1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/test/testcrypt-enum.h
Simon Tatham e98615f0ba New post-quantum kex: ML-KEM, and three hybrids of it.
As standardised by NIST in FIPS 203, this is a lattice-based
post-quantum KEM.

Very vaguely, the idea of it is that your public key is a matrix A and
vector t, and the private key is the knowledge of how to decompose t
into two vectors with all their coefficients small, one transformed by
A relative to the other. Encryption of a binary secret starts by
turning each bit into one of two maximally separated residues mod a
prime q, and then adding 'noise' based on the public key in the form
of small increments and decrements mod q, again with some of the noise
transformed by A relative to the rest. Decryption uses the knowledge
of t's decomposition to align the two sets of noise so that the
_large_ changes (which masked the secret from an eavesdropper) cancel
out, leaving only a collection of small changes to the original secret
vector. Then the vector of input bits can be recovered by assuming
that those accumulated small pieces of noise haven't concentrated in
any particular residue enough to push it more than half way to the
other of its possible starting values.

A weird feature of it is that decryption is not a true mathematical
inverse of encryption. The assumption that the noise doesn't get large
enough to flip any bit of the secret is only probabilistically valid,
not a hard guarantee. In other words, key agreement can fail, simply
by getting particularly unlucky with the distribution of your random
noise! However, the probability of a failure is very low - less than
2^-138 even for ML-KEM-512, and gets even smaller with the larger
variants.

An awkward feature for our purposes is that the matrix A, containing a
large number of residues mod the prime q=3329, is required to be
constructed by a process of rejection sampling, i.e. generating random
12-bit values and throwing away the out-of-range ones. That would be a
real pain for our side-channel testing system, which generally handles
rejection sampling badly (since it necessarily involves data-dependent
control flow and timing variation). Fortunately, the matrix and the
random seed it was made from are both public: the matrix seed is
transmitted as part of the public key, so it's not necessary to try to
hide it. Accordingly, I was able to get the implementation to pass
testsc by means of not varying the matrix seed between runs, which is
justified by the principle of testsc that you vary the _secrets_ to
ensure timing is independent of them - and the matrix seed isn't a
secret, so you're allowed to keep it the same.

The three hybrid algorithms, defined by the current Internet-Draft
draft-kampanakis-curdle-ssh-pq-ke, include one hybrid of ML-KEM-768
with Curve25519 in exactly the same way we were already hybridising
NTRU Prime with Curve25519, and two more hybrids of ML-KEM with ECDH
over a NIST curve. The former hybrid interoperates with the
implementation in OpenSSH 9.9; all three interoperate with the fork
'openssh-oqs' at github.com/open-quantum-safe/openssh, and also with
the Python library AsyncSSH.
2024-12-08 10:41:08 +00:00

186 lines
7.3 KiB
C

BEGIN_ENUM_TYPE(hashalg)
ENUM_VALUE("md5", &ssh_md5)
ENUM_VALUE("sha1", &ssh_sha1)
ENUM_VALUE("sha1_sw", &ssh_sha1_sw)
ENUM_VALUE("sha256", &ssh_sha256)
ENUM_VALUE("sha384", &ssh_sha384)
ENUM_VALUE("sha512", &ssh_sha512)
ENUM_VALUE("sha256_sw", &ssh_sha256_sw)
ENUM_VALUE("sha384_sw", &ssh_sha384_sw)
ENUM_VALUE("sha512_sw", &ssh_sha512_sw)
#if HAVE_SHA_NI
ENUM_VALUE("sha1_ni", &ssh_sha1_ni)
ENUM_VALUE("sha256_ni", &ssh_sha256_ni)
#endif
#if HAVE_NEON_CRYPTO
ENUM_VALUE("sha1_neon", &ssh_sha1_neon)
ENUM_VALUE("sha256_neon", &ssh_sha256_neon)
#endif
#if HAVE_NEON_SHA512
ENUM_VALUE("sha384_neon", &ssh_sha384_neon)
ENUM_VALUE("sha512_neon", &ssh_sha512_neon)
#endif
ENUM_VALUE("sha3_224", &ssh_sha3_224)
ENUM_VALUE("sha3_256", &ssh_sha3_256)
ENUM_VALUE("sha3_384", &ssh_sha3_384)
ENUM_VALUE("sha3_512", &ssh_sha3_512)
ENUM_VALUE("shake256_114bytes", &ssh_shake256_114bytes)
ENUM_VALUE("blake2b", &ssh_blake2b)
END_ENUM_TYPE(hashalg)
BEGIN_ENUM_TYPE(macalg)
ENUM_VALUE("hmac_md5", &ssh_hmac_md5)
ENUM_VALUE("hmac_sha1", &ssh_hmac_sha1)
ENUM_VALUE("hmac_sha1_buggy", &ssh_hmac_sha1_buggy)
ENUM_VALUE("hmac_sha1_96", &ssh_hmac_sha1_96)
ENUM_VALUE("hmac_sha1_96_buggy", &ssh_hmac_sha1_96_buggy)
ENUM_VALUE("hmac_sha256", &ssh_hmac_sha256)
ENUM_VALUE("hmac_sha512", &ssh_hmac_sha512)
ENUM_VALUE("poly1305", &ssh2_poly1305)
ENUM_VALUE("aesgcm", &ssh2_aesgcm_mac)
ENUM_VALUE("aesgcm", &ssh2_aesgcm_mac)
ENUM_VALUE("aesgcm_sw", &ssh2_aesgcm_mac_sw)
ENUM_VALUE("aesgcm_ref_poly", &ssh2_aesgcm_mac_ref_poly)
#if HAVE_CLMUL
ENUM_VALUE("aesgcm_clmul", &ssh2_aesgcm_mac_clmul)
#endif
#if HAVE_NEON_PMULL
ENUM_VALUE("aesgcm_neon", &ssh2_aesgcm_mac_neon)
#endif
END_ENUM_TYPE(macalg)
BEGIN_ENUM_TYPE(keyalg)
ENUM_VALUE("dsa", &ssh_dsa)
ENUM_VALUE("rsa", &ssh_rsa)
ENUM_VALUE("ed25519", &ssh_ecdsa_ed25519)
ENUM_VALUE("ed448", &ssh_ecdsa_ed448)
ENUM_VALUE("p256", &ssh_ecdsa_nistp256)
ENUM_VALUE("p384", &ssh_ecdsa_nistp384)
ENUM_VALUE("p521", &ssh_ecdsa_nistp521)
ENUM_VALUE("dsa-cert", &opensshcert_ssh_dsa)
ENUM_VALUE("rsa-cert", &opensshcert_ssh_rsa)
ENUM_VALUE("ed25519-cert", &opensshcert_ssh_ecdsa_ed25519)
ENUM_VALUE("p256-cert", &opensshcert_ssh_ecdsa_nistp256)
ENUM_VALUE("p384-cert", &opensshcert_ssh_ecdsa_nistp384)
ENUM_VALUE("p521-cert", &opensshcert_ssh_ecdsa_nistp521)
END_ENUM_TYPE(keyalg)
BEGIN_ENUM_TYPE(cipheralg)
ENUM_VALUE("3des_ctr", &ssh_3des_ssh2_ctr)
ENUM_VALUE("3des_ssh2", &ssh_3des_ssh2)
ENUM_VALUE("3des_ssh1", &ssh_3des_ssh1)
ENUM_VALUE("des_cbc", &ssh_des)
ENUM_VALUE("aes256_ctr", &ssh_aes256_sdctr)
ENUM_VALUE("aes256_gcm", &ssh_aes256_gcm)
ENUM_VALUE("aes256_cbc", &ssh_aes256_cbc)
ENUM_VALUE("aes192_ctr", &ssh_aes192_sdctr)
ENUM_VALUE("aes192_gcm", &ssh_aes192_gcm)
ENUM_VALUE("aes192_cbc", &ssh_aes192_cbc)
ENUM_VALUE("aes128_ctr", &ssh_aes128_sdctr)
ENUM_VALUE("aes128_gcm", &ssh_aes128_gcm)
ENUM_VALUE("aes128_cbc", &ssh_aes128_cbc)
ENUM_VALUE("aes256_ctr_sw", &ssh_aes256_sdctr_sw)
ENUM_VALUE("aes256_gcm_sw", &ssh_aes256_gcm_sw)
ENUM_VALUE("aes256_cbc_sw", &ssh_aes256_cbc_sw)
ENUM_VALUE("aes192_ctr_sw", &ssh_aes192_sdctr_sw)
ENUM_VALUE("aes192_gcm_sw", &ssh_aes192_gcm_sw)
ENUM_VALUE("aes192_cbc_sw", &ssh_aes192_cbc_sw)
ENUM_VALUE("aes128_ctr_sw", &ssh_aes128_sdctr_sw)
ENUM_VALUE("aes128_gcm_sw", &ssh_aes128_gcm_sw)
ENUM_VALUE("aes128_cbc_sw", &ssh_aes128_cbc_sw)
#if HAVE_AES_NI
ENUM_VALUE("aes256_ctr_ni", &ssh_aes256_sdctr_ni)
ENUM_VALUE("aes256_gcm_ni", &ssh_aes256_gcm_ni)
ENUM_VALUE("aes256_cbc_ni", &ssh_aes256_cbc_ni)
ENUM_VALUE("aes192_ctr_ni", &ssh_aes192_sdctr_ni)
ENUM_VALUE("aes192_gcm_ni", &ssh_aes192_gcm_ni)
ENUM_VALUE("aes192_cbc_ni", &ssh_aes192_cbc_ni)
ENUM_VALUE("aes128_ctr_ni", &ssh_aes128_sdctr_ni)
ENUM_VALUE("aes128_gcm_ni", &ssh_aes128_gcm_ni)
ENUM_VALUE("aes128_cbc_ni", &ssh_aes128_cbc_ni)
#endif
#if HAVE_NEON_CRYPTO
ENUM_VALUE("aes256_ctr_neon", &ssh_aes256_sdctr_neon)
ENUM_VALUE("aes256_gcm_neon", &ssh_aes256_gcm_neon)
ENUM_VALUE("aes256_cbc_neon", &ssh_aes256_cbc_neon)
ENUM_VALUE("aes192_ctr_neon", &ssh_aes192_sdctr_neon)
ENUM_VALUE("aes192_gcm_neon", &ssh_aes192_gcm_neon)
ENUM_VALUE("aes192_cbc_neon", &ssh_aes192_cbc_neon)
ENUM_VALUE("aes128_ctr_neon", &ssh_aes128_sdctr_neon)
ENUM_VALUE("aes128_gcm_neon", &ssh_aes128_gcm_neon)
ENUM_VALUE("aes128_cbc_neon", &ssh_aes128_cbc_neon)
#endif
ENUM_VALUE("blowfish_ctr", &ssh_blowfish_ssh2_ctr)
ENUM_VALUE("blowfish_ssh2", &ssh_blowfish_ssh2)
ENUM_VALUE("blowfish_ssh1", &ssh_blowfish_ssh1)
ENUM_VALUE("arcfour256", &ssh_arcfour256_ssh2)
ENUM_VALUE("arcfour128", &ssh_arcfour128_ssh2)
ENUM_VALUE("chacha20_poly1305", &ssh2_chacha20_poly1305)
END_ENUM_TYPE(cipheralg)
BEGIN_ENUM_TYPE(dh_group)
ENUM_VALUE("group1", &ssh_diffiehellman_group1_sha1)
ENUM_VALUE("group14", &ssh_diffiehellman_group14_sha256)
ENUM_VALUE("group15", &ssh_diffiehellman_group15_sha512)
ENUM_VALUE("group16", &ssh_diffiehellman_group16_sha512)
ENUM_VALUE("group17", &ssh_diffiehellman_group17_sha512)
ENUM_VALUE("group18", &ssh_diffiehellman_group18_sha512)
END_ENUM_TYPE(dh_group)
BEGIN_ENUM_TYPE(ecdh_alg)
ENUM_VALUE("curve25519", &ssh_ec_kex_curve25519)
ENUM_VALUE("curve448", &ssh_ec_kex_curve448)
ENUM_VALUE("nistp256", &ssh_ec_kex_nistp256)
ENUM_VALUE("nistp384", &ssh_ec_kex_nistp384)
ENUM_VALUE("nistp521", &ssh_ec_kex_nistp521)
END_ENUM_TYPE(ecdh_alg)
BEGIN_ENUM_TYPE(rsaorder)
ENUM_VALUE("exponent_first", RSA_SSH1_EXPONENT_FIRST)
ENUM_VALUE("modulus_first", RSA_SSH1_MODULUS_FIRST)
END_ENUM_TYPE(rsaorder)
BEGIN_ENUM_TYPE(primegenpolicy)
ENUM_VALUE("probabilistic", &primegen_probabilistic)
ENUM_VALUE("provable_fast", &primegen_provable_fast)
ENUM_VALUE("provable_maurer_simple", &primegen_provable_maurer_simple)
ENUM_VALUE("provable_maurer_complex", &primegen_provable_maurer_complex)
END_ENUM_TYPE(primegenpolicy)
BEGIN_ENUM_TYPE(argon2flavour)
ENUM_VALUE("d", Argon2d)
ENUM_VALUE("i", Argon2i)
ENUM_VALUE("id", Argon2id)
/* I expect to forget which spelling I chose, so let's support many */
ENUM_VALUE("argon2d", Argon2d)
ENUM_VALUE("argon2i", Argon2i)
ENUM_VALUE("argon2id", Argon2id)
ENUM_VALUE("Argon2d", Argon2d)
ENUM_VALUE("Argon2i", Argon2i)
ENUM_VALUE("Argon2id", Argon2id)
END_ENUM_TYPE(argon2flavour)
BEGIN_ENUM_TYPE(mlkem_params)
ENUM_VALUE("mlkem512", &mlkem_params_512)
ENUM_VALUE("mlkem768", &mlkem_params_768)
ENUM_VALUE("mlkem1024", &mlkem_params_1024)
END_ENUM_TYPE(mlkem_params)
BEGIN_ENUM_TYPE(fptype)
ENUM_VALUE("md5", SSH_FPTYPE_MD5)
ENUM_VALUE("sha256", SSH_FPTYPE_SHA256)
ENUM_VALUE("md5-cert", SSH_FPTYPE_MD5_CERT)
ENUM_VALUE("sha256-cert", SSH_FPTYPE_SHA256_CERT)
END_ENUM_TYPE(fptype)
/*
* cproxy.h already has a list macro mapping protocol-specified
* strings to the list of HTTP Digest hash functions. Rather than
* invent a separate one for testcrypt, reuse the existing names.
*/
BEGIN_ENUM_TYPE(httpdigesthash)
#define DECL_ARRAY(id, str, alg, bits, accepted) ENUM_VALUE(str, id)
HTTP_DIGEST_HASHES(DECL_ARRAY)
#undef DECL_ARRAY
END_ENUM_TYPE(httpdigesthash)