cmp_eq(n, key->modulus);
|
|
mp_free(n);
|
|
|
|
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
|
|
pm1 = mp_copy(key->p);
|
|
mp_sub_integer_into(pm1, pm1, 1);
|
|
ed = mp_modmul(key->exponent, key->private_exponent, pm1);
|
|
mp_free(pm1);
|
|
ok &= mp_eq_integer(ed, 1);
|
|
mp_free(ed);
|
|
|
|
qm1 = mp_copy(key->q);
|
|
mp_sub_integer_into(qm1, qm1, 1);
|
|
ed = mp_modmul(key->exponent, key->private_exponent, qm1);
|
|
mp_free(qm1);
|
|
ok &= mp_eq_integer(ed, 1);
|
|
mp_free(ed);
|
|
|
|
/*
|
|
* Ensure p > q.
|
|
*
|
|
* I have seen key blobs in the wild which were generated with
|
|
* p < q, so instead of rejecting the key in this case we
|
|
* should instead flip them round into the canonical order of
|
|
* p > q. This also involves regenerating iqmp.
|
|
*/
|
|
mp_int *p_new = mp_max(key->p, key->q);
|
|
mp_int *q_new = mp_min(key->p, key->q);
|
|
mp_free(key->p);
|
|
mp_free(key->q);
|
|
mp_free(key->iqmp);
|
|
key->p = p_new;
|
|
key->q = q_new;
|
|
key->iqmp = mp_invert(key->q, key->p);
|
|
|
|
return ok;
|
|
}
|
|
|
|
void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key,
|
|
RsaSsh1Order order)
|
|
{
|
|
put_uint32(bs, mp_get_nbits(key->modulus));
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
put_mp_ssh1(bs, key->exponent);
|
|
put_mp_ssh1(bs, key->modulus);
|
|
} else {
|
|
put_mp_ssh1(bs, key->modulus);
|
|
put_mp_ssh1(bs, key->exponent);
|
|
}
|
|
}
|
|
|
|
void rsa_ssh1_private_blob_agent(BinarySink *bs, RSAKey *key)
|
|
{
|
|
rsa_ssh1_public_blob(bs, key, RSA_SSH1_MODULUS_FIRST);
|
|
put_mp_ssh1(bs, key->private_exponent);
|
|
put_mp_ssh1(bs, key->iqmp);
|
|
put_mp_ssh1(bs, key->q);
|
|
put_mp_ssh1(bs, key->p);
|
|
}
|
|
|
|
/* Given an SSH-1 public key blob, determine its length. */
|
|
int rsa_ssh1_public_blob_len(ptrlen data)
|
|
{
|
|
BinarySource src[1];
|
|
|
|
BinarySource_BARE_INIT_PL(src, data);
|
|
|
|
/* Expect a length word, then exponent and modulus. (It doesn't
|
|
* even matter which order.) */
|
|
get_uint32(src);
|
|
mp_free(get_mp_ssh1(src));
|
|
mp_free(get_mp_ssh1(src));
|
|
|
|
if (get_err(src))
|
|
return -1;
|
|
|
|
/* Return the number of bytes consumed. */
|
|
return src->pos;
|
|
}
|
|
|
|
void freersapriv(RSAKey *key)
|
|
{
|
|
if (key->private_exponent) {
|
|
mp_free(key->private_exponent);
|
|
key->private_exponent = NULL;
|
|
}
|
|
if (key->p) {
|
|
mp_free(key->p);
|
|
key->p = NULL;
|
|
}
|
|
if (key->q) {
|
|
mp_free(key->q);
|
|
key->q = NULL;
|
|
}
|
|
if (key->iqmp) {
|
|
mp_free(key->iqmp);
|
|
key->iqmp = NULL;
|
|
}
|
|
}
|
|
|
|
void freersakey(RSAKey *key)
|
|
{
|
|
freersapriv(key);
|
|
if (key->modulus) {
|
|
mp_free(key->modulus);
|
|
key->modulus = NULL;
|
|
}
|
|
if (key->exponent) {
|
|
mp_free(key->exponent);
|
|
key->exponent = NULL;
|
|
}
|
|
if (key->comment) {
|
|
sfree(key->comment);
|
|
key->comment = NULL;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Implementation of the ssh-rsa signing key type.
|
|
*/
|
|
|
|
static void rsa2_freekey(ssh_key *key); /* forward reference */
|
|
|
|
static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
|
|
{
|
|
BinarySource src[1];
|
|
RSAKey *rsa;
|
|
|
|
BinarySource_BARE_INIT_PL(src, data);
|
|
if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
|
|
return NULL;
|
|
|
|
rsa = snew(RSAKey);
|
|
rsa->sshk.vt = &ssh_rsa;
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->private_exponent = NULL;
|
|
rsa->p = rsa->q = rsa->iqmp = NULL;
|
|
rsa->comment = NULL;
|
|
|
|
if (get_err(src)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_freekey(ssh_key *key)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
freersakey(rsa);
|
|
sfree(rsa);
|
|
}
|
|
|
|
static char *rsa2_cache_str(ssh_key *key)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
return rsastr_fmt(rsa);
|
|
}
|
|
|
|
static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
|
|
put_stringz(bs, "ssh-rsa");
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
}
|
|
|
|
static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
|
|
ptrlen pub, ptrlen priv)
|
|
{
|
|
BinarySource src[1];
|
|
ssh_key *sshk;
|
|
RSAKey *rsa;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return NULL;
|
|
|
|
rsa = container_of(sshk, RSAKey, sshk);
|
|
BinarySource_BARE_INIT_PL(src, priv);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
|
|
BinarySource *src)
|
|
{
|
|
RSAKey *rsa;
|
|
|
|
rsa = snew(RSAKey);
|
|
rsa->sshk.vt = &ssh_rsa;
|
|
rsa->comment = NULL;
|
|
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
}
|
|
|
|
static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
|
|
{
|
|
ssh_key *sshk;
|
|
RSAKey *rsa;
|
|
int ret;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return -1;
|
|
|
|
rsa = container_of(sshk, RSAKey, sshk);
|
|
ret = mp_get_nbits(rsa->modulus);
|
|
rsa2_freekey(&rsa->sshk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline const ssh_hashalg *rsa2_hash_alg_for_flags(
|
|
unsigned flags, const char **protocol_id_out)
|
|
{
|
|
const ssh_hashalg *halg;
|
|
const char *protocol_id;
|
|
|
|
if (flags & SSH_AGENT_RSA_SHA2_256) {
|
|
halg = &ssh_sha256;
|
|
protocol_id = "rsa-sha2-256";
|
|
} else if (flags & SSH_AGENT_RSA_SHA2_512) {
|
|
halg = &ssh_sha512;
|
|
protocol_id = "rsa-sha2-512";
|
|
} else {
|
|
halg = &ssh_sha1;
|
|
protocol_id = "ssh-rsa";
|
|
}
|
|
|
|
if (protocol_id_out)
|
|
*protocol_id_out = protocol_id;
|
|
|
|
return halg;
|
|
}
|
|
|
|
static inline ptrlen rsa_pkcs1_prefix_for_hash(const ssh_hashalg *halg)
|
|
{
|
|
if (halg == &ssh_sha1) {
|
|
/*
|
|
* This is the magic ASN.1/DER prefix that goes in the decoded
|
|
* signature, between the string of FFs and the actual SHA-1
|
|
* hash value. The meaning of it is:
|
|
*
|
|
* 00 -- this marks the end of the FFs; not part of the ASN.1
|
|
* bit itself
|
|
*
|
|
* 30 21 -- a constructed SEQUENCE of length 0x21
|
|
* 30 09 -- a constructed sub-SEQUENCE of length 9
|
|
* 06 05 -- an object identifier, length 5
|
|
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
|
|
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
|
|
* 05 00 -- NULL
|
|
* 04 14 -- a primitive OCTET STRING of length 0x14
|
|
* [0x14 bytes of hash data follows]
|
|
*
|
|
* The object id in the middle there is listed as `id-sha1' in
|
|
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn
|
|
* (the ASN module for PKCS #1) and its expanded form is as
|
|
* follows:
|
|
*
|
|
* id-sha1 OBJECT IDENTIFIER ::= {
|
|
* iso(1) identified-organization(3) oiw(14) secsig(3)
|
|
* algorithms(2) 26 }
|
|
*/
|
|
static const unsigned char sha1_asn1_prefix[] = {
|
|
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
|
|
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
|
|
};
|
|
return PTRLEN_FROM_CONST_BYTES(sha1_asn1_prefix);
|
|
}
|
|
|
|
if (halg == &ssh_sha256) {
|
|
/*
|
|
* A similar piece of ASN.1 used for signatures using SHA-256,
|
|
* in the same format but differing only in various length
|
|
* fields and OID.
|
|
*/
|
|
static const unsigned char sha256_asn1_prefix[] = {
|
|
0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
|
|
0x05, 0x00, 0x04, 0x20,
|
|
};
|
|
return PTRLEN_FROM_CONST_BYTES(sha256_asn1_prefix);
|
|
}
|
|
|
|
if (halg == &ssh_sha512) {
|
|
/*
|
|
* And one more for SHA-512.
|
|
*/
|
|
static const unsigned char sha512_asn1_prefix[] = {
|
|
0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
|
|
0x05, 0x00, 0x04, 0x40,
|
|
};
|
|
return PTRLEN_FROM_CONST_BYTES(sha512_asn1_prefix);
|
|
}
|
|
|
|
unreachable("bad hash algorithm for RSA PKCS#1");
|
|
}
|
|
|
|
static inline size_t rsa_pkcs1_length_of_fixed_parts(const ssh_hashalg *halg)
|
|
{
|
|
ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
|
|
return halg->hlen + asn1_prefix.len + 2;
|
|
}
|
|
|
|
static unsigned char *rsa_pkcs1_signature_string(
|
|
size_t nbytes, const ssh_hashalg *halg, ptrlen data)
|
|
{
|
|
size_t fixed_parts = rsa_pkcs1_length_of_fixed_parts(halg);
|
|
assert(nbytes >= fixed_parts);
|
|
size_t padding = nbytes - fixed_parts;
|
|
|
|
ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
|
|
|
|
unsigned char *bytes = snewn(nbytes, unsigned char);
|
|
|
|
bytes[0] = 0;
|
|
bytes[1] = 1;
|
|
|
|
memset(bytes + 2, 0xFF, padding);
|
|
|
|
memcpy(bytes + 2 + padding, asn1_prefix.ptr, asn1_prefix.len);
|
|
|
|
ssh_hash *h = ssh_hash_new(halg);
|
|
put_datapl(h, data);
|
|
ssh_hash_final(h, bytes + 2 + padding + asn1_prefix.len);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
BinarySource src[1];
|
|
ptrlen type, in_pl;
|
|
mp_int *in, *out;
|
|
|
|
/* If we need to support variable flags on verify, this is where they go */
|
|
const ssh_hashalg *halg = rsa2_hash_alg_for_flags(0, NULL);
|
|
|
|
/* Start by making sure the key is even long enough to encode a
|
|
* signature. If not, everything fails to verify. */
|
|
size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
|
|
if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg))
|
|
return false;
|
|
|
|
BinarySource_BARE_INIT_PL(src, sig);
|
|
type = get_string(src);
|
|
/*
|
|
* RFC 4253 section 6.6: the signature integer in an ssh-rsa
|
|
* signature is 'without lengths or padding'. That is, we _don't_
|
|
* expect the usual leading zero byte if the topmost bit of the
|
|
* first byte is set. (However, because of the possibility of
|
|
* BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
|
|
* there.) So we can't use get_mp_ssh2, which enforces that
|
|
* leading-byte scheme; instead we use get_string and
|
|
* mp_from_bytes_be, which will tolerate anything.
|
|
*/
|
|
in_pl = get_string(src);
|
|
if (get_err(src) || !ptrlen_eq_string(type, "ssh-rsa"))
|
|
return false;
|
|
|
|
in = mp_from_bytes_be(in_pl);
|
|
out = mp_modpow(in, rsa->exponent, rsa->modulus);
|
|
mp_free(in);
|
|
|
|
unsigned diff = 0;
|
|
|
|
unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
|
|
for (size_t i = 0; i < nbytes; i++)
|
|
diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i);
|
|
smemclr(bytes, nbytes);
|
|
sfree(bytes);
|
|
mp_free(out);
|
|
|
|
return diff == 0;
|
|
}
|
|
|
|
static void rsa2_sign(ssh_key *key, ptrlen data,
|
|
unsigned flags, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
unsigned char *bytes;
|
|
size_t nbytes;
|
|
mp_int *in, *out;
|
|
const ssh_hashalg *halg;
|
|
const char *sign_alg_name;
|
|
|
|
halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
|
|
|
|
nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
|
|
|
|
bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
|
|
in = mp_from_bytes_be(make_ptrlen(bytes, nbytes));
|
|
smemclr(bytes, nbytes);
|
|
sfree(bytes);
|
|
|
|
out = rsa_privkey_op(in, rsa);
|
|
mp_free(in);
|
|
|
|
put_stringz(bs, sign_alg_name);
|
|
nbytes = (mp_get_nbits(out) + 7) / 8;
|
|
put_uint32(bs, nbytes);
|
|
for (size_t i = 0; i < nbytes; i++)
|
|
put_byte(bs, mp_get_byte(out, nbytes - 1 - i));
|
|
|
|
mp_free(out);
|
|
}
|
|
|
|
char *rsa2_invalid(ssh_key *key, unsigned flags)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
size_t bits = mp_get_nbits(rsa->modulus), nbytes = (bits + 7) / 8;
|
|
const char *sign_alg_name;
|
|
const ssh_hashalg *halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
|
|
if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) {
|
|
return dupprintf(
|
|
"%"SIZEu"-bit RSA key is too short to generate %s signatures",
|
|
bits, sign_alg_name);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
const ssh_keyalg ssh_rsa = {
|
|
rsa2_new_pub,
|
|
rsa2_new_priv,
|
|
rsa2_new_priv_openssh,
|
|
|
|
rsa2_freekey,
|
|
rsa2_invalid,
|
|
rsa2_sign,
|
|
rsa2_verify,
|
|
rsa2_public_blob,
|
|
rsa2_private_blob,
|
|
rsa2_openssh_blob,
|
|
rsa2_cache_str,
|
|
|
|
rsa2_pubkey_bits,
|
|
|
|
"ssh-rsa",
|
|
"rsa2",
|
|
NULL,
|
|
SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512,
|
|
};
|
|
|
|
RSAKey *ssh_rsakex_newkey(ptrlen data)
|
|
{
|
|
ssh_key *sshk = rsa2_new_pub(&ssh_rsa, data);
|
|
if (!sshk)
|
|
return NULL;
|
|
return container_of(sshk, RSAKey, sshk);
|
|
}
|
|
|
|
void ssh_rsakex_freekey(RSAKey *key)
|
|
{
|
|
rsa2_freekey(&key->sshk);
|
|
}
|
|
|
|
int ssh_rsakex_klen(RSAKey *rsa)
|
|
{
|
|
return mp_get_nbits(rsa->modulus);
|
|
}
|
|
|
|
static void oaep_mask(const ssh_hashalg *h, void *seed, int seedlen,
|
|
void *vdata, int datalen)
|
|
{
|
|
unsigned char *data = (unsigned char *)vdata;
|
|
unsigned count = 0;
|
|
|
|
ssh_hash *s = ssh_hash_new(h);
|
|
|
|
while (datalen > 0) {
|
|
int i, max = (datalen > h->hlen ? h->hlen : datalen);
|
|
unsigned char hash[MAX_HASH_LEN];
|
|
|
|
ssh_hash_reset(s);
|
|
assert(h->hlen <= MAX_HASH_LEN);
|
|
put_data(s, seed, seedlen);
|
|
put_uint32(s, count);
|
|
ssh_hash_digest(s, hash);
|
|
count++;
|
|
|
|
for (i = 0; i < max; i++)
|
|
data[i] ^= hash[i];
|
|
|
|
data += max;
|
|
datalen -= max;
|
|
}
|
|
|
|
ssh_hash_free(s);
|
|
}
|
|
|
|
strbuf *ssh_rsakex_encrypt(RSAKey *rsa, const ssh_hashalg *h, ptrlen in)
|
|
{
|
|
mp_int *b1, *b2;
|
|
int k, i;
|
|
char *p;
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Here we encrypt using RSAES-OAEP. Essentially this means:
|
|
*
|
|
* - we have a SHA-based `mask generation function' which
|
|
* creates a pseudo-random stream of mask data
|
|
* deterministically from an input chunk of data.
|
|
*
|
|
* - we have a random chunk of data called a seed.
|
|
*
|
|
* - we use the seed to generate a mask which we XOR with our
|
|
* plaintext.
|
|
*
|
|
* - then we use _the masked plaintext_ to generate a mask
|
|
* which we XOR with the seed.
|
|
*
|
|
* - then we concatenate the masked seed and the masked
|
|
* plaintext, and RSA-encrypt that lot.
|
|
*
|
|
* The result is that the data input to the encryption function
|
|
* is random-looking and (hopefully) contains no exploitable
|
|
* structure such as PKCS1-v1_5 does.
|
|
*
|
|
* For a precise specification, see RFC 3447, section 7.1.1.
|
|
* Some of the variable names below are derived from that, so
|
|
* it'd probably help to read it anyway.
|
|
*/
|
|
|
|
/* k denotes the length in octets of the RSA modulus. */
|
|
k = (7 + mp_get_nbits(rsa->modulus)) / 8;
|
|
|
|
/* The length of the input data must be at most k - 2hLen - 2. */
|
|
assert(in.len > 0 && in.len <= k - 2*HLEN - 2);
|
|
|
|
/* The length of the output data wants to be precisely k. */
|
|
strbuf *toret = strbuf_new_nm();
|
|
int outlen = k;
|
|
unsigned char *out = strbuf_append(toret, outlen);
|
|
|
|
/*
|
|
* Now perform EME-OAEP encoding. First set up all the unmasked
|
|
* output data.
|
|
*/
|
|
/* Leading byte zero. */
|
|
out[0] = 0;
|
|
/* At position 1, the seed: HLEN bytes of random data. */
|
|
random_read(out + 1, HLEN);
|
|
/* At position 1+HLEN, the data block DB, consisting of: */
|
|
/* The hash of the label (we only support an empty label here) */
|
|
hash_simple(h, PTRLEN_LITERAL(""), out + HLEN + 1);
|
|
/* A bunch of zero octets */
|
|
memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
|
|
/* A single 1 octet, followed by the input message data. */
|
|
out[outlen - in.len - 1] = 1;
|
|
memcpy(out + outlen - in.len, in.ptr, in.len);
|
|
|
|
/*
|
|
* Now use the seed data to mask the block DB.
|
|
*/
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/*
|
|
* And now use the masked DB to mask the seed itself.
|
|
*/
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
|
|
/*
|
|
* Now `out' contains precisely the data we want to
|
|
* RSA-encrypt.
|
|
*/
|
|
b1 = mp_from_bytes_be(make_ptrlen(out, outlen));
|
|
b2 = mp_modpow(b1, rsa->exponent, rsa->modulus);
|
|
p = (char *)out;
|
|
for (i = outlen; i--;) {
|
|
*p++ = mp_get_byte(b2, i);
|
|
}
|
|
mp_free(b1);
|
|
mp_free(b2);
|
|
|
|
/*
|
|
* And we're done.
|
|
*/
|
|
return toret;
|
|
}
|
|
|
|
mp_int *ssh_rsakex_decrypt(
|
|
RSAKey *rsa, const ssh_hashalg *h, ptrlen ciphertext)
|
|
{
|
|
mp_int *b1, *b2;
|
|
int outlen, i;
|
|
unsigned char *out;
|
|
unsigned char labelhash[64];
|
|
BinarySource src[1];
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Decryption side of the RSA key exchange operation.
|
|
*/
|
|
|
|
/* The length of the encrypted data should be exactly the length
|
|
* in octets of the RSA modulus.. */
|
|
outlen = (7 + mp_get_nbits(rsa->modulus)) / 8;
|
|
if (ciphertext.len != outlen)
|
|
return NULL;
|
|
|
|
/* Do the RSA decryption, and extract the result into a byte array. */
|
|
b1 = mp_from_bytes_be(ciphertext);
|
|
b2 = rsa_privkey_op(b1, rsa);
|
|
out = snewn(outlen, unsigned char);
|
|
for (i = 0; i < outlen; i++)
|
|
out[i] = mp_get_byte(b2, outlen-1-i);
|
|
mp_free(b1);
|
|
mp_free(b2);
|
|
|
|
/* Do the OAEP masking operations, in the reverse order from encryption */
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/* Check the leading byte is zero. */
|
|
if (out[0] != 0) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
/* Check the label hash at position 1+HLEN */
|
|
assert(HLEN <= lenof(labelhash));
|
|
hash_simple(h, PTRLEN_LITERAL(""), labelhash);
|
|
if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
/* Expect zero bytes followed by a 1 byte */
|
|
for (i = 1 + 2 * HLEN; i < outlen; i++) {
|
|
if (out[i] == 1) {
|
|
i++; /* skip over the 1 byte */
|
|
break;
|
|
} else if (out[i] != 0) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
}
|
|
/* And what's left is the input message data, which should be
|
|
* encoded as an ordinary SSH-2 mpint. */
|
|
BinarySource_BARE_INIT(src, out + i, outlen - i);
|
|
b1 = get_mp_ssh2(src);
|
|
sfree(out);
|
|
if (get_err(src) || get_avail(src) != 0) {
|
|
mp_free(b1);
|
|
return NULL;
|
|
}
|
|
|
|
/* Success! */
|
|
return b1;
|
|
}
|
|
|
|
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
|
|
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
|
|
|
|
static const ssh_kex ssh_rsa_kex_sha1 = {
|
|
"rsa1024-sha1", NULL, KEXTYPE_RSA,
|
|
&ssh_sha1, &ssh_rsa_kex_extra_sha1,
|
|
};
|
|
|
|
static const ssh_kex ssh_rsa_kex_sha256 = {
|
|
"rsa2048-sha256", NULL, KEXTYPE_RSA,
|
|
&ssh_sha256, &ssh_rsa_kex_extra_sha256,
|
|
};
|
|
|
|
static const ssh_kex *const rsa_kex_list[] = {
|
|
&ssh_rsa_kex_sha256,
|
|
&ssh_rsa_kex_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_rsa_kex = { lenof(rsa_kex_list), rsa_kex_list };
|