mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 09:12:24 +00:00
15d7f8bb3e
[originally from svn r9100]
90 lines
2.9 KiB
Python
90 lines
2.9 KiB
Python
# Generate test cases for a bignum implementation.
|
|
|
|
import sys
|
|
import mathlib
|
|
|
|
def findprod(target, dir = +1, ratio=(1,1)):
|
|
# Return two numbers whose product is as close as we can get to
|
|
# 'target', with any deviation having the sign of 'dir', and in
|
|
# the same approximate ratio as 'ratio'.
|
|
|
|
r = mathlib.sqrt(target * ratio[0] * ratio[1])
|
|
a = r / ratio[1]
|
|
b = r / ratio[0]
|
|
if a*b * dir < target * dir:
|
|
a = a + 1
|
|
b = b + 1
|
|
assert a*b * dir >= target * dir
|
|
|
|
best = (a,b,a*b)
|
|
|
|
while 1:
|
|
improved = 0
|
|
a, b = best[:2]
|
|
|
|
terms = mathlib.confracr(a, b, output=None)
|
|
coeffs = [(1,0),(0,1)]
|
|
for t in terms:
|
|
coeffs.append((coeffs[-2][0]-t*coeffs[-1][0],
|
|
coeffs[-2][1]-t*coeffs[-1][1]))
|
|
for c in coeffs:
|
|
# a*c[0]+b*c[1] is as close as we can get it to zero. So
|
|
# if we replace a and b with a+c[1] and b+c[0], then that
|
|
# will be added to our product, along with c[0]*c[1].
|
|
da, db = c[1], c[0]
|
|
|
|
# Flip signs as appropriate.
|
|
if (a+da) * (b+db) * dir < target * dir:
|
|
da, db = -da, -db
|
|
|
|
# Multiply up. We want to get as close as we can to a
|
|
# solution of the quadratic equation in n
|
|
#
|
|
# (a + n da) (b + n db) = target
|
|
# => n^2 da db + n (b da + a db) + (a b - target) = 0
|
|
A,B,C = da*db, b*da+a*db, a*b-target
|
|
discrim = B^2-4*A*C
|
|
if discrim > 0 and A != 0:
|
|
root = mathlib.sqrt(discrim)
|
|
vals = []
|
|
vals.append((-B + root) / (2*A))
|
|
vals.append((-B - root) / (2*A))
|
|
if root * root != discrim:
|
|
root = root + 1
|
|
vals.append((-B + root) / (2*A))
|
|
vals.append((-B - root) / (2*A))
|
|
|
|
for n in vals:
|
|
ap = a + da*n
|
|
bp = b + db*n
|
|
pp = ap*bp
|
|
if pp * dir >= target * dir and pp * dir < best[2]*dir:
|
|
best = (ap, bp, pp)
|
|
improved = 1
|
|
|
|
if not improved:
|
|
break
|
|
|
|
return best
|
|
|
|
def hexstr(n):
|
|
s = hex(n)
|
|
if s[:2] == "0x": s = s[2:]
|
|
if s[-1:] == "L": s = s[:-1]
|
|
return s
|
|
|
|
# Tests of multiplication which exercise the propagation of the last
|
|
# carry to the very top of the number.
|
|
for i in range(1,4200):
|
|
a, b, p = findprod((1<<i)+1, +1, (i, i*i+1))
|
|
print "mul", hexstr(a), hexstr(b), hexstr(p)
|
|
a, b, p = findprod((1<<i)+1, +1, (i, i+1))
|
|
print "mul", hexstr(a), hexstr(b), hexstr(p)
|
|
|
|
# Simple tests of modpow.
|
|
for i in range(64, 4097, 63):
|
|
modulus = mathlib.sqrt(1<<(2*i-1)) | 1
|
|
base = mathlib.sqrt(3*modulus*modulus) % modulus
|
|
expt = mathlib.sqrt(modulus*modulus*2/5)
|
|
print "pow", hexstr(base), hexstr(expt), hexstr(modulus), hexstr(pow(base, expt, modulus))
|