mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
b109918032
functionality that deal with selectable fds in general. The idea is that pty.c will stop passing its fd straight to pterm.c and hand it to this module instead, and pterm.c will start requesting a general list of fds from this module rather than expecting a single one from pty.c, with the ultimate aim of pterm.c being able to form the basis of a Unix PuTTY as well as pterm proper. [originally from svn r3015]
1020 lines
24 KiB
C
1020 lines
24 KiB
C
/*
|
|
* Unix networking abstraction.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <arpa/inet.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netdb.h>
|
|
|
|
#define DEFINE_PLUG_METHOD_MACROS
|
|
#include "putty.h"
|
|
#include "network.h"
|
|
#include "tree234.h"
|
|
|
|
#define ipv4_is_loopback(addr) (inet_netof(addr) == IN_LOOPBACKNET)
|
|
|
|
struct Socket_tag {
|
|
struct socket_function_table *fn;
|
|
/* the above variable absolutely *must* be the first in this structure */
|
|
char *error;
|
|
int s;
|
|
Plug plug;
|
|
void *private_ptr;
|
|
bufchain output_data;
|
|
int connected;
|
|
int writable;
|
|
int frozen; /* this causes readability notifications to be ignored */
|
|
int frozen_readable; /* this means we missed at least one readability
|
|
* notification while we were frozen */
|
|
int localhost_only; /* for listening sockets */
|
|
char oobdata[1];
|
|
int sending_oob;
|
|
int oobpending; /* is there OOB data available to read? */
|
|
int oobinline;
|
|
int pending_error; /* in case send() returns error */
|
|
int listener;
|
|
};
|
|
|
|
/*
|
|
* We used to typedef struct Socket_tag *Socket.
|
|
*
|
|
* Since we have made the networking abstraction slightly more
|
|
* abstract, Socket no longer means a tcp socket (it could mean
|
|
* an ssl socket). So now we must use Actual_Socket when we know
|
|
* we are talking about a tcp socket.
|
|
*/
|
|
typedef struct Socket_tag *Actual_Socket;
|
|
|
|
struct SockAddr_tag {
|
|
char *error;
|
|
/*
|
|
* Which address family this address belongs to. AF_INET for
|
|
* IPv4; AF_INET6 for IPv6; AF_UNSPEC indicates that name
|
|
* resolution has not been done and a simple host name is held
|
|
* in this SockAddr structure.
|
|
*/
|
|
int family;
|
|
unsigned long address; /* Address IPv4 style. */
|
|
#ifdef IPV6
|
|
struct addrinfo *ai; /* Address IPv6 style. */
|
|
#endif
|
|
char hostname[512]; /* Store an unresolved host name. */
|
|
};
|
|
|
|
static tree234 *sktree;
|
|
|
|
static void uxsel_tell(Actual_Socket s);
|
|
|
|
static int cmpfortree(void *av, void *bv)
|
|
{
|
|
Actual_Socket a = (Actual_Socket) av, b = (Actual_Socket) bv;
|
|
int as = a->s, bs = b->s;
|
|
if (as < bs)
|
|
return -1;
|
|
if (as > bs)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
static int cmpforsearch(void *av, void *bv)
|
|
{
|
|
Actual_Socket b = (Actual_Socket) bv;
|
|
int as = (int) av, bs = b->s;
|
|
if (as < bs)
|
|
return -1;
|
|
if (as > bs)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
void sk_init(void)
|
|
{
|
|
sktree = newtree234(cmpfortree);
|
|
}
|
|
|
|
void sk_cleanup(void)
|
|
{
|
|
Actual_Socket s;
|
|
int i;
|
|
|
|
if (sktree) {
|
|
for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
|
|
close(s->s);
|
|
}
|
|
}
|
|
}
|
|
|
|
char *error_string(int error)
|
|
{
|
|
return strerror(error);
|
|
}
|
|
|
|
SockAddr sk_namelookup(const char *host, char **canonicalname)
|
|
{
|
|
SockAddr ret = snew(struct SockAddr_tag);
|
|
unsigned long a;
|
|
struct hostent *h = NULL;
|
|
char realhost[8192];
|
|
|
|
/* Clear the structure and default to IPv4. */
|
|
memset(ret, 0, sizeof(struct SockAddr_tag));
|
|
ret->family = 0; /* We set this one when we have resolved the host. */
|
|
*realhost = '\0';
|
|
ret->error = NULL;
|
|
|
|
if ((a = inet_addr(host)) == (unsigned long) INADDR_NONE) {
|
|
#ifdef IPV6
|
|
if (getaddrinfo(host, NULL, NULL, &ret->ai) == 0) {
|
|
ret->family = ret->ai->ai_family;
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* Otherwise use the IPv4-only gethostbyname... (NOTE:
|
|
* we don't use gethostbyname as a fallback!)
|
|
*/
|
|
if (ret->family == 0) {
|
|
/*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
|
|
if ( (h = gethostbyname(host)) )
|
|
ret->family = AF_INET;
|
|
}
|
|
if (ret->family == 0) {
|
|
ret->error = (h_errno == HOST_NOT_FOUND ||
|
|
h_errno == NO_DATA ||
|
|
h_errno == NO_ADDRESS ? "Host does not exist" :
|
|
h_errno == TRY_AGAIN ?
|
|
"Temporary name service failure" :
|
|
"gethostbyname: unknown error");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
#ifdef IPV6
|
|
/* If we got an address info use that... */
|
|
if (ret->ai) {
|
|
|
|
/* Are we in IPv4 fallback mode? */
|
|
/* We put the IPv4 address into the a variable so we can further-on use the IPv4 code... */
|
|
if (ret->family == AF_INET)
|
|
memcpy(&a,
|
|
(char *) &((struct sockaddr_in *) ret->ai->
|
|
ai_addr)->sin_addr, sizeof(a));
|
|
|
|
/* Now let's find that canonicalname... */
|
|
if (getnameinfo((struct sockaddr *) ret->ai->ai_addr,
|
|
ret->family ==
|
|
AF_INET ? sizeof(struct sockaddr_in) :
|
|
sizeof(struct sockaddr_in6), realhost,
|
|
sizeof(realhost), NULL, 0, 0) != 0) {
|
|
strncpy(realhost, host, sizeof(realhost));
|
|
}
|
|
}
|
|
/* We used the IPv4-only gethostbyname()... */
|
|
else
|
|
#endif
|
|
{
|
|
memcpy(&a, h->h_addr, sizeof(a));
|
|
/* This way we are always sure the h->h_name is valid :) */
|
|
strncpy(realhost, h->h_name, sizeof(realhost));
|
|
}
|
|
} else {
|
|
/*
|
|
* This must be a numeric IPv4 address because it caused a
|
|
* success return from inet_addr.
|
|
*/
|
|
ret->family = AF_INET;
|
|
strncpy(realhost, host, sizeof(realhost));
|
|
}
|
|
ret->address = ntohl(a);
|
|
realhost[lenof(realhost)-1] = '\0';
|
|
*canonicalname = snewn(1+strlen(realhost), char);
|
|
strcpy(*canonicalname, realhost);
|
|
return ret;
|
|
}
|
|
|
|
SockAddr sk_nonamelookup(const char *host)
|
|
{
|
|
SockAddr ret = snew(struct SockAddr_tag);
|
|
ret->error = NULL;
|
|
ret->family = AF_UNSPEC;
|
|
strncpy(ret->hostname, host, lenof(ret->hostname));
|
|
ret->hostname[lenof(ret->hostname)-1] = '\0';
|
|
return ret;
|
|
}
|
|
|
|
void sk_getaddr(SockAddr addr, char *buf, int buflen)
|
|
{
|
|
#ifdef IPV6
|
|
if (addr->family == AF_INET6) {
|
|
FIXME; /* I don't know how to get a text form of an IPv6 address. */
|
|
} else
|
|
#endif
|
|
if (addr->family == AF_INET) {
|
|
struct in_addr a;
|
|
a.s_addr = htonl(addr->address);
|
|
strncpy(buf, inet_ntoa(a), buflen);
|
|
buf[buflen-1] = '\0';
|
|
} else {
|
|
assert(addr->family == AF_UNSPEC);
|
|
strncpy(buf, addr->hostname, buflen);
|
|
buf[buflen-1] = '\0';
|
|
}
|
|
}
|
|
|
|
int sk_hostname_is_local(char *name)
|
|
{
|
|
return !strcmp(name, "localhost");
|
|
}
|
|
|
|
int sk_address_is_local(SockAddr addr)
|
|
{
|
|
#ifdef IPV6
|
|
if (addr->family == AF_INET6) {
|
|
FIXME; /* someone who can compile for IPV6 had better do this bit */
|
|
} else
|
|
#endif
|
|
if (addr->family == AF_INET) {
|
|
struct in_addr a;
|
|
a.s_addr = htonl(addr->address);
|
|
return ipv4_is_loopback(a);
|
|
} else {
|
|
assert(addr->family == AF_UNSPEC);
|
|
return 0; /* we don't know; assume not */
|
|
}
|
|
}
|
|
|
|
int sk_addrtype(SockAddr addr)
|
|
{
|
|
return (addr->family == AF_INET ? ADDRTYPE_IPV4 :
|
|
#ifdef IPV6
|
|
addr->family == AF_INET6 ? ADDRTYPE_IPV6 :
|
|
#endif
|
|
ADDRTYPE_NAME);
|
|
}
|
|
|
|
void sk_addrcopy(SockAddr addr, char *buf)
|
|
{
|
|
assert(addr->family != AF_UNSPEC);
|
|
#ifdef IPV6
|
|
if (addr->family == AF_INET6) {
|
|
memcpy(buf, (char*) addr->ai, 16);
|
|
} else
|
|
#endif
|
|
if (addr->family == AF_INET) {
|
|
struct in_addr a;
|
|
a.s_addr = htonl(addr->address);
|
|
memcpy(buf, (char*) &a.s_addr, 4);
|
|
}
|
|
}
|
|
|
|
void sk_addr_free(SockAddr addr)
|
|
{
|
|
sfree(addr);
|
|
}
|
|
|
|
static Plug sk_tcp_plug(Socket sock, Plug p)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
Plug ret = s->plug;
|
|
if (p)
|
|
s->plug = p;
|
|
return ret;
|
|
}
|
|
|
|
static void sk_tcp_flush(Socket s)
|
|
{
|
|
/*
|
|
* We send data to the socket as soon as we can anyway,
|
|
* so we don't need to do anything here. :-)
|
|
*/
|
|
}
|
|
|
|
static void sk_tcp_close(Socket s);
|
|
static int sk_tcp_write(Socket s, const char *data, int len);
|
|
static int sk_tcp_write_oob(Socket s, const char *data, int len);
|
|
static void sk_tcp_set_private_ptr(Socket s, void *ptr);
|
|
static void *sk_tcp_get_private_ptr(Socket s);
|
|
static void sk_tcp_set_frozen(Socket s, int is_frozen);
|
|
static char *sk_tcp_socket_error(Socket s);
|
|
|
|
static struct socket_function_table tcp_fn_table = {
|
|
sk_tcp_plug,
|
|
sk_tcp_close,
|
|
sk_tcp_write,
|
|
sk_tcp_write_oob,
|
|
sk_tcp_flush,
|
|
sk_tcp_set_private_ptr,
|
|
sk_tcp_get_private_ptr,
|
|
sk_tcp_set_frozen,
|
|
sk_tcp_socket_error
|
|
};
|
|
|
|
Socket sk_register(void *sock, Plug plug)
|
|
{
|
|
Actual_Socket ret;
|
|
|
|
/*
|
|
* Create Socket structure.
|
|
*/
|
|
ret = snew(struct Socket_tag);
|
|
ret->fn = &tcp_fn_table;
|
|
ret->error = NULL;
|
|
ret->plug = plug;
|
|
bufchain_init(&ret->output_data);
|
|
ret->writable = 1; /* to start with */
|
|
ret->sending_oob = 0;
|
|
ret->frozen = 1;
|
|
ret->frozen_readable = 0;
|
|
ret->localhost_only = 0; /* unused, but best init anyway */
|
|
ret->pending_error = 0;
|
|
ret->oobpending = FALSE;
|
|
ret->listener = 0;
|
|
|
|
ret->s = (int)sock;
|
|
|
|
if (ret->s < 0) {
|
|
ret->error = error_string(errno);
|
|
return (Socket) ret;
|
|
}
|
|
|
|
ret->oobinline = 0;
|
|
|
|
uxsel_tell(ret);
|
|
add234(sktree, ret);
|
|
|
|
return (Socket) ret;
|
|
}
|
|
|
|
Socket sk_new(SockAddr addr, int port, int privport, int oobinline,
|
|
int nodelay, Plug plug)
|
|
{
|
|
int s;
|
|
#ifdef IPV6
|
|
struct sockaddr_in6 a6;
|
|
#endif
|
|
struct sockaddr_in a;
|
|
int err;
|
|
Actual_Socket ret;
|
|
short localport;
|
|
|
|
/*
|
|
* Create Socket structure.
|
|
*/
|
|
ret = snew(struct Socket_tag);
|
|
ret->fn = &tcp_fn_table;
|
|
ret->error = NULL;
|
|
ret->plug = plug;
|
|
bufchain_init(&ret->output_data);
|
|
ret->connected = 0; /* to start with */
|
|
ret->writable = 0; /* to start with */
|
|
ret->sending_oob = 0;
|
|
ret->frozen = 0;
|
|
ret->frozen_readable = 0;
|
|
ret->localhost_only = 0; /* unused, but best init anyway */
|
|
ret->pending_error = 0;
|
|
ret->oobpending = FALSE;
|
|
ret->listener = 0;
|
|
|
|
/*
|
|
* Open socket.
|
|
*/
|
|
assert(addr->family != AF_UNSPEC);
|
|
s = socket(addr->family, SOCK_STREAM, 0);
|
|
ret->s = s;
|
|
|
|
if (s < 0) {
|
|
ret->error = error_string(errno);
|
|
return (Socket) ret;
|
|
}
|
|
|
|
ret->oobinline = oobinline;
|
|
if (oobinline) {
|
|
int b = TRUE;
|
|
setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (void *) &b, sizeof(b));
|
|
}
|
|
|
|
if (nodelay) {
|
|
int b = TRUE;
|
|
setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void *) &b, sizeof(b));
|
|
}
|
|
|
|
/*
|
|
* Bind to local address.
|
|
*/
|
|
if (privport)
|
|
localport = 1023; /* count from 1023 downwards */
|
|
else
|
|
localport = 0; /* just use port 0 (ie kernel picks) */
|
|
|
|
/* Loop round trying to bind */
|
|
while (1) {
|
|
int retcode;
|
|
|
|
#ifdef IPV6
|
|
if (addr->family == AF_INET6) {
|
|
memset(&a6, 0, sizeof(a6));
|
|
a6.sin6_family = AF_INET6;
|
|
/*a6.sin6_addr = in6addr_any; *//* == 0 */
|
|
a6.sin6_port = htons(localport);
|
|
} else
|
|
#endif
|
|
{
|
|
a.sin_family = AF_INET;
|
|
a.sin_addr.s_addr = htonl(INADDR_ANY);
|
|
a.sin_port = htons(localport);
|
|
}
|
|
#ifdef IPV6
|
|
retcode = bind(s, (addr->family == AF_INET6 ?
|
|
(struct sockaddr *) &a6 :
|
|
(struct sockaddr *) &a),
|
|
(addr->family ==
|
|
AF_INET6 ? sizeof(a6) : sizeof(a)));
|
|
#else
|
|
retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
|
|
#endif
|
|
if (retcode >= 0) {
|
|
err = 0;
|
|
break; /* done */
|
|
} else {
|
|
err = errno;
|
|
if (err != EADDRINUSE) /* failed, for a bad reason */
|
|
break;
|
|
}
|
|
|
|
if (localport == 0)
|
|
break; /* we're only looping once */
|
|
localport--;
|
|
if (localport == 0)
|
|
break; /* we might have got to the end */
|
|
}
|
|
|
|
if (err) {
|
|
ret->error = error_string(err);
|
|
return (Socket) ret;
|
|
}
|
|
|
|
/*
|
|
* Connect to remote address.
|
|
*/
|
|
#ifdef IPV6
|
|
if (addr->family == AF_INET6) {
|
|
memset(&a, 0, sizeof(a));
|
|
a6.sin6_family = AF_INET6;
|
|
a6.sin6_port = htons((short) port);
|
|
a6.sin6_addr =
|
|
((struct sockaddr_in6 *) addr->ai->ai_addr)->sin6_addr;
|
|
} else
|
|
#endif
|
|
{
|
|
a.sin_family = AF_INET;
|
|
a.sin_addr.s_addr = htonl(addr->address);
|
|
a.sin_port = htons((short) port);
|
|
}
|
|
|
|
{
|
|
int i = 1;
|
|
ioctl(s, FIONBIO, &i);
|
|
}
|
|
|
|
if ((
|
|
#ifdef IPV6
|
|
connect(s, ((addr->family == AF_INET6) ?
|
|
(struct sockaddr *) &a6 : (struct sockaddr *) &a),
|
|
(addr->family == AF_INET6) ? sizeof(a6) : sizeof(a))
|
|
#else
|
|
connect(s, (struct sockaddr *) &a, sizeof(a))
|
|
#endif
|
|
) < 0) {
|
|
if ( errno != EINPROGRESS ) {
|
|
ret->error = error_string(errno);
|
|
return (Socket) ret;
|
|
}
|
|
} else {
|
|
/*
|
|
* If we _don't_ get EWOULDBLOCK, the connect has completed
|
|
* and we should set the socket as connected and writable.
|
|
*/
|
|
ret->connected = 1;
|
|
ret->writable = 1;
|
|
}
|
|
|
|
uxsel_tell(ret);
|
|
add234(sktree, ret);
|
|
|
|
return (Socket) ret;
|
|
}
|
|
|
|
Socket sk_newlistener(char *srcaddr, int port, Plug plug, int local_host_only)
|
|
{
|
|
int s;
|
|
#ifdef IPV6
|
|
struct sockaddr_in6 a6;
|
|
#endif
|
|
struct sockaddr_in a;
|
|
int err;
|
|
Actual_Socket ret;
|
|
int retcode;
|
|
int on = 1;
|
|
|
|
/*
|
|
* Create Socket structure.
|
|
*/
|
|
ret = snew(struct Socket_tag);
|
|
ret->fn = &tcp_fn_table;
|
|
ret->error = NULL;
|
|
ret->plug = plug;
|
|
bufchain_init(&ret->output_data);
|
|
ret->writable = 0; /* to start with */
|
|
ret->sending_oob = 0;
|
|
ret->frozen = 0;
|
|
ret->frozen_readable = 0;
|
|
ret->localhost_only = local_host_only;
|
|
ret->pending_error = 0;
|
|
ret->oobpending = FALSE;
|
|
ret->listener = 1;
|
|
|
|
/*
|
|
* Open socket.
|
|
*/
|
|
s = socket(AF_INET, SOCK_STREAM, 0);
|
|
ret->s = s;
|
|
|
|
if (s < 0) {
|
|
ret->error = error_string(errno);
|
|
return (Socket) ret;
|
|
}
|
|
|
|
ret->oobinline = 0;
|
|
|
|
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (const char *)&on, sizeof(on));
|
|
|
|
#ifdef IPV6
|
|
if (addr->family == AF_INET6) {
|
|
memset(&a6, 0, sizeof(a6));
|
|
a6.sin6_family = AF_INET6;
|
|
/* FIXME: srcaddr is ignored for IPv6, because I (SGT) don't
|
|
* know how to do it. :-) */
|
|
if (local_host_only)
|
|
a6.sin6_addr = in6addr_loopback;
|
|
else
|
|
a6.sin6_addr = in6addr_any;
|
|
a6.sin6_port = htons(port);
|
|
} else
|
|
#endif
|
|
{
|
|
int got_addr = 0;
|
|
a.sin_family = AF_INET;
|
|
|
|
/*
|
|
* Bind to source address. First try an explicitly
|
|
* specified one...
|
|
*/
|
|
if (srcaddr) {
|
|
a.sin_addr.s_addr = inet_addr(srcaddr);
|
|
if (a.sin_addr.s_addr != INADDR_NONE) {
|
|
/* Override localhost_only with specified listen addr. */
|
|
ret->localhost_only = ipv4_is_loopback(a.sin_addr);
|
|
got_addr = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ... and failing that, go with one of the standard ones.
|
|
*/
|
|
if (!got_addr) {
|
|
if (local_host_only)
|
|
a.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
else
|
|
a.sin_addr.s_addr = htonl(INADDR_ANY);
|
|
}
|
|
|
|
a.sin_port = htons((short)port);
|
|
}
|
|
#ifdef IPV6
|
|
retcode = bind(s, (addr->family == AF_INET6 ?
|
|
(struct sockaddr *) &a6 :
|
|
(struct sockaddr *) &a),
|
|
(addr->family ==
|
|
AF_INET6 ? sizeof(a6) : sizeof(a)));
|
|
#else
|
|
retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
|
|
#endif
|
|
if (retcode >= 0) {
|
|
err = 0;
|
|
} else {
|
|
err = errno;
|
|
}
|
|
|
|
if (err) {
|
|
ret->error = error_string(err);
|
|
return (Socket) ret;
|
|
}
|
|
|
|
|
|
if (listen(s, SOMAXCONN) < 0) {
|
|
close(s);
|
|
ret->error = error_string(errno);
|
|
return (Socket) ret;
|
|
}
|
|
|
|
uxsel_tell(ret);
|
|
add234(sktree, ret);
|
|
|
|
return (Socket) ret;
|
|
}
|
|
|
|
static void sk_tcp_close(Socket sock)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
|
|
uxsel_del(s->s);
|
|
del234(sktree, s);
|
|
close(s->s);
|
|
sfree(s);
|
|
}
|
|
|
|
int sk_getxdmdata(void *sock, unsigned long *ip, int *port)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
struct sockaddr_in addr;
|
|
socklen_t addrlen;
|
|
|
|
/*
|
|
* We must check that this socket really _is_ an Actual_Socket.
|
|
*/
|
|
if (s->fn != &tcp_fn_table)
|
|
return 0; /* failure */
|
|
|
|
/*
|
|
* If we ever implement connecting to a local X server through
|
|
* a Unix socket, we return 0xFFFFFFFF for the IP address and
|
|
* our current pid for the port. Bizarre, but such is life.
|
|
*/
|
|
|
|
addrlen = sizeof(addr);
|
|
if (getsockname(s->s, (struct sockaddr *)&addr, &addrlen) < 0 ||
|
|
addr.sin_family != AF_INET)
|
|
return 0;
|
|
|
|
*ip = ntohl(addr.sin_addr.s_addr);
|
|
*port = ntohs(addr.sin_port);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The function which tries to send on a socket once it's deemed
|
|
* writable.
|
|
*/
|
|
void try_send(Actual_Socket s)
|
|
{
|
|
while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
|
|
int nsent;
|
|
int err;
|
|
void *data;
|
|
int len, urgentflag;
|
|
|
|
if (s->sending_oob) {
|
|
urgentflag = MSG_OOB;
|
|
len = s->sending_oob;
|
|
data = &s->oobdata;
|
|
} else {
|
|
urgentflag = 0;
|
|
bufchain_prefix(&s->output_data, &data, &len);
|
|
}
|
|
nsent = send(s->s, data, len, urgentflag);
|
|
noise_ultralight(nsent);
|
|
if (nsent <= 0) {
|
|
err = (nsent < 0 ? errno : 0);
|
|
if (err == EWOULDBLOCK) {
|
|
/*
|
|
* Perfectly normal: we've sent all we can for the moment.
|
|
*/
|
|
s->writable = FALSE;
|
|
return;
|
|
} else if (nsent == 0 ||
|
|
err == ECONNABORTED || err == ECONNRESET) {
|
|
/*
|
|
* If send() returns CONNABORTED or CONNRESET, we
|
|
* unfortunately can't just call plug_closing(),
|
|
* because it's quite likely that we're currently
|
|
* _in_ a call from the code we'd be calling back
|
|
* to, so we'd have to make half the SSH code
|
|
* reentrant. Instead we flag a pending error on
|
|
* the socket, to be dealt with (by calling
|
|
* plug_closing()) at some suitable future moment.
|
|
*/
|
|
s->pending_error = err;
|
|
return;
|
|
} else {
|
|
/* We're inside the Unix frontend here, so we know
|
|
* that the frontend handle is unnecessary. */
|
|
logevent(NULL, error_string(err));
|
|
fatalbox("%s", error_string(err));
|
|
}
|
|
} else {
|
|
if (s->sending_oob) {
|
|
if (nsent < len) {
|
|
memmove(s->oobdata, s->oobdata+nsent, len-nsent);
|
|
s->sending_oob = len - nsent;
|
|
} else {
|
|
s->sending_oob = 0;
|
|
}
|
|
} else {
|
|
bufchain_consume(&s->output_data, nsent);
|
|
}
|
|
}
|
|
}
|
|
uxsel_tell(s);
|
|
}
|
|
|
|
static int sk_tcp_write(Socket sock, const char *buf, int len)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
|
|
/*
|
|
* Add the data to the buffer list on the socket.
|
|
*/
|
|
bufchain_add(&s->output_data, buf, len);
|
|
|
|
/*
|
|
* Now try sending from the start of the buffer list.
|
|
*/
|
|
if (s->writable)
|
|
try_send(s);
|
|
|
|
return bufchain_size(&s->output_data);
|
|
}
|
|
|
|
static int sk_tcp_write_oob(Socket sock, const char *buf, int len)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
|
|
/*
|
|
* Replace the buffer list on the socket with the data.
|
|
*/
|
|
bufchain_clear(&s->output_data);
|
|
assert(len <= sizeof(s->oobdata));
|
|
memcpy(s->oobdata, buf, len);
|
|
s->sending_oob = len;
|
|
|
|
/*
|
|
* Now try sending from the start of the buffer list.
|
|
*/
|
|
if (s->writable)
|
|
try_send(s);
|
|
|
|
return s->sending_oob;
|
|
}
|
|
|
|
static int net_select_result(int fd, int event)
|
|
{
|
|
int ret;
|
|
int err;
|
|
char buf[20480]; /* nice big buffer for plenty of speed */
|
|
Actual_Socket s;
|
|
u_long atmark;
|
|
|
|
/* Find the Socket structure */
|
|
s = find234(sktree, (void *) fd, cmpforsearch);
|
|
if (!s)
|
|
return 1; /* boggle */
|
|
|
|
noise_ultralight(event);
|
|
|
|
switch (event) {
|
|
case 4: /* exceptional */
|
|
if (!s->oobinline) {
|
|
/*
|
|
* On a non-oobinline socket, this indicates that we
|
|
* can immediately perform an OOB read and get back OOB
|
|
* data, which we will send to the back end with
|
|
* type==2 (urgent data).
|
|
*/
|
|
ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
|
|
noise_ultralight(ret);
|
|
if (ret <= 0) {
|
|
char *str = (ret == 0 ? "Internal networking trouble" :
|
|
error_string(errno));
|
|
/* We're inside the Unix frontend here, so we know
|
|
* that the frontend handle is unnecessary. */
|
|
logevent(NULL, str);
|
|
fatalbox("%s", str);
|
|
} else {
|
|
return plug_receive(s->plug, 2, buf, ret);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we reach here, this is an oobinline socket, which
|
|
* means we should set s->oobpending and then deal with it
|
|
* when we get called for the readability event (which
|
|
* should also occur).
|
|
*/
|
|
s->oobpending = TRUE;
|
|
break;
|
|
case 1: /* readable; also acceptance */
|
|
if (s->listener) {
|
|
/*
|
|
* On a listening socket, the readability event means a
|
|
* connection is ready to be accepted.
|
|
*/
|
|
struct sockaddr_in isa;
|
|
int addrlen = sizeof(struct sockaddr_in);
|
|
int t; /* socket of connection */
|
|
|
|
memset(&isa, 0, sizeof(struct sockaddr_in));
|
|
err = 0;
|
|
t = accept(s->s,(struct sockaddr *)&isa,&addrlen);
|
|
if (t < 0) {
|
|
break;
|
|
}
|
|
|
|
if (s->localhost_only && !ipv4_is_loopback(isa.sin_addr)) {
|
|
close(t); /* someone let nonlocal through?! */
|
|
} else if (plug_accepting(s->plug, (void*)t)) {
|
|
close(t); /* denied or error */
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we reach here, this is not a listening socket, so
|
|
* readability really means readability.
|
|
*/
|
|
|
|
/* In the case the socket is still frozen, we don't even bother */
|
|
if (s->frozen) {
|
|
s->frozen_readable = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have received data on the socket. For an oobinline
|
|
* socket, this might be data _before_ an urgent pointer,
|
|
* in which case we send it to the back end with type==1
|
|
* (data prior to urgent).
|
|
*/
|
|
if (s->oobinline && s->oobpending) {
|
|
atmark = 1;
|
|
if (ioctl(s->s, SIOCATMARK, &atmark) == 0 && atmark)
|
|
s->oobpending = FALSE; /* clear this indicator */
|
|
} else
|
|
atmark = 1;
|
|
|
|
ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
|
|
noise_ultralight(ret);
|
|
if (ret < 0) {
|
|
if (errno == EWOULDBLOCK) {
|
|
break;
|
|
}
|
|
}
|
|
if (ret < 0) {
|
|
return plug_closing(s->plug, error_string(errno), errno, 0);
|
|
} else if (0 == ret) {
|
|
return plug_closing(s->plug, NULL, 0, 0);
|
|
} else {
|
|
return plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
|
|
}
|
|
break;
|
|
case 2: /* writable */
|
|
if (!s->connected) {
|
|
/*
|
|
* select() reports a socket as _writable_ when an
|
|
* asynchronous connection is completed.
|
|
*/
|
|
s->connected = s->writable = 1;
|
|
uxsel_tell(s);
|
|
break;
|
|
} else {
|
|
int bufsize_before, bufsize_after;
|
|
s->writable = 1;
|
|
bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
|
|
try_send(s);
|
|
bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
|
|
if (bufsize_after < bufsize_before)
|
|
plug_sent(s->plug, bufsize_after);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Deal with socket errors detected in try_send().
|
|
*/
|
|
void net_pending_errors(void)
|
|
{
|
|
int i;
|
|
Actual_Socket s;
|
|
|
|
/*
|
|
* This might be a fiddly business, because it's just possible
|
|
* that handling a pending error on one socket might cause
|
|
* others to be closed. (I can't think of any reason this might
|
|
* happen in current SSH implementation, but to maintain
|
|
* generality of this network layer I'll assume the worst.)
|
|
*
|
|
* So what we'll do is search the socket list for _one_ socket
|
|
* with a pending error, and then handle it, and then search
|
|
* the list again _from the beginning_. Repeat until we make a
|
|
* pass with no socket errors present. That way we are
|
|
* protected against the socket list changing under our feet.
|
|
*/
|
|
|
|
do {
|
|
for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
|
|
if (s->pending_error) {
|
|
/*
|
|
* An error has occurred on this socket. Pass it to the
|
|
* plug.
|
|
*/
|
|
plug_closing(s->plug, error_string(s->pending_error),
|
|
s->pending_error, 0);
|
|
break;
|
|
}
|
|
}
|
|
} while (s);
|
|
}
|
|
|
|
/*
|
|
* Each socket abstraction contains a `void *' private field in
|
|
* which the client can keep state.
|
|
*/
|
|
static void sk_tcp_set_private_ptr(Socket sock, void *ptr)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
s->private_ptr = ptr;
|
|
}
|
|
|
|
static void *sk_tcp_get_private_ptr(Socket sock)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
return s->private_ptr;
|
|
}
|
|
|
|
/*
|
|
* Special error values are returned from sk_namelookup and sk_new
|
|
* if there's a problem. These functions extract an error message,
|
|
* or return NULL if there's no problem.
|
|
*/
|
|
char *sk_addr_error(SockAddr addr)
|
|
{
|
|
return addr->error;
|
|
}
|
|
static char *sk_tcp_socket_error(Socket sock)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
return s->error;
|
|
}
|
|
|
|
static void sk_tcp_set_frozen(Socket sock, int is_frozen)
|
|
{
|
|
Actual_Socket s = (Actual_Socket) sock;
|
|
if (s->frozen == is_frozen)
|
|
return;
|
|
s->frozen = is_frozen;
|
|
if (!is_frozen && s->frozen_readable) {
|
|
char c;
|
|
recv(s->s, &c, 1, MSG_PEEK);
|
|
}
|
|
s->frozen_readable = 0;
|
|
uxsel_tell(s);
|
|
}
|
|
|
|
static void uxsel_tell(Actual_Socket s)
|
|
{
|
|
int rwx = 0;
|
|
if (!s->connected)
|
|
rwx |= 2; /* write == connect */
|
|
if (s->connected && !s->frozen)
|
|
rwx |= 1 | 4; /* read, except */
|
|
if (bufchain_size(&s->output_data))
|
|
rwx |= 2; /* write */
|
|
if (s->listener)
|
|
rwx |= 1; /* read == accept */
|
|
uxsel_set(s->s, rwx, net_select_result);
|
|
}
|
|
|
|
int net_service_lookup(char *service)
|
|
{
|
|
struct servent *se;
|
|
se = getservbyname(service, NULL);
|
|
if (se != NULL)
|
|
return ntohs(se->s_port);
|
|
else
|
|
return 0;
|
|
}
|