1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/testdata/bignum.py
Simon Tatham 15d7f8bb3e Add tests of modpow.
[originally from svn r9100]
2011-02-20 15:27:48 +00:00

90 lines
2.9 KiB
Python

# Generate test cases for a bignum implementation.
import sys
import mathlib
def findprod(target, dir = +1, ratio=(1,1)):
# Return two numbers whose product is as close as we can get to
# 'target', with any deviation having the sign of 'dir', and in
# the same approximate ratio as 'ratio'.
r = mathlib.sqrt(target * ratio[0] * ratio[1])
a = r / ratio[1]
b = r / ratio[0]
if a*b * dir < target * dir:
a = a + 1
b = b + 1
assert a*b * dir >= target * dir
best = (a,b,a*b)
while 1:
improved = 0
a, b = best[:2]
terms = mathlib.confracr(a, b, output=None)
coeffs = [(1,0),(0,1)]
for t in terms:
coeffs.append((coeffs[-2][0]-t*coeffs[-1][0],
coeffs[-2][1]-t*coeffs[-1][1]))
for c in coeffs:
# a*c[0]+b*c[1] is as close as we can get it to zero. So
# if we replace a and b with a+c[1] and b+c[0], then that
# will be added to our product, along with c[0]*c[1].
da, db = c[1], c[0]
# Flip signs as appropriate.
if (a+da) * (b+db) * dir < target * dir:
da, db = -da, -db
# Multiply up. We want to get as close as we can to a
# solution of the quadratic equation in n
#
# (a + n da) (b + n db) = target
# => n^2 da db + n (b da + a db) + (a b - target) = 0
A,B,C = da*db, b*da+a*db, a*b-target
discrim = B^2-4*A*C
if discrim > 0 and A != 0:
root = mathlib.sqrt(discrim)
vals = []
vals.append((-B + root) / (2*A))
vals.append((-B - root) / (2*A))
if root * root != discrim:
root = root + 1
vals.append((-B + root) / (2*A))
vals.append((-B - root) / (2*A))
for n in vals:
ap = a + da*n
bp = b + db*n
pp = ap*bp
if pp * dir >= target * dir and pp * dir < best[2]*dir:
best = (ap, bp, pp)
improved = 1
if not improved:
break
return best
def hexstr(n):
s = hex(n)
if s[:2] == "0x": s = s[2:]
if s[-1:] == "L": s = s[:-1]
return s
# Tests of multiplication which exercise the propagation of the last
# carry to the very top of the number.
for i in range(1,4200):
a, b, p = findprod((1<<i)+1, +1, (i, i*i+1))
print "mul", hexstr(a), hexstr(b), hexstr(p)
a, b, p = findprod((1<<i)+1, +1, (i, i+1))
print "mul", hexstr(a), hexstr(b), hexstr(p)
# Simple tests of modpow.
for i in range(64, 4097, 63):
modulus = mathlib.sqrt(1<<(2*i-1)) | 1
base = mathlib.sqrt(3*modulus*modulus) % modulus
expt = mathlib.sqrt(modulus*modulus*2/5)
print "pow", hexstr(base), hexstr(expt), hexstr(modulus), hexstr(pow(base, expt, modulus))