mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
1978 lines
68 KiB
C
1978 lines
68 KiB
C
/*
|
|
* Packet protocol layer for the SSH-2 transport protocol (RFC 4253).
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "putty.h"
|
|
#include "ssh.h"
|
|
#include "sshbpp.h"
|
|
#include "sshppl.h"
|
|
#include "sshcr.h"
|
|
#include "storage.h"
|
|
#include "ssh2transport.h"
|
|
|
|
const struct ssh_signkey_with_user_pref_id ssh2_hostkey_algs[] = {
|
|
#define ARRAYENT_HOSTKEY_ALGORITHM(type, alg) { &alg, type },
|
|
HOSTKEY_ALGORITHMS(ARRAYENT_HOSTKEY_ALGORITHM)
|
|
};
|
|
|
|
const static struct ssh2_macalg *const macs[] = {
|
|
&ssh_hmac_sha256, &ssh_hmac_sha1, &ssh_hmac_sha1_96, &ssh_hmac_md5
|
|
};
|
|
const static struct ssh2_macalg *const buggymacs[] = {
|
|
&ssh_hmac_sha1_buggy, &ssh_hmac_sha1_96_buggy, &ssh_hmac_md5
|
|
};
|
|
|
|
static ssh_compressor *ssh_comp_none_init(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
static void ssh_comp_none_cleanup(ssh_compressor *handle)
|
|
{
|
|
}
|
|
static ssh_decompressor *ssh_decomp_none_init(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
static void ssh_decomp_none_cleanup(ssh_decompressor *handle)
|
|
{
|
|
}
|
|
static void ssh_comp_none_block(ssh_compressor *handle,
|
|
const unsigned char *block, int len,
|
|
unsigned char **outblock, int *outlen,
|
|
int minlen)
|
|
{
|
|
}
|
|
static bool ssh_decomp_none_block(ssh_decompressor *handle,
|
|
const unsigned char *block, int len,
|
|
unsigned char **outblock, int *outlen)
|
|
{
|
|
return false;
|
|
}
|
|
const static struct ssh_compression_alg ssh_comp_none = {
|
|
"none", NULL,
|
|
ssh_comp_none_init, ssh_comp_none_cleanup, ssh_comp_none_block,
|
|
ssh_decomp_none_init, ssh_decomp_none_cleanup, ssh_decomp_none_block,
|
|
NULL
|
|
};
|
|
const static struct ssh_compression_alg *const compressions[] = {
|
|
&ssh_zlib, &ssh_comp_none
|
|
};
|
|
|
|
static void ssh2_transport_free(PacketProtocolLayer *);
|
|
static void ssh2_transport_process_queue(PacketProtocolLayer *);
|
|
static bool ssh2_transport_get_specials(
|
|
PacketProtocolLayer *ppl, add_special_fn_t add_special, void *ctx);
|
|
static void ssh2_transport_special_cmd(PacketProtocolLayer *ppl,
|
|
SessionSpecialCode code, int arg);
|
|
static bool ssh2_transport_want_user_input(PacketProtocolLayer *ppl);
|
|
static void ssh2_transport_got_user_input(PacketProtocolLayer *ppl);
|
|
static void ssh2_transport_reconfigure(PacketProtocolLayer *ppl, Conf *conf);
|
|
|
|
static void ssh2_transport_set_max_data_size(struct ssh2_transport_state *s);
|
|
static unsigned long sanitise_rekey_time(int rekey_time, unsigned long def);
|
|
static void ssh2_transport_higher_layer_packet_callback(void *context);
|
|
|
|
static const struct PacketProtocolLayerVtable ssh2_transport_vtable = {
|
|
ssh2_transport_free,
|
|
ssh2_transport_process_queue,
|
|
ssh2_transport_get_specials,
|
|
ssh2_transport_special_cmd,
|
|
ssh2_transport_want_user_input,
|
|
ssh2_transport_got_user_input,
|
|
ssh2_transport_reconfigure,
|
|
NULL, /* no protocol name for this layer */
|
|
};
|
|
|
|
#ifndef NO_GSSAPI
|
|
static void ssh2_transport_gss_update(struct ssh2_transport_state *s,
|
|
bool definitely_rekeying);
|
|
#endif
|
|
|
|
static bool ssh2_transport_timer_update(struct ssh2_transport_state *s,
|
|
unsigned long rekey_time);
|
|
|
|
static const char *const kexlist_descr[NKEXLIST] = {
|
|
"key exchange algorithm",
|
|
"host key algorithm",
|
|
"client-to-server cipher",
|
|
"server-to-client cipher",
|
|
"client-to-server MAC",
|
|
"server-to-client MAC",
|
|
"client-to-server compression method",
|
|
"server-to-client compression method"
|
|
};
|
|
|
|
PacketProtocolLayer *ssh2_transport_new(
|
|
Conf *conf, const char *host, int port, const char *fullhostname,
|
|
const char *client_greeting, const char *server_greeting,
|
|
struct ssh_connection_shared_gss_state *shgss,
|
|
struct DataTransferStats *stats, PacketProtocolLayer *higher_layer,
|
|
bool is_server)
|
|
{
|
|
struct ssh2_transport_state *s = snew(struct ssh2_transport_state);
|
|
memset(s, 0, sizeof(*s));
|
|
s->ppl.vt = &ssh2_transport_vtable;
|
|
|
|
s->conf = conf_copy(conf);
|
|
s->savedhost = dupstr(host);
|
|
s->savedport = port;
|
|
s->fullhostname = dupstr(fullhostname);
|
|
s->shgss = shgss;
|
|
s->client_greeting = dupstr(client_greeting);
|
|
s->server_greeting = dupstr(server_greeting);
|
|
s->stats = stats;
|
|
s->hostkeyblob = strbuf_new();
|
|
|
|
pq_in_init(&s->pq_in_higher);
|
|
pq_out_init(&s->pq_out_higher);
|
|
s->pq_out_higher.pqb.ic = &s->ic_pq_out_higher;
|
|
s->ic_pq_out_higher.fn = ssh2_transport_higher_layer_packet_callback;
|
|
s->ic_pq_out_higher.ctx = &s->ppl;
|
|
|
|
s->higher_layer = higher_layer;
|
|
s->higher_layer->selfptr = &s->higher_layer;
|
|
ssh_ppl_setup_queues(s->higher_layer, &s->pq_in_higher, &s->pq_out_higher);
|
|
|
|
#ifndef NO_GSSAPI
|
|
s->gss_cred_expiry = GSS_NO_EXPIRATION;
|
|
s->shgss->srv_name = GSS_C_NO_NAME;
|
|
s->shgss->ctx = NULL;
|
|
#endif
|
|
s->thc = ssh_transient_hostkey_cache_new();
|
|
s->gss_kex_used = false;
|
|
|
|
s->outgoing_kexinit = strbuf_new();
|
|
s->incoming_kexinit = strbuf_new();
|
|
if (is_server) {
|
|
s->client_kexinit = s->incoming_kexinit;
|
|
s->server_kexinit = s->outgoing_kexinit;
|
|
s->out.mkkey_adjust = 1;
|
|
} else {
|
|
s->client_kexinit = s->outgoing_kexinit;
|
|
s->server_kexinit = s->incoming_kexinit;
|
|
s->in.mkkey_adjust = 1;
|
|
}
|
|
|
|
ssh2_transport_set_max_data_size(s);
|
|
|
|
return &s->ppl;
|
|
}
|
|
|
|
static void ssh2_transport_free(PacketProtocolLayer *ppl)
|
|
{
|
|
struct ssh2_transport_state *s =
|
|
container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
/*
|
|
* As our last act before being freed, move any outgoing packets
|
|
* off our higher layer's output queue on to our own output queue.
|
|
* We might be being freed while the SSH connection is still alive
|
|
* (because we're initiating shutdown from our end), in which case
|
|
* we don't want those last few packets to get lost.
|
|
*
|
|
* (If our owner were to have already destroyed our output pq
|
|
* before wanting to free us, then it would have to reset our
|
|
* publicly visible out_pq field to NULL to inhibit this attempt.
|
|
* But that's not how I expect the shutdown sequence to go in
|
|
* practice.)
|
|
*/
|
|
if (s->ppl.out_pq)
|
|
pq_concatenate(s->ppl.out_pq, s->ppl.out_pq, &s->pq_out_higher);
|
|
|
|
conf_free(s->conf);
|
|
|
|
ssh_ppl_free(s->higher_layer);
|
|
|
|
pq_in_clear(&s->pq_in_higher);
|
|
pq_out_clear(&s->pq_out_higher);
|
|
|
|
sfree(s->savedhost);
|
|
sfree(s->fullhostname);
|
|
sfree(s->client_greeting);
|
|
sfree(s->server_greeting);
|
|
sfree(s->keystr);
|
|
sfree(s->hostkey_str);
|
|
strbuf_free(s->hostkeyblob);
|
|
sfree(s->fingerprint);
|
|
if (s->hkey && !s->hostkeys) {
|
|
ssh_key_free(s->hkey);
|
|
s->hkey = NULL;
|
|
}
|
|
if (s->f) freebn(s->f);
|
|
if (s->p) freebn(s->p);
|
|
if (s->g) freebn(s->g);
|
|
if (s->K) freebn(s->K);
|
|
if (s->dh_ctx)
|
|
dh_cleanup(s->dh_ctx);
|
|
if (s->rsa_kex_key)
|
|
ssh_rsakex_freekey(s->rsa_kex_key);
|
|
if (s->ecdh_key)
|
|
ssh_ecdhkex_freekey(s->ecdh_key);
|
|
if (s->exhash)
|
|
ssh_hash_free(s->exhash);
|
|
strbuf_free(s->outgoing_kexinit);
|
|
strbuf_free(s->incoming_kexinit);
|
|
ssh_transient_hostkey_cache_free(s->thc);
|
|
|
|
expire_timer_context(s);
|
|
sfree(s);
|
|
}
|
|
|
|
/*
|
|
* SSH-2 key derivation (RFC 4253 section 7.2).
|
|
*/
|
|
static void ssh2_mkkey(
|
|
struct ssh2_transport_state *s, strbuf *out,
|
|
Bignum K, unsigned char *H, char chr, int keylen)
|
|
{
|
|
int hlen = s->kex_alg->hash->hlen;
|
|
int keylen_padded;
|
|
unsigned char *key;
|
|
ssh_hash *h;
|
|
|
|
if (keylen == 0)
|
|
return;
|
|
|
|
/*
|
|
* Round the requested amount of key material up to a multiple of
|
|
* the length of the hash we're using to make it. This makes life
|
|
* simpler because then we can just write each hash output block
|
|
* straight into the output buffer without fiddling about
|
|
* truncating the last one. Since it's going into a strbuf, and
|
|
* strbufs are always smemclr()ed on free, there's no need to
|
|
* worry about leaving extra potentially-sensitive data in memory
|
|
* that the caller didn't ask for.
|
|
*/
|
|
keylen_padded = ((keylen + hlen - 1) / hlen) * hlen;
|
|
|
|
out->len = 0;
|
|
key = strbuf_append(out, keylen_padded);
|
|
|
|
/* First hlen bytes. */
|
|
h = ssh_hash_new(s->kex_alg->hash);
|
|
if (!(s->ppl.remote_bugs & BUG_SSH2_DERIVEKEY))
|
|
put_mp_ssh2(h, K);
|
|
put_data(h, H, hlen);
|
|
put_byte(h, chr);
|
|
put_data(h, s->session_id, s->session_id_len);
|
|
ssh_hash_final(h, key);
|
|
|
|
/* Subsequent blocks of hlen bytes. */
|
|
if (keylen_padded > hlen) {
|
|
int offset;
|
|
|
|
h = ssh_hash_new(s->kex_alg->hash);
|
|
if (!(s->ppl.remote_bugs & BUG_SSH2_DERIVEKEY))
|
|
put_mp_ssh2(h, K);
|
|
put_data(h, H, hlen);
|
|
|
|
for (offset = hlen; offset < keylen_padded; offset += hlen) {
|
|
put_data(h, key + offset - hlen, hlen);
|
|
ssh_hash *h2 = ssh_hash_copy(h);
|
|
ssh_hash_final(h2, key + offset);
|
|
}
|
|
|
|
ssh_hash_free(h);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find a slot in a KEXINIT algorithm list to use for a new algorithm.
|
|
* If the algorithm is already in the list, return a pointer to its
|
|
* entry, otherwise return an entry from the end of the list.
|
|
* This assumes that every time a particular name is passed in, it
|
|
* comes from the same string constant. If this isn't true, this
|
|
* function may need to be rewritten to use strcmp() instead.
|
|
*/
|
|
static struct kexinit_algorithm *ssh2_kexinit_addalg(struct kexinit_algorithm
|
|
*list, const char *name)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAXKEXLIST; i++)
|
|
if (list[i].name == NULL || list[i].name == name) {
|
|
list[i].name = name;
|
|
return &list[i];
|
|
}
|
|
assert(!"No space in KEXINIT list");
|
|
return NULL;
|
|
}
|
|
|
|
bool ssh2_common_filter_queue(PacketProtocolLayer *ppl)
|
|
{
|
|
static const char *const ssh2_disconnect_reasons[] = {
|
|
NULL,
|
|
"host not allowed to connect",
|
|
"protocol error",
|
|
"key exchange failed",
|
|
"host authentication failed",
|
|
"MAC error",
|
|
"compression error",
|
|
"service not available",
|
|
"protocol version not supported",
|
|
"host key not verifiable",
|
|
"connection lost",
|
|
"by application",
|
|
"too many connections",
|
|
"auth cancelled by user",
|
|
"no more auth methods available",
|
|
"illegal user name",
|
|
};
|
|
|
|
PktIn *pktin;
|
|
ptrlen msg;
|
|
int reason;
|
|
|
|
while ((pktin = pq_peek(ppl->in_pq)) != NULL) {
|
|
switch (pktin->type) {
|
|
case SSH2_MSG_DISCONNECT:
|
|
reason = get_uint32(pktin);
|
|
msg = get_string(pktin);
|
|
|
|
ssh_remote_error(
|
|
ppl->ssh, "Remote side sent disconnect message\n"
|
|
"type %d (%s):\n\"%.*s\"", reason,
|
|
((reason > 0 && reason < lenof(ssh2_disconnect_reasons)) ?
|
|
ssh2_disconnect_reasons[reason] : "unknown"),
|
|
PTRLEN_PRINTF(msg));
|
|
pq_pop(ppl->in_pq);
|
|
return true; /* indicate that we've been freed */
|
|
|
|
case SSH2_MSG_DEBUG:
|
|
/* XXX maybe we should actually take notice of the return value */
|
|
get_bool(pktin);
|
|
msg = get_string(pktin);
|
|
ppl_logevent(("Remote debug message: %.*s", PTRLEN_PRINTF(msg)));
|
|
pq_pop(ppl->in_pq);
|
|
break;
|
|
|
|
case SSH2_MSG_IGNORE:
|
|
/* Do nothing, because we're ignoring it! Duhh. */
|
|
pq_pop(ppl->in_pq);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool ssh2_transport_filter_queue(struct ssh2_transport_state *s)
|
|
{
|
|
PktIn *pktin;
|
|
|
|
while (1) {
|
|
if (ssh2_common_filter_queue(&s->ppl))
|
|
return true;
|
|
if ((pktin = pq_peek(s->ppl.in_pq)) == NULL)
|
|
return false;
|
|
|
|
/* Pass on packets to the next layer if they're outside
|
|
* the range reserved for the transport protocol. */
|
|
if (pktin->type >= 50) {
|
|
/* ... except that we shouldn't tolerate higher-layer
|
|
* packets coming from the server before we've seen
|
|
* the first NEWKEYS. */
|
|
if (!s->higher_layer_ok) {
|
|
ssh_proto_error(s->ppl.ssh, "Received premature higher-"
|
|
"layer packet, type %d (%s)", pktin->type,
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
s->ppl.bpp->pls->actx,
|
|
pktin->type));
|
|
return true;
|
|
}
|
|
|
|
pq_pop(s->ppl.in_pq);
|
|
pq_push(&s->pq_in_higher, pktin);
|
|
} else {
|
|
/* Anything else is a transport-layer packet that the main
|
|
* process_queue coroutine should handle. */
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
PktIn *ssh2_transport_pop(struct ssh2_transport_state *s)
|
|
{
|
|
ssh2_transport_filter_queue(s);
|
|
return pq_pop(s->ppl.in_pq);
|
|
}
|
|
|
|
static void ssh2_write_kexinit_lists(
|
|
BinarySink *pktout,
|
|
struct kexinit_algorithm kexlists[NKEXLIST][MAXKEXLIST],
|
|
Conf *conf, int remote_bugs,
|
|
const char *hk_host, int hk_port, const ssh_keyalg *hk_prev,
|
|
ssh_transient_hostkey_cache *thc,
|
|
ssh_key *const *our_hostkeys, int our_nhostkeys,
|
|
bool first_time, bool can_gssapi_keyex, bool transient_hostkey_mode)
|
|
{
|
|
int i, j, k;
|
|
bool warn;
|
|
|
|
int n_preferred_kex;
|
|
const struct ssh_kexes *preferred_kex[KEX_MAX + 1]; /* +1 for GSSAPI */
|
|
int n_preferred_hk;
|
|
int preferred_hk[HK_MAX];
|
|
int n_preferred_ciphers;
|
|
const struct ssh2_ciphers *preferred_ciphers[CIPHER_MAX];
|
|
const struct ssh_compression_alg *preferred_comp;
|
|
const struct ssh2_macalg *const *maclist;
|
|
int nmacs;
|
|
|
|
struct kexinit_algorithm *alg;
|
|
|
|
/*
|
|
* Set up the preferred key exchange. (NULL => warn below here)
|
|
*/
|
|
n_preferred_kex = 0;
|
|
if (can_gssapi_keyex)
|
|
preferred_kex[n_preferred_kex++] = &ssh_gssk5_sha1_kex;
|
|
for (i = 0; i < KEX_MAX; i++) {
|
|
switch (conf_get_int_int(conf, CONF_ssh_kexlist, i)) {
|
|
case KEX_DHGEX:
|
|
preferred_kex[n_preferred_kex++] =
|
|
&ssh_diffiehellman_gex;
|
|
break;
|
|
case KEX_DHGROUP14:
|
|
preferred_kex[n_preferred_kex++] =
|
|
&ssh_diffiehellman_group14;
|
|
break;
|
|
case KEX_DHGROUP1:
|
|
preferred_kex[n_preferred_kex++] =
|
|
&ssh_diffiehellman_group1;
|
|
break;
|
|
case KEX_RSA:
|
|
preferred_kex[n_preferred_kex++] =
|
|
&ssh_rsa_kex;
|
|
break;
|
|
case KEX_ECDH:
|
|
preferred_kex[n_preferred_kex++] =
|
|
&ssh_ecdh_kex;
|
|
break;
|
|
case KEX_WARN:
|
|
/* Flag for later. Don't bother if it's the last in
|
|
* the list. */
|
|
if (i < KEX_MAX - 1) {
|
|
preferred_kex[n_preferred_kex++] = NULL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up the preferred host key types. These are just the ids
|
|
* in the enum in putty.h, so 'warn below here' is indicated
|
|
* by HK_WARN.
|
|
*/
|
|
n_preferred_hk = 0;
|
|
for (i = 0; i < HK_MAX; i++) {
|
|
int id = conf_get_int_int(conf, CONF_ssh_hklist, i);
|
|
/* As above, don't bother with HK_WARN if it's last in the
|
|
* list */
|
|
if (id != HK_WARN || i < HK_MAX - 1)
|
|
preferred_hk[n_preferred_hk++] = id;
|
|
}
|
|
|
|
/*
|
|
* Set up the preferred ciphers. (NULL => warn below here)
|
|
*/
|
|
n_preferred_ciphers = 0;
|
|
for (i = 0; i < CIPHER_MAX; i++) {
|
|
switch (conf_get_int_int(conf, CONF_ssh_cipherlist, i)) {
|
|
case CIPHER_BLOWFISH:
|
|
preferred_ciphers[n_preferred_ciphers++] = &ssh2_blowfish;
|
|
break;
|
|
case CIPHER_DES:
|
|
if (conf_get_bool(conf, CONF_ssh2_des_cbc))
|
|
preferred_ciphers[n_preferred_ciphers++] = &ssh2_des;
|
|
break;
|
|
case CIPHER_3DES:
|
|
preferred_ciphers[n_preferred_ciphers++] = &ssh2_3des;
|
|
break;
|
|
case CIPHER_AES:
|
|
preferred_ciphers[n_preferred_ciphers++] = &ssh2_aes;
|
|
break;
|
|
case CIPHER_ARCFOUR:
|
|
preferred_ciphers[n_preferred_ciphers++] = &ssh2_arcfour;
|
|
break;
|
|
case CIPHER_CHACHA20:
|
|
preferred_ciphers[n_preferred_ciphers++] = &ssh2_ccp;
|
|
break;
|
|
case CIPHER_WARN:
|
|
/* Flag for later. Don't bother if it's the last in
|
|
* the list. */
|
|
if (i < CIPHER_MAX - 1) {
|
|
preferred_ciphers[n_preferred_ciphers++] = NULL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up preferred compression.
|
|
*/
|
|
if (conf_get_bool(conf, CONF_compression))
|
|
preferred_comp = &ssh_zlib;
|
|
else
|
|
preferred_comp = &ssh_comp_none;
|
|
|
|
for (i = 0; i < NKEXLIST; i++)
|
|
for (j = 0; j < MAXKEXLIST; j++)
|
|
kexlists[i][j].name = NULL;
|
|
/* List key exchange algorithms. */
|
|
warn = false;
|
|
for (i = 0; i < n_preferred_kex; i++) {
|
|
const struct ssh_kexes *k = preferred_kex[i];
|
|
if (!k) warn = true;
|
|
else for (j = 0; j < k->nkexes; j++) {
|
|
alg = ssh2_kexinit_addalg(kexlists[KEXLIST_KEX],
|
|
k->list[j]->name);
|
|
alg->u.kex.kex = k->list[j];
|
|
alg->u.kex.warn = warn;
|
|
}
|
|
}
|
|
/* List server host key algorithms. */
|
|
if (our_hostkeys) {
|
|
/*
|
|
* In server mode, we just list the algorithms that match the
|
|
* host keys we actually have.
|
|
*/
|
|
for (i = 0; i < our_nhostkeys; i++) {
|
|
alg = ssh2_kexinit_addalg(kexlists[KEXLIST_HOSTKEY],
|
|
ssh_key_alg(our_hostkeys[i])->ssh_id);
|
|
alg->u.hk.hostkey = ssh_key_alg(our_hostkeys[i]);
|
|
alg->u.hk.warn = false;
|
|
}
|
|
} else if (first_time) {
|
|
/*
|
|
* In the first key exchange, we list all the algorithms
|
|
* we're prepared to cope with, but prefer those algorithms
|
|
* for which we have a host key for this host.
|
|
*
|
|
* If the host key algorithm is below the warning
|
|
* threshold, we warn even if we did already have a key
|
|
* for it, on the basis that if the user has just
|
|
* reconfigured that host key type to be warned about,
|
|
* they surely _do_ want to be alerted that a server
|
|
* they're actually connecting to is using it.
|
|
*/
|
|
warn = false;
|
|
for (i = 0; i < n_preferred_hk; i++) {
|
|
if (preferred_hk[i] == HK_WARN)
|
|
warn = true;
|
|
for (j = 0; j < lenof(ssh2_hostkey_algs); j++) {
|
|
if (ssh2_hostkey_algs[j].id != preferred_hk[i])
|
|
continue;
|
|
if (have_ssh_host_key(hk_host, hk_port,
|
|
ssh2_hostkey_algs[j].alg->cache_id)) {
|
|
alg = ssh2_kexinit_addalg(kexlists[KEXLIST_HOSTKEY],
|
|
ssh2_hostkey_algs[j].alg->ssh_id);
|
|
alg->u.hk.hostkey = ssh2_hostkey_algs[j].alg;
|
|
alg->u.hk.warn = warn;
|
|
}
|
|
}
|
|
}
|
|
warn = false;
|
|
for (i = 0; i < n_preferred_hk; i++) {
|
|
if (preferred_hk[i] == HK_WARN)
|
|
warn = true;
|
|
for (j = 0; j < lenof(ssh2_hostkey_algs); j++) {
|
|
if (ssh2_hostkey_algs[j].id != preferred_hk[i])
|
|
continue;
|
|
alg = ssh2_kexinit_addalg(kexlists[KEXLIST_HOSTKEY],
|
|
ssh2_hostkey_algs[j].alg->ssh_id);
|
|
alg->u.hk.hostkey = ssh2_hostkey_algs[j].alg;
|
|
alg->u.hk.warn = warn;
|
|
}
|
|
}
|
|
#ifndef NO_GSSAPI
|
|
} else if (transient_hostkey_mode) {
|
|
/*
|
|
* If we've previously done a GSSAPI KEX, then we list
|
|
* precisely the algorithms for which a previous GSS key
|
|
* exchange has delivered us a host key, because we expect
|
|
* one of exactly those keys to be used in any subsequent
|
|
* non-GSS-based rekey.
|
|
*
|
|
* An exception is if this is the key exchange we
|
|
* triggered for the purposes of populating that cache -
|
|
* in which case the cache will currently be empty, which
|
|
* isn't helpful!
|
|
*/
|
|
warn = false;
|
|
for (i = 0; i < n_preferred_hk; i++) {
|
|
if (preferred_hk[i] == HK_WARN)
|
|
warn = true;
|
|
for (j = 0; j < lenof(ssh2_hostkey_algs); j++) {
|
|
if (ssh2_hostkey_algs[j].id != preferred_hk[i])
|
|
continue;
|
|
if (ssh_transient_hostkey_cache_has(
|
|
thc, ssh2_hostkey_algs[j].alg)) {
|
|
alg = ssh2_kexinit_addalg(kexlists[KEXLIST_HOSTKEY],
|
|
ssh2_hostkey_algs[j].alg->ssh_id);
|
|
alg->u.hk.hostkey = ssh2_hostkey_algs[j].alg;
|
|
alg->u.hk.warn = warn;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* In subsequent key exchanges, we list only the host key
|
|
* algorithm that was selected in the first key exchange,
|
|
* so that we keep getting the same host key and hence
|
|
* don't have to interrupt the user's session to ask for
|
|
* reverification.
|
|
*/
|
|
assert(hk_prev);
|
|
alg = ssh2_kexinit_addalg(kexlists[KEXLIST_HOSTKEY], hk_prev->ssh_id);
|
|
alg->u.hk.hostkey = hk_prev;
|
|
alg->u.hk.warn = false;
|
|
}
|
|
if (can_gssapi_keyex) {
|
|
alg = ssh2_kexinit_addalg(kexlists[KEXLIST_HOSTKEY], "null");
|
|
alg->u.hk.hostkey = NULL;
|
|
}
|
|
/* List encryption algorithms (client->server then server->client). */
|
|
for (k = KEXLIST_CSCIPHER; k <= KEXLIST_SCCIPHER; k++) {
|
|
warn = false;
|
|
#ifdef FUZZING
|
|
alg = ssh2_kexinit_addalg(kexlists[k], "none");
|
|
alg->u.cipher.cipher = NULL;
|
|
alg->u.cipher.warn = warn;
|
|
#endif /* FUZZING */
|
|
for (i = 0; i < n_preferred_ciphers; i++) {
|
|
const struct ssh2_ciphers *c = preferred_ciphers[i];
|
|
if (!c) warn = true;
|
|
else for (j = 0; j < c->nciphers; j++) {
|
|
alg = ssh2_kexinit_addalg(kexlists[k],
|
|
c->list[j]->name);
|
|
alg->u.cipher.cipher = c->list[j];
|
|
alg->u.cipher.warn = warn;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Be prepared to work around the buggy MAC problem.
|
|
*/
|
|
if (remote_bugs & BUG_SSH2_HMAC) {
|
|
maclist = buggymacs;
|
|
nmacs = lenof(buggymacs);
|
|
} else {
|
|
maclist = macs;
|
|
nmacs = lenof(macs);
|
|
}
|
|
|
|
/* List MAC algorithms (client->server then server->client). */
|
|
for (j = KEXLIST_CSMAC; j <= KEXLIST_SCMAC; j++) {
|
|
#ifdef FUZZING
|
|
alg = ssh2_kexinit_addalg(kexlists[j], "none");
|
|
alg->u.mac.mac = NULL;
|
|
alg->u.mac.etm = false;
|
|
#endif /* FUZZING */
|
|
for (i = 0; i < nmacs; i++) {
|
|
alg = ssh2_kexinit_addalg(kexlists[j], maclist[i]->name);
|
|
alg->u.mac.mac = maclist[i];
|
|
alg->u.mac.etm = false;
|
|
}
|
|
for (i = 0; i < nmacs; i++) {
|
|
/* For each MAC, there may also be an ETM version,
|
|
* which we list second. */
|
|
if (maclist[i]->etm_name) {
|
|
alg = ssh2_kexinit_addalg(kexlists[j], maclist[i]->etm_name);
|
|
alg->u.mac.mac = maclist[i];
|
|
alg->u.mac.etm = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* List client->server compression algorithms,
|
|
* then server->client compression algorithms. (We use the
|
|
* same set twice.) */
|
|
for (j = KEXLIST_CSCOMP; j <= KEXLIST_SCCOMP; j++) {
|
|
assert(lenof(compressions) > 1);
|
|
/* Prefer non-delayed versions */
|
|
alg = ssh2_kexinit_addalg(kexlists[j], preferred_comp->name);
|
|
alg->u.comp.comp = preferred_comp;
|
|
alg->u.comp.delayed = false;
|
|
if (preferred_comp->delayed_name) {
|
|
alg = ssh2_kexinit_addalg(kexlists[j],
|
|
preferred_comp->delayed_name);
|
|
alg->u.comp.comp = preferred_comp;
|
|
alg->u.comp.delayed = true;
|
|
}
|
|
for (i = 0; i < lenof(compressions); i++) {
|
|
const struct ssh_compression_alg *c = compressions[i];
|
|
alg = ssh2_kexinit_addalg(kexlists[j], c->name);
|
|
alg->u.comp.comp = c;
|
|
alg->u.comp.delayed = false;
|
|
if (c->delayed_name) {
|
|
alg = ssh2_kexinit_addalg(kexlists[j], c->delayed_name);
|
|
alg->u.comp.comp = c;
|
|
alg->u.comp.delayed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, format the lists into text and write them into the
|
|
* outgoing KEXINIT packet.
|
|
*/
|
|
for (i = 0; i < NKEXLIST; i++) {
|
|
strbuf *list = strbuf_new();
|
|
for (j = 0; j < MAXKEXLIST; j++) {
|
|
if (kexlists[i][j].name == NULL) break;
|
|
add_to_commasep(list, kexlists[i][j].name);
|
|
}
|
|
put_stringsb(pktout, list);
|
|
}
|
|
/* List client->server languages. Empty list. */
|
|
put_stringz(pktout, "");
|
|
/* List server->client languages. Empty list. */
|
|
put_stringz(pktout, "");
|
|
}
|
|
|
|
static bool ssh2_scan_kexinits(
|
|
ptrlen client_kexinit, ptrlen server_kexinit,
|
|
struct kexinit_algorithm kexlists[NKEXLIST][MAXKEXLIST],
|
|
const struct ssh_kex **kex_alg, const ssh_keyalg **hostkey_alg,
|
|
transport_direction *cs, transport_direction *sc,
|
|
bool *warn_kex, bool *warn_hk, bool *warn_cscipher, bool *warn_sccipher,
|
|
Ssh *ssh, bool *ignore_guess_cs_packet, bool *ignore_guess_sc_packet,
|
|
int *n_server_hostkeys, int server_hostkeys[MAXKEXLIST])
|
|
{
|
|
BinarySource client[1], server[1];
|
|
int i;
|
|
bool guess_correct;
|
|
ptrlen clists[NKEXLIST], slists[NKEXLIST];
|
|
const struct kexinit_algorithm *selected[NKEXLIST];
|
|
|
|
BinarySource_BARE_INIT(client, client_kexinit.ptr, client_kexinit.len);
|
|
BinarySource_BARE_INIT(server, server_kexinit.ptr, server_kexinit.len);
|
|
|
|
/* Skip packet type bytes and random cookies. */
|
|
get_data(client, 1 + 16);
|
|
get_data(server, 1 + 16);
|
|
|
|
guess_correct = true;
|
|
|
|
/* Find the matching string in each list, and map it to its
|
|
* kexinit_algorithm structure. */
|
|
for (i = 0; i < NKEXLIST; i++) {
|
|
ptrlen clist, slist, cword, sword, found;
|
|
bool cfirst, sfirst;
|
|
int j;
|
|
|
|
clists[i] = get_string(client);
|
|
slists[i] = get_string(server);
|
|
if (get_err(client) || get_err(server)) {
|
|
/* Report a better error than the spurious "Couldn't
|
|
* agree" that we'd generate if we pressed on regardless
|
|
* and treated the empty get_string() result as genuine */
|
|
ssh_proto_error(ssh, "KEXINIT packet was incomplete");
|
|
return false;
|
|
}
|
|
|
|
for (cfirst = true, clist = clists[i];
|
|
get_commasep_word(&clist, &cword); cfirst = false)
|
|
for (sfirst = true, slist = slists[i];
|
|
get_commasep_word(&slist, &sword); sfirst = false)
|
|
if (ptrlen_eq_ptrlen(cword, sword)) {
|
|
found = cword;
|
|
goto found_match;
|
|
}
|
|
|
|
/* No matching string found in the two lists. Delay reporting
|
|
* a fatal error until below, because sometimes it turns out
|
|
* not to be fatal. */
|
|
selected[i] = NULL;
|
|
|
|
/*
|
|
* However, even if a failure to agree on any algorithm at all
|
|
* is not completely fatal (e.g. because it's the MAC
|
|
* negotiation for a cipher that comes with a built-in MAC),
|
|
* it still invalidates the guessed key exchange packet. (RFC
|
|
* 4253 section 7, not contradicted by OpenSSH's
|
|
* PROTOCOL.chacha20poly1305 or as far as I can see by their
|
|
* code.)
|
|
*/
|
|
guess_correct = false;
|
|
|
|
continue;
|
|
|
|
found_match:
|
|
|
|
selected[i] = NULL;
|
|
for (j = 0; j < MAXKEXLIST; j++) {
|
|
if (ptrlen_eq_string(found, kexlists[i][j].name)) {
|
|
selected[i] = &kexlists[i][j];
|
|
break;
|
|
}
|
|
}
|
|
assert(selected[i]); /* kexlists[] must cover one of the inputs */
|
|
|
|
/*
|
|
* If the kex or host key algorithm is not the first one in
|
|
* both sides' lists, that means the guessed key exchange
|
|
* packet (if any) is officially wrong.
|
|
*/
|
|
if ((i == KEXLIST_KEX || i == KEXLIST_HOSTKEY) && !(cfirst || sfirst))
|
|
guess_correct = false;
|
|
}
|
|
|
|
/*
|
|
* Skip language strings in both KEXINITs, and read the flags
|
|
* saying whether a guessed KEX packet follows.
|
|
*/
|
|
get_string(client);
|
|
get_string(client);
|
|
get_string(server);
|
|
get_string(server);
|
|
if (ignore_guess_cs_packet)
|
|
*ignore_guess_cs_packet = get_bool(client) && !guess_correct;
|
|
if (ignore_guess_sc_packet)
|
|
*ignore_guess_sc_packet = get_bool(server) && !guess_correct;
|
|
|
|
/*
|
|
* Now transcribe the selected algorithm set into the output data.
|
|
*/
|
|
for (i = 0; i < NKEXLIST; i++) {
|
|
const struct kexinit_algorithm *alg;
|
|
|
|
/*
|
|
* If we've already selected a cipher which requires a
|
|
* particular MAC, then just select that. This is the case in
|
|
* which it's not a fatal error if the actual MAC string lists
|
|
* didn't include any matching error.
|
|
*/
|
|
if (i == KEXLIST_CSMAC && cs->cipher &&
|
|
cs->cipher->required_mac) {
|
|
cs->mac = cs->cipher->required_mac;
|
|
cs->etm_mode = !!(cs->mac->etm_name);
|
|
continue;
|
|
}
|
|
if (i == KEXLIST_SCMAC && sc->cipher &&
|
|
sc->cipher->required_mac) {
|
|
sc->mac = sc->cipher->required_mac;
|
|
sc->etm_mode = !!(sc->mac->etm_name);
|
|
continue;
|
|
}
|
|
|
|
alg = selected[i];
|
|
if (!alg) {
|
|
/*
|
|
* Otherwise, any match failure _is_ a fatal error.
|
|
*/
|
|
ssh_sw_abort(ssh, "Couldn't agree a %s (available: %.*s)",
|
|
kexlist_descr[i], PTRLEN_PRINTF(slists[i]));
|
|
return false;
|
|
}
|
|
|
|
switch (i) {
|
|
case KEXLIST_KEX:
|
|
*kex_alg = alg->u.kex.kex;
|
|
*warn_kex = alg->u.kex.warn;
|
|
break;
|
|
|
|
case KEXLIST_HOSTKEY:
|
|
/*
|
|
* Ignore an unexpected/inappropriate offer of "null",
|
|
* we offer "null" when we're willing to use GSS KEX,
|
|
* but it is only acceptable when GSSKEX is actually
|
|
* selected.
|
|
*/
|
|
if (alg->u.hk.hostkey == NULL &&
|
|
(*kex_alg)->main_type != KEXTYPE_GSS)
|
|
continue;
|
|
|
|
*hostkey_alg = alg->u.hk.hostkey;
|
|
*warn_hk = alg->u.hk.warn;
|
|
break;
|
|
|
|
case KEXLIST_CSCIPHER:
|
|
cs->cipher = alg->u.cipher.cipher;
|
|
*warn_cscipher = alg->u.cipher.warn;
|
|
break;
|
|
|
|
case KEXLIST_SCCIPHER:
|
|
sc->cipher = alg->u.cipher.cipher;
|
|
*warn_sccipher = alg->u.cipher.warn;
|
|
break;
|
|
|
|
case KEXLIST_CSMAC:
|
|
cs->mac = alg->u.mac.mac;
|
|
cs->etm_mode = alg->u.mac.etm;
|
|
break;
|
|
|
|
case KEXLIST_SCMAC:
|
|
sc->mac = alg->u.mac.mac;
|
|
sc->etm_mode = alg->u.mac.etm;
|
|
break;
|
|
|
|
case KEXLIST_CSCOMP:
|
|
cs->comp = alg->u.comp.comp;
|
|
cs->comp_delayed = alg->u.comp.delayed;
|
|
break;
|
|
|
|
case KEXLIST_SCCOMP:
|
|
sc->comp = alg->u.comp.comp;
|
|
sc->comp_delayed = alg->u.comp.delayed;
|
|
break;
|
|
|
|
default:
|
|
assert(false && "Bad list index in scan_kexinits");
|
|
}
|
|
}
|
|
|
|
if (server_hostkeys) {
|
|
/*
|
|
* Finally, make an auxiliary pass over the server's host key
|
|
* list to find all the host key algorithms offered by the
|
|
* server which we know about at all, whether we selected each
|
|
* one or not. We return these as a list of indices into the
|
|
* constant ssh2_hostkey_algs[] array.
|
|
*/
|
|
*n_server_hostkeys = 0;
|
|
|
|
for (i = 0; i < lenof(ssh2_hostkey_algs); i++)
|
|
if (in_commasep_string(ssh2_hostkey_algs[i].alg->ssh_id,
|
|
slists[KEXLIST_HOSTKEY].ptr,
|
|
slists[KEXLIST_HOSTKEY].len))
|
|
server_hostkeys[(*n_server_hostkeys)++] = i;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ssh2transport_finalise_exhash(struct ssh2_transport_state *s)
|
|
{
|
|
put_mp_ssh2(s->exhash, s->K);
|
|
assert(ssh_hash_alg(s->exhash)->hlen <= sizeof(s->exchange_hash));
|
|
ssh_hash_final(s->exhash, s->exchange_hash);
|
|
s->exhash = NULL;
|
|
|
|
#if 0
|
|
debug(("Exchange hash is:\n"));
|
|
dmemdump(s->exchange_hash, s->kex_alg->hash->hlen);
|
|
#endif
|
|
}
|
|
|
|
static void ssh2_transport_process_queue(PacketProtocolLayer *ppl)
|
|
{
|
|
struct ssh2_transport_state *s =
|
|
container_of(ppl, struct ssh2_transport_state, ppl);
|
|
PktIn *pktin;
|
|
PktOut *pktout;
|
|
|
|
/* Filter centrally handled messages off the front of the queue on
|
|
* every entry to this coroutine, no matter where we're resuming
|
|
* from, even if we're _not_ looping on pq_pop. That way we can
|
|
* still proactively handle those messages even if we're waiting
|
|
* for a user response. */
|
|
ssh2_transport_filter_queue(s);
|
|
|
|
crBegin(s->crState);
|
|
|
|
s->in.cipher = s->out.cipher = NULL;
|
|
s->in.mac = s->out.mac = NULL;
|
|
s->in.comp = s->out.comp = NULL;
|
|
|
|
s->got_session_id = false;
|
|
s->need_gss_transient_hostkey = false;
|
|
s->warned_about_no_gss_transient_hostkey = false;
|
|
|
|
begin_key_exchange:
|
|
|
|
#ifndef NO_GSSAPI
|
|
if (s->need_gss_transient_hostkey) {
|
|
/*
|
|
* This flag indicates a special case in which we must not do
|
|
* GSS key exchange even if we could. (See comments below,
|
|
* where the flag was set on the previous key exchange.)
|
|
*/
|
|
s->can_gssapi_keyex = false;
|
|
} else if (conf_get_bool(s->conf, CONF_try_gssapi_kex)) {
|
|
/*
|
|
* We always check if we have GSS creds before we come up with
|
|
* the kex algorithm list, otherwise future rekeys will fail
|
|
* when creds expire. To make this so, this code section must
|
|
* follow the begin_key_exchange label above, otherwise this
|
|
* section would execute just once per-connection.
|
|
*
|
|
* Update GSS state unless the reason we're here is that a
|
|
* timer just checked the GSS state and decided that we should
|
|
* rekey to update delegated credentials. In that case, the
|
|
* state is "fresh".
|
|
*/
|
|
if (s->rekey_class != RK_GSS_UPDATE)
|
|
ssh2_transport_gss_update(s, true);
|
|
|
|
/* Do GSSAPI KEX when capable */
|
|
s->can_gssapi_keyex = s->gss_status & GSS_KEX_CAPABLE;
|
|
|
|
/*
|
|
* But not when failure is likely. [ GSS implementations may
|
|
* attempt (and fail) to use a ticket that is almost expired
|
|
* when retrieved from the ccache that actually expires by the
|
|
* time the server receives it. ]
|
|
*
|
|
* Note: The first time always try KEXGSS if we can, failures
|
|
* will be very rare, and disabling the initial GSS KEX is
|
|
* worse. Some day GSS libraries will ignore cached tickets
|
|
* whose lifetime is critically short, and will instead use
|
|
* fresh ones.
|
|
*/
|
|
if (!s->got_session_id && (s->gss_status & GSS_CTXT_MAYFAIL) != 0)
|
|
s->can_gssapi_keyex = false;
|
|
s->gss_delegate = conf_get_bool(s->conf, CONF_gssapifwd);
|
|
} else {
|
|
s->can_gssapi_keyex = false;
|
|
}
|
|
#endif
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_NOKEX;
|
|
|
|
/*
|
|
* Construct our KEXINIT packet, in a strbuf so we can refer to it
|
|
* later.
|
|
*/
|
|
s->client_kexinit->len = 0;
|
|
put_byte(s->outgoing_kexinit, SSH2_MSG_KEXINIT);
|
|
{
|
|
int i;
|
|
for (i = 0; i < 16; i++)
|
|
put_byte(s->outgoing_kexinit, (unsigned char) random_byte());
|
|
}
|
|
ssh2_write_kexinit_lists(
|
|
BinarySink_UPCAST(s->outgoing_kexinit), s->kexlists,
|
|
s->conf, s->ppl.remote_bugs,
|
|
s->savedhost, s->savedport, s->hostkey_alg, s->thc,
|
|
s->hostkeys, s->nhostkeys,
|
|
!s->got_session_id, s->can_gssapi_keyex,
|
|
s->gss_kex_used && !s->need_gss_transient_hostkey);
|
|
/* First KEX packet does _not_ follow, because we're not that brave. */
|
|
put_bool(s->outgoing_kexinit, false);
|
|
put_uint32(s->outgoing_kexinit, 0); /* reserved */
|
|
|
|
/*
|
|
* Send our KEXINIT.
|
|
*/
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXINIT);
|
|
put_data(pktout, s->outgoing_kexinit->u + 1,
|
|
s->outgoing_kexinit->len - 1); /* omit initial packet type byte */
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
/*
|
|
* Flag that KEX is in progress.
|
|
*/
|
|
s->kex_in_progress = true;
|
|
|
|
/*
|
|
* Wait for the other side's KEXINIT, and save it.
|
|
*/
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
if (pktin->type != SSH2_MSG_KEXINIT) {
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
"expecting KEXINIT, type %d (%s)", pktin->type,
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
s->ppl.bpp->pls->actx, pktin->type));
|
|
return;
|
|
}
|
|
s->incoming_kexinit->len = 0;
|
|
put_byte(s->incoming_kexinit, SSH2_MSG_KEXINIT);
|
|
put_data(s->incoming_kexinit, get_ptr(pktin), get_avail(pktin));
|
|
|
|
/*
|
|
* Work through the two KEXINIT packets in parallel to find the
|
|
* selected algorithm identifiers.
|
|
*/
|
|
{
|
|
int nhk, hks[MAXKEXLIST], i, j;
|
|
|
|
if (!ssh2_scan_kexinits(
|
|
ptrlen_from_strbuf(s->client_kexinit),
|
|
ptrlen_from_strbuf(s->server_kexinit),
|
|
s->kexlists, &s->kex_alg, &s->hostkey_alg, &s->out, &s->in,
|
|
&s->warn_kex, &s->warn_hk, &s->warn_cscipher,
|
|
&s->warn_sccipher, s->ppl.ssh, NULL, &s->ignorepkt, &nhk, hks))
|
|
return; /* false means a fatal error function was called */
|
|
|
|
/*
|
|
* In addition to deciding which host key we're actually going
|
|
* to use, we should make a list of the host keys offered by
|
|
* the server which we _don't_ have cached. These will be
|
|
* offered as cross-certification options by ssh_get_specials.
|
|
*
|
|
* We also count the key we're currently using for KEX as one
|
|
* we've already got, because by the time this menu becomes
|
|
* visible, it will be.
|
|
*/
|
|
s->n_uncert_hostkeys = 0;
|
|
|
|
for (i = 0; i < nhk; i++) {
|
|
j = hks[i];
|
|
if (ssh2_hostkey_algs[j].alg != s->hostkey_alg &&
|
|
!have_ssh_host_key(s->savedhost, s->savedport,
|
|
ssh2_hostkey_algs[j].alg->cache_id)) {
|
|
s->uncert_hostkeys[s->n_uncert_hostkeys++] = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (s->warn_kex) {
|
|
s->dlgret = seat_confirm_weak_crypto_primitive(
|
|
s->ppl.seat, "key-exchange algorithm", s->kex_alg->name,
|
|
ssh2_transport_dialog_callback, s);
|
|
crMaybeWaitUntilV(s->dlgret >= 0);
|
|
if (s->dlgret == 0) {
|
|
ssh_user_close(s->ppl.ssh, "User aborted at kex warning");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (s->warn_hk) {
|
|
int j, k;
|
|
char *betteralgs;
|
|
|
|
/*
|
|
* Change warning box wording depending on why we chose a
|
|
* warning-level host key algorithm. If it's because
|
|
* that's all we have *cached*, list the host keys we
|
|
* could usefully cross-certify. Otherwise, use the same
|
|
* standard wording as any other weak crypto primitive.
|
|
*/
|
|
betteralgs = NULL;
|
|
for (j = 0; j < s->n_uncert_hostkeys; j++) {
|
|
const struct ssh_signkey_with_user_pref_id *hktype =
|
|
&ssh2_hostkey_algs[s->uncert_hostkeys[j]];
|
|
bool better = false;
|
|
for (k = 0; k < HK_MAX; k++) {
|
|
int id = conf_get_int_int(s->conf, CONF_ssh_hklist, k);
|
|
if (id == HK_WARN) {
|
|
break;
|
|
} else if (id == hktype->id) {
|
|
better = true;
|
|
break;
|
|
}
|
|
}
|
|
if (better) {
|
|
if (betteralgs) {
|
|
char *old_ba = betteralgs;
|
|
betteralgs = dupcat(betteralgs, ",",
|
|
hktype->alg->ssh_id,
|
|
(const char *)NULL);
|
|
sfree(old_ba);
|
|
} else {
|
|
betteralgs = dupstr(hktype->alg->ssh_id);
|
|
}
|
|
}
|
|
}
|
|
if (betteralgs) {
|
|
/* Use the special warning prompt that lets us provide
|
|
* a list of better algorithms */
|
|
s->dlgret = seat_confirm_weak_cached_hostkey(
|
|
s->ppl.seat, s->hostkey_alg->ssh_id, betteralgs,
|
|
ssh2_transport_dialog_callback, s);
|
|
sfree(betteralgs);
|
|
} else {
|
|
/* If none exist, use the more general 'weak crypto'
|
|
* warning prompt */
|
|
s->dlgret = seat_confirm_weak_crypto_primitive(
|
|
s->ppl.seat, "host key type", s->hostkey_alg->ssh_id,
|
|
ssh2_transport_dialog_callback, s);
|
|
}
|
|
crMaybeWaitUntilV(s->dlgret >= 0);
|
|
if (s->dlgret == 0) {
|
|
ssh_user_close(s->ppl.ssh, "User aborted at host key warning");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (s->warn_cscipher) {
|
|
s->dlgret = seat_confirm_weak_crypto_primitive(
|
|
s->ppl.seat, "client-to-server cipher", s->out.cipher->name,
|
|
ssh2_transport_dialog_callback, s);
|
|
crMaybeWaitUntilV(s->dlgret >= 0);
|
|
if (s->dlgret == 0) {
|
|
ssh_user_close(s->ppl.ssh, "User aborted at cipher warning");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (s->warn_sccipher) {
|
|
s->dlgret = seat_confirm_weak_crypto_primitive(
|
|
s->ppl.seat, "server-to-client cipher", s->in.cipher->name,
|
|
ssh2_transport_dialog_callback, s);
|
|
crMaybeWaitUntilV(s->dlgret >= 0);
|
|
if (s->dlgret == 0) {
|
|
ssh_user_close(s->ppl.ssh, "User aborted at cipher warning");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the other side has sent an initial key exchange packet that
|
|
* we must treat as a wrong guess, wait for it, and discard it.
|
|
*/
|
|
if (s->ignorepkt)
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
/*
|
|
* Actually perform the key exchange.
|
|
*/
|
|
s->exhash = ssh_hash_new(s->kex_alg->hash);
|
|
put_stringz(s->exhash, s->client_greeting);
|
|
put_stringz(s->exhash, s->server_greeting);
|
|
put_string(s->exhash, s->client_kexinit->u, s->client_kexinit->len);
|
|
put_string(s->exhash, s->server_kexinit->u, s->server_kexinit->len);
|
|
s->crStateKex = 0;
|
|
while (1) {
|
|
ssh2kex_coroutine(s);
|
|
if (!s->crStateKex)
|
|
break;
|
|
crReturnV;
|
|
}
|
|
|
|
/*
|
|
* The exchange hash from the very first key exchange is also
|
|
* the session id, used in session key construction and
|
|
* authentication.
|
|
*/
|
|
if (!s->got_session_id) {
|
|
assert(sizeof(s->exchange_hash) <= sizeof(s->session_id));
|
|
memcpy(s->session_id, s->exchange_hash, sizeof(s->exchange_hash));
|
|
s->session_id_len = s->kex_alg->hash->hlen;
|
|
assert(s->session_id_len <= sizeof(s->session_id));
|
|
s->got_session_id = true;
|
|
}
|
|
|
|
/*
|
|
* Send SSH2_MSG_NEWKEYS.
|
|
*/
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_NEWKEYS);
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
/* Start counting down the outgoing-data limit for these cipher keys. */
|
|
s->stats->out.running = true;
|
|
s->stats->out.remaining = s->max_data_size;
|
|
|
|
/*
|
|
* Force the BPP to synchronously marshal all packets up to and
|
|
* including that NEWKEYS into wire format, before we switch over
|
|
* to new crypto.
|
|
*/
|
|
ssh_bpp_handle_output(s->ppl.bpp);
|
|
|
|
/*
|
|
* We've sent outgoing NEWKEYS, so create and initialise outgoing
|
|
* session keys.
|
|
*/
|
|
{
|
|
strbuf *cipher_key = strbuf_new();
|
|
strbuf *cipher_iv = strbuf_new();
|
|
strbuf *mac_key = strbuf_new();
|
|
|
|
if (s->out.cipher) {
|
|
ssh2_mkkey(s, cipher_iv, s->K, s->exchange_hash,
|
|
'A' + s->out.mkkey_adjust, s->out.cipher->blksize);
|
|
ssh2_mkkey(s, cipher_key, s->K, s->exchange_hash,
|
|
'C' + s->out.mkkey_adjust,
|
|
s->out.cipher->padded_keybytes);
|
|
}
|
|
if (s->out.mac) {
|
|
ssh2_mkkey(s, mac_key, s->K, s->exchange_hash,
|
|
'E' + s->out.mkkey_adjust, s->out.mac->keylen);
|
|
}
|
|
|
|
ssh2_bpp_new_outgoing_crypto(
|
|
s->ppl.bpp,
|
|
s->out.cipher, cipher_key->u, cipher_iv->u,
|
|
s->out.mac, s->out.etm_mode, mac_key->u,
|
|
s->out.comp, s->out.comp_delayed);
|
|
|
|
strbuf_free(cipher_key);
|
|
strbuf_free(cipher_iv);
|
|
strbuf_free(mac_key);
|
|
}
|
|
|
|
/*
|
|
* Now our end of the key exchange is complete, we can send all
|
|
* our queued higher-layer packets. Transfer the whole of the next
|
|
* layer's outgoing queue on to our own.
|
|
*/
|
|
pq_concatenate(s->ppl.out_pq, s->ppl.out_pq, &s->pq_out_higher);
|
|
|
|
/*
|
|
* Expect SSH2_MSG_NEWKEYS from server.
|
|
*/
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
if (pktin->type != SSH2_MSG_NEWKEYS) {
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
"expecting SSH_MSG_NEWKEYS, type %d (%s)",
|
|
pktin->type,
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
s->ppl.bpp->pls->actx,
|
|
pktin->type));
|
|
return;
|
|
}
|
|
/* Start counting down the incoming-data limit for these cipher keys. */
|
|
s->stats->in.running = true;
|
|
s->stats->in.remaining = s->max_data_size;
|
|
|
|
/*
|
|
* We've seen incoming NEWKEYS, so create and initialise
|
|
* incoming session keys.
|
|
*/
|
|
{
|
|
strbuf *cipher_key = strbuf_new();
|
|
strbuf *cipher_iv = strbuf_new();
|
|
strbuf *mac_key = strbuf_new();
|
|
|
|
if (s->in.cipher) {
|
|
ssh2_mkkey(s, cipher_iv, s->K, s->exchange_hash,
|
|
'A' + s->in.mkkey_adjust, s->in.cipher->blksize);
|
|
ssh2_mkkey(s, cipher_key, s->K, s->exchange_hash,
|
|
'C' + s->in.mkkey_adjust,
|
|
s->in.cipher->padded_keybytes);
|
|
}
|
|
if (s->in.mac) {
|
|
ssh2_mkkey(s, mac_key, s->K, s->exchange_hash,
|
|
'E' + s->in.mkkey_adjust, s->in.mac->keylen);
|
|
}
|
|
|
|
ssh2_bpp_new_incoming_crypto(
|
|
s->ppl.bpp,
|
|
s->in.cipher, cipher_key->u, cipher_iv->u,
|
|
s->in.mac, s->in.etm_mode, mac_key->u,
|
|
s->in.comp, s->in.comp_delayed);
|
|
|
|
strbuf_free(cipher_key);
|
|
strbuf_free(cipher_iv);
|
|
strbuf_free(mac_key);
|
|
}
|
|
|
|
/*
|
|
* Free shared secret.
|
|
*/
|
|
freebn(s->K); s->K = NULL;
|
|
|
|
/*
|
|
* Update the specials menu to list the remaining uncertified host
|
|
* keys.
|
|
*/
|
|
seat_update_specials_menu(s->ppl.seat);
|
|
|
|
/*
|
|
* Key exchange is over. Loop straight back round if we have a
|
|
* deferred rekey reason.
|
|
*/
|
|
if (s->deferred_rekey_reason) {
|
|
ppl_logevent(("%s", s->deferred_rekey_reason));
|
|
pktin = NULL;
|
|
s->deferred_rekey_reason = NULL;
|
|
goto begin_key_exchange;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, schedule a timer for our next rekey.
|
|
*/
|
|
s->kex_in_progress = false;
|
|
s->last_rekey = GETTICKCOUNT();
|
|
(void) ssh2_transport_timer_update(s, 0);
|
|
|
|
/*
|
|
* Now we're encrypting. Get the next-layer protocol started if it
|
|
* hasn't already, and then sit here waiting for reasons to go
|
|
* back to the start and do a repeat key exchange. One of those
|
|
* reasons is that we receive KEXINIT from the other end; the
|
|
* other is if we find rekey_reason is non-NULL, i.e. we've
|
|
* decided to initiate a rekey ourselves for some reason.
|
|
*/
|
|
if (!s->higher_layer_ok) {
|
|
if (!s->hostkeys) {
|
|
/* We're the client, so send SERVICE_REQUEST. */
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_SERVICE_REQUEST);
|
|
put_stringz(pktout, s->higher_layer->vt->name);
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
if (pktin->type != SSH2_MSG_SERVICE_ACCEPT) {
|
|
ssh_sw_abort(s->ppl.ssh, "Server refused request to start "
|
|
"'%s' protocol", s->higher_layer->vt->name);
|
|
return;
|
|
}
|
|
} else {
|
|
ptrlen service_name;
|
|
|
|
/* We're the server, so expect SERVICE_REQUEST. */
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
if (pktin->type != SSH2_MSG_SERVICE_REQUEST) {
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
"expecting SERVICE_REQUEST, type %d (%s)",
|
|
pktin->type,
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
s->ppl.bpp->pls->actx,
|
|
pktin->type));
|
|
return;
|
|
}
|
|
service_name = get_string(pktin);
|
|
if (!ptrlen_eq_string(service_name, s->higher_layer->vt->name)) {
|
|
ssh_proto_error(s->ppl.ssh, "Client requested service "
|
|
"'%.*s' when we only support '%s'",
|
|
PTRLEN_PRINTF(service_name),
|
|
s->higher_layer->vt->name);
|
|
return;
|
|
}
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_SERVICE_ACCEPT);
|
|
put_stringz(pktout, s->higher_layer->vt->name);
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
}
|
|
|
|
s->higher_layer_ok = true;
|
|
queue_idempotent_callback(&s->higher_layer->ic_process_queue);
|
|
}
|
|
|
|
s->rekey_class = RK_NONE;
|
|
do {
|
|
crReturnV;
|
|
|
|
/* Pass through outgoing packets from the higher layer. */
|
|
pq_concatenate(s->ppl.out_pq, s->ppl.out_pq, &s->pq_out_higher);
|
|
|
|
/* Wait for either a KEXINIT, or something setting
|
|
* s->rekey_class. This call to ssh2_transport_pop also has
|
|
* the side effect of transferring incoming packets _to_ the
|
|
* higher layer (via filter_queue). */
|
|
if ((pktin = ssh2_transport_pop(s)) != NULL) {
|
|
if (pktin->type != SSH2_MSG_KEXINIT) {
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected transport-"
|
|
"layer packet outside a key exchange, "
|
|
"type %d (%s)", pktin->type,
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
s->ppl.bpp->pls->actx,
|
|
pktin->type));
|
|
return;
|
|
}
|
|
pq_push_front(s->ppl.in_pq, pktin);
|
|
ppl_logevent(("Remote side initiated key re-exchange"));
|
|
s->rekey_class = RK_SERVER;
|
|
}
|
|
|
|
if (s->rekey_class == RK_POST_USERAUTH) {
|
|
/*
|
|
* userauth has seen a USERAUTH_SUCCESS. This may be the
|
|
* moment to do an immediate rekey with different
|
|
* parameters. But it may not; so here we turn that rekey
|
|
* class into either RK_NONE or RK_NORMAL.
|
|
*
|
|
* Currently the only reason for this is if we've done a
|
|
* GSS key exchange and don't have anything in our
|
|
* transient hostkey cache, in which case we should make
|
|
* an attempt to populate the cache now.
|
|
*/
|
|
if (s->need_gss_transient_hostkey) {
|
|
s->rekey_reason = "populating transient host key cache";
|
|
s->rekey_class = RK_NORMAL;
|
|
} else {
|
|
/* No need to rekey at this time. */
|
|
s->rekey_class = RK_NONE;
|
|
}
|
|
}
|
|
|
|
if (!s->rekey_class) {
|
|
/* If we don't yet have any other reason to rekey, check
|
|
* if we've hit our data limit in either direction. */
|
|
if (!s->stats->in.running) {
|
|
s->rekey_reason = "too much data received";
|
|
s->rekey_class = RK_NORMAL;
|
|
} else if (!s->stats->out.running) {
|
|
s->rekey_reason = "too much data sent";
|
|
s->rekey_class = RK_NORMAL;
|
|
}
|
|
}
|
|
|
|
if (s->rekey_class != RK_NONE && s->rekey_class != RK_SERVER) {
|
|
/*
|
|
* Special case: if the server bug is set that doesn't
|
|
* allow rekeying, we give a different log message and
|
|
* continue waiting. (If such a server _initiates_ a
|
|
* rekey, we process it anyway!)
|
|
*/
|
|
if ((s->ppl.remote_bugs & BUG_SSH2_REKEY)) {
|
|
ppl_logevent(("Remote bug prevents key re-exchange (%s)",
|
|
s->rekey_reason));
|
|
/* Reset the counters, so that at least this message doesn't
|
|
* hit the event log _too_ often. */
|
|
s->stats->in.running = s->stats->out.running = true;
|
|
s->stats->in.remaining = s->stats->out.remaining =
|
|
s->max_data_size;
|
|
(void) ssh2_transport_timer_update(s, 0);
|
|
s->rekey_class = RK_NONE;
|
|
} else {
|
|
ppl_logevent(("Initiating key re-exchange (%s)",
|
|
s->rekey_reason));
|
|
}
|
|
}
|
|
} while (s->rekey_class == RK_NONE);
|
|
|
|
/* Once we exit the above loop, we really are rekeying. */
|
|
goto begin_key_exchange;
|
|
|
|
crFinishV;
|
|
}
|
|
|
|
static void ssh2_transport_higher_layer_packet_callback(void *context)
|
|
{
|
|
PacketProtocolLayer *ppl = (PacketProtocolLayer *)context;
|
|
ssh_ppl_process_queue(ppl);
|
|
}
|
|
|
|
static void ssh2_transport_timer(void *ctx, unsigned long now)
|
|
{
|
|
struct ssh2_transport_state *s = (struct ssh2_transport_state *)ctx;
|
|
unsigned long mins;
|
|
unsigned long ticks;
|
|
|
|
if (s->kex_in_progress || now != s->next_rekey)
|
|
return;
|
|
|
|
mins = sanitise_rekey_time(conf_get_int(s->conf, CONF_ssh_rekey_time), 60);
|
|
if (mins == 0)
|
|
return;
|
|
|
|
/* Rekey if enough time has elapsed */
|
|
ticks = mins * 60 * TICKSPERSEC;
|
|
if (now - s->last_rekey > ticks - 30*TICKSPERSEC) {
|
|
s->rekey_reason = "timeout";
|
|
s->rekey_class = RK_NORMAL;
|
|
queue_idempotent_callback(&s->ppl.ic_process_queue);
|
|
return;
|
|
}
|
|
|
|
#ifndef NO_GSSAPI
|
|
/*
|
|
* Rekey now if we have a new cred or context expires this cycle,
|
|
* but not if this is unsafe.
|
|
*/
|
|
if (conf_get_int(s->conf, CONF_gssapirekey)) {
|
|
ssh2_transport_gss_update(s, false);
|
|
if ((s->gss_status & GSS_KEX_CAPABLE) != 0 &&
|
|
(s->gss_status & GSS_CTXT_MAYFAIL) == 0 &&
|
|
(s->gss_status & (GSS_CRED_UPDATED|GSS_CTXT_EXPIRES)) != 0) {
|
|
s->rekey_reason = "GSS credentials updated";
|
|
s->rekey_class = RK_GSS_UPDATE;
|
|
queue_idempotent_callback(&s->ppl.ic_process_queue);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Try again later. */
|
|
(void) ssh2_transport_timer_update(s, 0);
|
|
}
|
|
|
|
/*
|
|
* The rekey_time is zero except when re-configuring.
|
|
*
|
|
* We either schedule the next timer and return false, or return true
|
|
* to run the callback now, which will call us again to re-schedule on
|
|
* completion.
|
|
*/
|
|
static bool ssh2_transport_timer_update(struct ssh2_transport_state *s,
|
|
unsigned long rekey_time)
|
|
{
|
|
unsigned long mins;
|
|
unsigned long ticks;
|
|
|
|
mins = sanitise_rekey_time(conf_get_int(s->conf, CONF_ssh_rekey_time), 60);
|
|
ticks = mins * 60 * TICKSPERSEC;
|
|
|
|
/* Handle change from previous setting */
|
|
if (rekey_time != 0 && rekey_time != mins) {
|
|
unsigned long next;
|
|
unsigned long now = GETTICKCOUNT();
|
|
|
|
mins = rekey_time;
|
|
ticks = mins * 60 * TICKSPERSEC;
|
|
next = s->last_rekey + ticks;
|
|
|
|
/* If overdue, caller will rekey synchronously now */
|
|
if (now - s->last_rekey > ticks)
|
|
return true;
|
|
ticks = next - now;
|
|
}
|
|
|
|
#ifndef NO_GSSAPI
|
|
if (s->gss_kex_used) {
|
|
/*
|
|
* If we've used GSSAPI key exchange, then we should
|
|
* periodically check whether we need to do another one to
|
|
* pass new credentials to the server.
|
|
*/
|
|
unsigned long gssmins;
|
|
|
|
/* Check cascade conditions more frequently if configured */
|
|
gssmins = sanitise_rekey_time(
|
|
conf_get_int(s->conf, CONF_gssapirekey), GSS_DEF_REKEY_MINS);
|
|
if (gssmins > 0) {
|
|
if (gssmins < mins)
|
|
ticks = (mins = gssmins) * 60 * TICKSPERSEC;
|
|
|
|
if ((s->gss_status & GSS_KEX_CAPABLE) != 0) {
|
|
/*
|
|
* Run next timer even sooner if it would otherwise be
|
|
* too close to the context expiration time
|
|
*/
|
|
if ((s->gss_status & GSS_CTXT_EXPIRES) == 0 &&
|
|
s->gss_ctxt_lifetime - mins * 60 < 2 * MIN_CTXT_LIFETIME)
|
|
ticks -= 2 * MIN_CTXT_LIFETIME * TICKSPERSEC;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Schedule the next timer */
|
|
s->next_rekey = schedule_timer(ticks, ssh2_transport_timer, s);
|
|
return false;
|
|
}
|
|
|
|
void ssh2_transport_dialog_callback(void *loginv, int ret)
|
|
{
|
|
struct ssh2_transport_state *s = (struct ssh2_transport_state *)loginv;
|
|
s->dlgret = ret;
|
|
ssh_ppl_process_queue(&s->ppl);
|
|
}
|
|
|
|
#ifndef NO_GSSAPI
|
|
/*
|
|
* This is called at the beginning of each SSH rekey to determine
|
|
* whether we are GSS capable, and if we did GSS key exchange, and are
|
|
* delegating credentials, it is also called periodically to determine
|
|
* whether we should rekey in order to delegate (more) fresh
|
|
* credentials. This is called "credential cascading".
|
|
*
|
|
* On Windows, with SSPI, we may not get the credential expiration, as
|
|
* Windows automatically renews from cached passwords, so the
|
|
* credential effectively never expires. Since we still want to
|
|
* cascade when the local TGT is updated, we use the expiration of a
|
|
* newly obtained context as a proxy for the expiration of the TGT.
|
|
*/
|
|
static void ssh2_transport_gss_update(struct ssh2_transport_state *s,
|
|
bool definitely_rekeying)
|
|
{
|
|
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
|
|
int gss_stat;
|
|
time_t gss_cred_expiry;
|
|
unsigned long mins;
|
|
Ssh_gss_buf gss_sndtok;
|
|
Ssh_gss_buf gss_rcvtok;
|
|
Ssh_gss_ctx gss_ctx;
|
|
|
|
s->gss_status = 0;
|
|
|
|
/*
|
|
* Nothing to do if no GSSAPI libraries are configured or GSSAPI
|
|
* auth is not enabled.
|
|
*/
|
|
if (s->shgss->libs->nlibraries == 0)
|
|
return;
|
|
if (!conf_get_bool(s->conf, CONF_try_gssapi_auth) &&
|
|
!conf_get_bool(s->conf, CONF_try_gssapi_kex))
|
|
return;
|
|
|
|
/* Import server name and cache it */
|
|
if (s->shgss->srv_name == GSS_C_NO_NAME) {
|
|
gss_stat = s->shgss->lib->import_name(
|
|
s->shgss->lib, s->fullhostname, &s->shgss->srv_name);
|
|
if (gss_stat != SSH_GSS_OK) {
|
|
if (gss_stat == SSH_GSS_BAD_HOST_NAME)
|
|
ppl_logevent(("GSSAPI import name failed - Bad service name;"
|
|
" won't use GSS key exchange"));
|
|
else
|
|
ppl_logevent(("GSSAPI import name failed;"
|
|
" won't use GSS key exchange"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do we (still) have credentials? Capture the credential
|
|
* expiration when available
|
|
*/
|
|
gss_stat = s->shgss->lib->acquire_cred(
|
|
s->shgss->lib, &gss_ctx, &gss_cred_expiry);
|
|
if (gss_stat != SSH_GSS_OK)
|
|
return;
|
|
|
|
SSH_GSS_CLEAR_BUF(&gss_sndtok);
|
|
SSH_GSS_CLEAR_BUF(&gss_rcvtok);
|
|
|
|
/*
|
|
* When acquire_cred yields no useful expiration, get a proxy for
|
|
* the cred expiration from the context expiration.
|
|
*/
|
|
gss_stat = s->shgss->lib->init_sec_context(
|
|
s->shgss->lib, &gss_ctx, s->shgss->srv_name,
|
|
0 /* don't delegate */, &gss_rcvtok, &gss_sndtok,
|
|
(gss_cred_expiry == GSS_NO_EXPIRATION ? &gss_cred_expiry : NULL),
|
|
&s->gss_ctxt_lifetime);
|
|
|
|
/* This context was for testing only. */
|
|
if (gss_ctx)
|
|
s->shgss->lib->release_cred(s->shgss->lib, &gss_ctx);
|
|
|
|
if (gss_stat != SSH_GSS_OK &&
|
|
gss_stat != SSH_GSS_S_CONTINUE_NEEDED) {
|
|
/*
|
|
* No point in verbosely interrupting the user to tell them we
|
|
* couldn't get GSS credentials, if this was only a check
|
|
* between key exchanges to see if fresh ones were available.
|
|
* When we do do a rekey, this message (if displayed) will
|
|
* appear among the standard rekey blurb, but when we're not,
|
|
* it shouldn't pop up all the time regardless.
|
|
*/
|
|
if (definitely_rekeying)
|
|
ppl_logevent(("No GSSAPI security context available"));
|
|
|
|
return;
|
|
}
|
|
|
|
if (gss_sndtok.length)
|
|
s->shgss->lib->free_tok(s->shgss->lib, &gss_sndtok);
|
|
|
|
s->gss_status |= GSS_KEX_CAPABLE;
|
|
|
|
/*
|
|
* When rekeying to cascade, avoding doing this too close to the
|
|
* context expiration time, since the key exchange might fail.
|
|
*/
|
|
if (s->gss_ctxt_lifetime < MIN_CTXT_LIFETIME)
|
|
s->gss_status |= GSS_CTXT_MAYFAIL;
|
|
|
|
/*
|
|
* If we're not delegating credentials, rekeying is not used to
|
|
* refresh them. We must avoid setting GSS_CRED_UPDATED or
|
|
* GSS_CTXT_EXPIRES when credential delegation is disabled.
|
|
*/
|
|
if (!conf_get_bool(s->conf, CONF_gssapifwd))
|
|
return;
|
|
|
|
if (s->gss_cred_expiry != GSS_NO_EXPIRATION &&
|
|
difftime(gss_cred_expiry, s->gss_cred_expiry) > 0)
|
|
s->gss_status |= GSS_CRED_UPDATED;
|
|
|
|
mins = sanitise_rekey_time(
|
|
conf_get_int(s->conf, CONF_gssapirekey), GSS_DEF_REKEY_MINS);
|
|
if (mins > 0 && s->gss_ctxt_lifetime <= mins * 60)
|
|
s->gss_status |= GSS_CTXT_EXPIRES;
|
|
}
|
|
|
|
ptrlen ssh2_transport_get_session_id(PacketProtocolLayer *ppl)
|
|
{
|
|
struct ssh2_transport_state *s;
|
|
|
|
assert(ppl->vt == &ssh2_transport_vtable);
|
|
s = container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
assert(s->got_session_id);
|
|
return make_ptrlen(s->session_id, s->session_id_len);
|
|
}
|
|
|
|
void ssh2_transport_notify_auth_done(PacketProtocolLayer *ppl)
|
|
{
|
|
struct ssh2_transport_state *s;
|
|
|
|
assert(ppl->vt == &ssh2_transport_vtable);
|
|
s = container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
s->rekey_reason = NULL; /* will be filled in later */
|
|
s->rekey_class = RK_POST_USERAUTH;
|
|
queue_idempotent_callback(&s->ppl.ic_process_queue);
|
|
}
|
|
|
|
#endif /* NO_GSSAPI */
|
|
|
|
static bool ssh2_transport_get_specials(
|
|
PacketProtocolLayer *ppl, add_special_fn_t add_special, void *ctx)
|
|
{
|
|
struct ssh2_transport_state *s =
|
|
container_of(ppl, struct ssh2_transport_state, ppl);
|
|
bool need_separator = false;
|
|
bool toret;
|
|
|
|
if (ssh_ppl_get_specials(s->higher_layer, add_special, ctx)) {
|
|
need_separator = true;
|
|
toret = true;
|
|
}
|
|
|
|
/*
|
|
* Don't bother offering rekey-based specials if we've decided the
|
|
* remote won't cope with it, since we wouldn't bother sending it
|
|
* if asked anyway.
|
|
*/
|
|
if (!(s->ppl.remote_bugs & BUG_SSH2_REKEY)) {
|
|
if (need_separator) {
|
|
add_special(ctx, NULL, SS_SEP, 0);
|
|
need_separator = false;
|
|
}
|
|
|
|
add_special(ctx, "Repeat key exchange", SS_REKEY, 0);
|
|
toret = true;
|
|
|
|
if (s->n_uncert_hostkeys) {
|
|
int i;
|
|
|
|
add_special(ctx, NULL, SS_SEP, 0);
|
|
add_special(ctx, "Cache new host key type", SS_SUBMENU, 0);
|
|
for (i = 0; i < s->n_uncert_hostkeys; i++) {
|
|
const ssh_keyalg *alg =
|
|
ssh2_hostkey_algs[s->uncert_hostkeys[i]].alg;
|
|
|
|
add_special(ctx, alg->ssh_id, SS_XCERT, s->uncert_hostkeys[i]);
|
|
}
|
|
add_special(ctx, NULL, SS_EXITMENU, 0);
|
|
}
|
|
}
|
|
|
|
return toret;
|
|
}
|
|
|
|
static void ssh2_transport_special_cmd(PacketProtocolLayer *ppl,
|
|
SessionSpecialCode code, int arg)
|
|
{
|
|
struct ssh2_transport_state *s =
|
|
container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
if (code == SS_REKEY) {
|
|
if (!s->kex_in_progress) {
|
|
s->rekey_reason = "at user request";
|
|
s->rekey_class = RK_NORMAL;
|
|
queue_idempotent_callback(&s->ppl.ic_process_queue);
|
|
}
|
|
} else if (code == SS_XCERT) {
|
|
if (!s->kex_in_progress) {
|
|
s->hostkey_alg = ssh2_hostkey_algs[arg].alg;
|
|
s->cross_certifying = true;
|
|
s->rekey_reason = "cross-certifying new host key";
|
|
s->rekey_class = RK_NORMAL;
|
|
queue_idempotent_callback(&s->ppl.ic_process_queue);
|
|
}
|
|
} else {
|
|
/* Send everything else to the next layer up. This includes
|
|
* SS_PING/SS_NOP, which we _could_ handle here - but it's
|
|
* better to put them in the connection layer, so they'll
|
|
* still work in bare connection mode. */
|
|
ssh_ppl_special_cmd(s->higher_layer, code, arg);
|
|
}
|
|
}
|
|
|
|
/* Safely convert rekey_time to unsigned long minutes */
|
|
static unsigned long sanitise_rekey_time(int rekey_time, unsigned long def)
|
|
{
|
|
if (rekey_time < 0 || rekey_time > MAX_TICK_MINS)
|
|
rekey_time = def;
|
|
return (unsigned long)rekey_time;
|
|
}
|
|
|
|
static void ssh2_transport_set_max_data_size(struct ssh2_transport_state *s)
|
|
{
|
|
s->max_data_size = parse_blocksize(
|
|
conf_get_str(s->conf, CONF_ssh_rekey_data));
|
|
}
|
|
|
|
static void ssh2_transport_reconfigure(PacketProtocolLayer *ppl, Conf *conf)
|
|
{
|
|
struct ssh2_transport_state *s;
|
|
const char *rekey_reason = NULL;
|
|
bool rekey_mandatory = false;
|
|
unsigned long old_max_data_size, rekey_time;
|
|
int i;
|
|
|
|
assert(ppl->vt == &ssh2_transport_vtable);
|
|
s = container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
rekey_time = sanitise_rekey_time(
|
|
conf_get_int(conf, CONF_ssh_rekey_time), 60);
|
|
if (ssh2_transport_timer_update(s, rekey_time))
|
|
rekey_reason = "timeout shortened";
|
|
|
|
old_max_data_size = s->max_data_size;
|
|
ssh2_transport_set_max_data_size(s);
|
|
if (old_max_data_size != s->max_data_size &&
|
|
s->max_data_size != 0) {
|
|
if (s->max_data_size < old_max_data_size) {
|
|
unsigned long diff = old_max_data_size - s->max_data_size;
|
|
|
|
/* We must decrement both counters, so avoid short-circuit
|
|
* evaluation skipping one */
|
|
bool out_expired = DTS_CONSUME(s->stats, out, diff);
|
|
bool in_expired = DTS_CONSUME(s->stats, in, diff);
|
|
if (out_expired || in_expired)
|
|
rekey_reason = "data limit lowered";
|
|
} else {
|
|
unsigned long diff = s->max_data_size - old_max_data_size;
|
|
if (s->stats->out.running)
|
|
s->stats->out.remaining += diff;
|
|
if (s->stats->in.running)
|
|
s->stats->in.remaining += diff;
|
|
}
|
|
}
|
|
|
|
if (conf_get_bool(s->conf, CONF_compression) !=
|
|
conf_get_bool(conf, CONF_compression)) {
|
|
rekey_reason = "compression setting changed";
|
|
rekey_mandatory = true;
|
|
}
|
|
|
|
for (i = 0; i < CIPHER_MAX; i++)
|
|
if (conf_get_int_int(s->conf, CONF_ssh_cipherlist, i) !=
|
|
conf_get_int_int(conf, CONF_ssh_cipherlist, i)) {
|
|
rekey_reason = "cipher settings changed";
|
|
rekey_mandatory = true;
|
|
}
|
|
if (conf_get_bool(s->conf, CONF_ssh2_des_cbc) !=
|
|
conf_get_bool(conf, CONF_ssh2_des_cbc)) {
|
|
rekey_reason = "cipher settings changed";
|
|
rekey_mandatory = true;
|
|
}
|
|
|
|
conf_free(s->conf);
|
|
s->conf = conf_copy(conf);
|
|
|
|
if (rekey_reason) {
|
|
if (!s->kex_in_progress && !ssh2_bpp_rekey_inadvisable(s->ppl.bpp)) {
|
|
s->rekey_reason = rekey_reason;
|
|
s->rekey_class = RK_NORMAL;
|
|
queue_idempotent_callback(&s->ppl.ic_process_queue);
|
|
} else if (rekey_mandatory) {
|
|
s->deferred_rekey_reason = rekey_reason;
|
|
}
|
|
}
|
|
|
|
/* Also pass the configuration along to our higher layer */
|
|
ssh_ppl_reconfigure(s->higher_layer, conf);
|
|
}
|
|
|
|
static bool ssh2_transport_want_user_input(PacketProtocolLayer *ppl)
|
|
{
|
|
struct ssh2_transport_state *s =
|
|
container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
/* Just delegate this to the higher layer */
|
|
return ssh_ppl_want_user_input(s->higher_layer);
|
|
}
|
|
|
|
static void ssh2_transport_got_user_input(PacketProtocolLayer *ppl)
|
|
{
|
|
struct ssh2_transport_state *s =
|
|
container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
/* Just delegate this to the higher layer */
|
|
ssh_ppl_got_user_input(s->higher_layer);
|
|
}
|