mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 09:12:24 +00:00
5bb869dd22
I ran across their defining RFCs recently and noticed that each one provides an explicit mathematical expression for the prime (since each one is derived from the expansion of pi, with framing FFs and a correction term to make it actually prime). Those expressions can be re-evaluated trivially by spigot, so it seems reasonable to add those spigot commands in comments. This also means the comments contain citations for these primes in actual standards, including both the hex digits and the mathematical expressions.
279 lines
7.5 KiB
C
279 lines
7.5 KiB
C
/*
|
|
* Diffie-Hellman implementation for PuTTY.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "misc.h"
|
|
#include "mpint.h"
|
|
|
|
struct dh_ctx {
|
|
mp_int *x, *e, *p, *q, *g;
|
|
};
|
|
|
|
struct dh_extra {
|
|
bool gex;
|
|
void (*construct)(dh_ctx *ctx);
|
|
};
|
|
|
|
static void dh_group1_construct(dh_ctx *ctx)
|
|
{
|
|
/* Command to recompute, from the expression in RFC 2412 section E.2:
|
|
spigot -B16 '2^1024 - 2^960 - 1 + 2^64 * ( floor(2^894 pi) + 129093 )'
|
|
*/
|
|
ctx->p = MP_LITERAL(0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF);
|
|
ctx->g = mp_from_integer(2);
|
|
}
|
|
|
|
static void dh_group14_construct(dh_ctx *ctx)
|
|
{
|
|
/* Command to recompute, from the expression in RFC 3526 section 3:
|
|
spigot -B16 '2^2048 - 2^1984 - 1 + 2^64 * ( floor(2^1918 pi) + 124476 )'
|
|
*/
|
|
ctx->p = MP_LITERAL(0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF);
|
|
ctx->g = mp_from_integer(2);
|
|
}
|
|
|
|
static const struct dh_extra extra_group1 = {
|
|
false, dh_group1_construct,
|
|
};
|
|
|
|
static const ssh_kex ssh_diffiehellman_group1_sha1 = {
|
|
"diffie-hellman-group1-sha1", "group1",
|
|
KEXTYPE_DH, &ssh_sha1, &extra_group1,
|
|
};
|
|
|
|
static const ssh_kex *const group1_list[] = {
|
|
&ssh_diffiehellman_group1_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_diffiehellman_group1 = { lenof(group1_list), group1_list };
|
|
|
|
static const struct dh_extra extra_group14 = {
|
|
false, dh_group14_construct,
|
|
};
|
|
|
|
static const ssh_kex ssh_diffiehellman_group14_sha256 = {
|
|
"diffie-hellman-group14-sha256", "group14",
|
|
KEXTYPE_DH, &ssh_sha256, &extra_group14,
|
|
};
|
|
|
|
static const ssh_kex ssh_diffiehellman_group14_sha1 = {
|
|
"diffie-hellman-group14-sha1", "group14",
|
|
KEXTYPE_DH, &ssh_sha1, &extra_group14,
|
|
};
|
|
|
|
static const ssh_kex *const group14_list[] = {
|
|
&ssh_diffiehellman_group14_sha256,
|
|
&ssh_diffiehellman_group14_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_diffiehellman_group14 = {
|
|
lenof(group14_list), group14_list
|
|
};
|
|
|
|
static const struct dh_extra extra_gex = { true };
|
|
|
|
static const ssh_kex ssh_diffiehellman_gex_sha256 = {
|
|
"diffie-hellman-group-exchange-sha256", NULL,
|
|
KEXTYPE_DH, &ssh_sha256, &extra_gex,
|
|
};
|
|
|
|
static const ssh_kex ssh_diffiehellman_gex_sha1 = {
|
|
"diffie-hellman-group-exchange-sha1", NULL,
|
|
KEXTYPE_DH, &ssh_sha1, &extra_gex,
|
|
};
|
|
|
|
static const ssh_kex *const gex_list[] = {
|
|
&ssh_diffiehellman_gex_sha256,
|
|
&ssh_diffiehellman_gex_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_diffiehellman_gex = { lenof(gex_list), gex_list };
|
|
|
|
/*
|
|
* Suffix on GSSAPI SSH protocol identifiers that indicates Kerberos 5
|
|
* as the mechanism.
|
|
*
|
|
* This suffix is the base64-encoded MD5 hash of the byte sequence
|
|
* 06 09 2A 86 48 86 F7 12 01 02 02, which in turn is the ASN.1 DER
|
|
* encoding of the object ID 1.2.840.113554.1.2.2 which designates
|
|
* Kerberos v5.
|
|
*
|
|
* (The same encoded OID, minus the two-byte DER header, is defined in
|
|
* ssh/pgssapi.c as GSS_MECH_KRB5.)
|
|
*/
|
|
#define GSS_KRB5_OID_HASH "toWM5Slw5Ew8Mqkay+al2g=="
|
|
|
|
static const ssh_kex ssh_gssk5_diffiehellman_gex_sha1 = {
|
|
"gss-gex-sha1-" GSS_KRB5_OID_HASH, NULL,
|
|
KEXTYPE_GSS, &ssh_sha1, &extra_gex,
|
|
};
|
|
|
|
static const ssh_kex ssh_gssk5_diffiehellman_group14_sha1 = {
|
|
"gss-group14-sha1-" GSS_KRB5_OID_HASH, "group14",
|
|
KEXTYPE_GSS, &ssh_sha1, &extra_group14,
|
|
};
|
|
|
|
static const ssh_kex ssh_gssk5_diffiehellman_group1_sha1 = {
|
|
"gss-group1-sha1-" GSS_KRB5_OID_HASH, "group1",
|
|
KEXTYPE_GSS, &ssh_sha1, &extra_group1,
|
|
};
|
|
|
|
static const ssh_kex *const gssk5_sha1_kex_list[] = {
|
|
&ssh_gssk5_diffiehellman_gex_sha1,
|
|
&ssh_gssk5_diffiehellman_group14_sha1,
|
|
&ssh_gssk5_diffiehellman_group1_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_gssk5_sha1_kex = {
|
|
lenof(gssk5_sha1_kex_list), gssk5_sha1_kex_list
|
|
};
|
|
|
|
/*
|
|
* Common DH initialisation.
|
|
*/
|
|
static void dh_init(dh_ctx *ctx)
|
|
{
|
|
ctx->q = mp_rshift_fixed(ctx->p, 1);
|
|
ctx->x = ctx->e = NULL;
|
|
}
|
|
|
|
bool dh_is_gex(const ssh_kex *kex)
|
|
{
|
|
const struct dh_extra *extra = (const struct dh_extra *)kex->extra;
|
|
return extra->gex;
|
|
}
|
|
|
|
/*
|
|
* Initialise DH for a standard group.
|
|
*/
|
|
dh_ctx *dh_setup_group(const ssh_kex *kex)
|
|
{
|
|
const struct dh_extra *extra = (const struct dh_extra *)kex->extra;
|
|
assert(!extra->gex);
|
|
dh_ctx *ctx = snew(dh_ctx);
|
|
extra->construct(ctx);
|
|
dh_init(ctx);
|
|
return ctx;
|
|
}
|
|
|
|
/*
|
|
* Initialise DH for a server-supplied group.
|
|
*/
|
|
dh_ctx *dh_setup_gex(mp_int *pval, mp_int *gval)
|
|
{
|
|
dh_ctx *ctx = snew(dh_ctx);
|
|
ctx->p = mp_copy(pval);
|
|
ctx->g = mp_copy(gval);
|
|
dh_init(ctx);
|
|
return ctx;
|
|
}
|
|
|
|
/*
|
|
* Return size of DH modulus p.
|
|
*/
|
|
int dh_modulus_bit_size(const dh_ctx *ctx)
|
|
{
|
|
return mp_get_nbits(ctx->p);
|
|
}
|
|
|
|
/*
|
|
* Clean up and free a context.
|
|
*/
|
|
void dh_cleanup(dh_ctx *ctx)
|
|
{
|
|
if (ctx->x)
|
|
mp_free(ctx->x);
|
|
if (ctx->e)
|
|
mp_free(ctx->e);
|
|
if (ctx->p)
|
|
mp_free(ctx->p);
|
|
if (ctx->g)
|
|
mp_free(ctx->g);
|
|
if (ctx->q)
|
|
mp_free(ctx->q);
|
|
sfree(ctx);
|
|
}
|
|
|
|
/*
|
|
* DH stage 1: invent a number x between 1 and q, and compute e =
|
|
* g^x mod p. Return e.
|
|
*
|
|
* If `nbits' is greater than zero, it is used as an upper limit
|
|
* for the number of bits in x. This is safe provided that (a) you
|
|
* use twice as many bits in x as the number of bits you expect to
|
|
* use in your session key, and (b) the DH group is a safe prime
|
|
* (which SSH demands that it must be).
|
|
*
|
|
* P. C. van Oorschot, M. J. Wiener
|
|
* "On Diffie-Hellman Key Agreement with Short Exponents".
|
|
* Advances in Cryptology: Proceedings of Eurocrypt '96
|
|
* Springer-Verlag, May 1996.
|
|
*/
|
|
mp_int *dh_create_e(dh_ctx *ctx, int nbits)
|
|
{
|
|
/*
|
|
* Lower limit is just 2.
|
|
*/
|
|
mp_int *lo = mp_from_integer(2);
|
|
|
|
/*
|
|
* Upper limit.
|
|
*/
|
|
mp_int *hi = mp_copy(ctx->q);
|
|
mp_sub_integer_into(hi, hi, 1);
|
|
if (nbits) {
|
|
mp_int *pow2 = mp_power_2(nbits+1);
|
|
mp_min_into(pow2, pow2, hi);
|
|
mp_free(hi);
|
|
hi = pow2;
|
|
}
|
|
|
|
/*
|
|
* Make a random number in that range.
|
|
*/
|
|
ctx->x = mp_random_in_range(lo, hi);
|
|
mp_free(lo);
|
|
mp_free(hi);
|
|
|
|
/*
|
|
* Now compute e = g^x mod p.
|
|
*/
|
|
ctx->e = mp_modpow(ctx->g, ctx->x, ctx->p);
|
|
|
|
return ctx->e;
|
|
}
|
|
|
|
/*
|
|
* DH stage 2-epsilon: given a number f, validate it to ensure it's in
|
|
* range. (RFC 4253 section 8: "Values of 'e' or 'f' that are not in
|
|
* the range [1, p-1] MUST NOT be sent or accepted by either side."
|
|
* Also, we rule out 1 and p-1 too, since that's easy to do and since
|
|
* they lead to obviously weak keys that even a passive eavesdropper
|
|
* can figure out.)
|
|
*/
|
|
const char *dh_validate_f(dh_ctx *ctx, mp_int *f)
|
|
{
|
|
if (!mp_hs_integer(f, 2)) {
|
|
return "f value received is too small";
|
|
} else {
|
|
mp_int *pm1 = mp_copy(ctx->p);
|
|
mp_sub_integer_into(pm1, pm1, 1);
|
|
unsigned cmp = mp_cmp_hs(f, pm1);
|
|
mp_free(pm1);
|
|
if (cmp)
|
|
return "f value received is too large";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* DH stage 2: given a number f, compute K = f^x mod p.
|
|
*/
|
|
mp_int *dh_find_K(dh_ctx *ctx, mp_int *f)
|
|
{
|
|
return mp_modpow(f, ctx->x, ctx->p);
|
|
}
|