mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
a085acbadf
This is standardised by RFC 8709 at SHOULD level, and for us it's not too difficult (because we use general-purpose elliptic-curve code). So let's be up to date for a change, and add it. This implementation uses all the formats defined in the RFC. But we also have to choose a wire format for the public+private key blob sent to an agent, and since the OpenSSH agent protocol is the de facto standard but not (yet?) handled by the IETF, OpenSSH themselves get to say what the format for a key should or shouldn't be. So if they don't support a particular key method, what do you do? I checked with them, and they agreed that there's an obviously right format for Ed448 keys, which is to do them exactly like Ed25519 except that you have a 57-byte string everywhere Ed25519 had a 32-byte string. So I've done that.
329 lines
14 KiB
Python
329 lines
14 KiB
Python
import numbers
|
|
import itertools
|
|
|
|
from numbertheory import *
|
|
|
|
class AffinePoint(object):
|
|
"""Base class for points on an elliptic curve."""
|
|
|
|
def __init__(self, curve, *args):
|
|
self.curve = curve
|
|
if len(args) == 0:
|
|
self.infinite = True
|
|
self.x = self.y = None
|
|
else:
|
|
assert len(args) == 2
|
|
self.infinite = False
|
|
self.x = ModP(self.curve.p, args[0])
|
|
self.y = ModP(self.curve.p, args[1])
|
|
self.check_equation()
|
|
def __neg__(self):
|
|
if self.infinite:
|
|
return self
|
|
return type(self)(self.curve, self.x, -self.y)
|
|
def __mul__(self, rhs):
|
|
if not isinstance(rhs, numbers.Integral):
|
|
raise ValueError("Elliptic curve points can only be multiplied by integers")
|
|
P = self
|
|
if rhs < 0:
|
|
rhs = -rhs
|
|
P = -P
|
|
toret = self.curve.point()
|
|
n = 1
|
|
nP = P
|
|
while rhs != 0:
|
|
if rhs & n:
|
|
rhs -= n
|
|
toret += nP
|
|
n += n
|
|
nP += nP
|
|
return toret
|
|
def __rmul__(self, rhs):
|
|
return self * rhs
|
|
def __sub__(self, rhs):
|
|
return self + (-rhs)
|
|
def __rsub__(self, rhs):
|
|
return (-self) + rhs
|
|
def __str__(self):
|
|
if self.infinite:
|
|
return "inf"
|
|
else:
|
|
return "({},{})".format(self.x, self.y)
|
|
def __repr__(self):
|
|
if self.infinite:
|
|
args = ""
|
|
else:
|
|
args = ", {}, {}".format(self.x, self.y)
|
|
return "{}.Point({}{})".format(type(self.curve).__name__,
|
|
self.curve, args)
|
|
def __eq__(self, rhs):
|
|
if self.infinite or rhs.infinite:
|
|
return self.infinite and rhs.infinite
|
|
return (self.x, self.y) == (rhs.x, rhs.y)
|
|
def __ne__(self, rhs):
|
|
return not (self == rhs)
|
|
def __lt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __le__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __gt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __ge__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __hash__(self):
|
|
if self.infinite:
|
|
return hash((True,))
|
|
else:
|
|
return hash((False, self.x, self.y))
|
|
|
|
class CurveBase(object):
|
|
def point(self, *args):
|
|
return self.Point(self, *args)
|
|
|
|
class WeierstrassCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x + self.curve.b)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
else:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + self.curve.a) / (2*y1)
|
|
xp = slope*slope - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = RootModP(2, self.p)
|
|
rhs = x**3 + self.a.n * x + self.b.n
|
|
y = self.sqrtmodp.root(rhs)
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class MontgomeryCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.curve.b*self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x*self.x + self.x)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
elif y1 != 0:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
|
|
else:
|
|
# If y1 was 0 as well, then we must have found an
|
|
# order-2 point that doubles to the identity.
|
|
return self.curve.point()
|
|
xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = RootModP(2, self.p)
|
|
rhs = (x**3 + self.a.n * x**2 + x) / self.b
|
|
y = self.sqrtmodp.root(int(rhs))
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class TwistedEdwardsCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
x2, y2 = self.x*self.x, self.y*self.y
|
|
assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
|
|
def __neg__(self):
|
|
return type(self)(self.curve, -self.x, self.y)
|
|
def __add__(self, rhs):
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
|
|
dxxyy = self.curve.d*x1x2*y1y2
|
|
return self.curve.point((x1y2+y1x2)/(1+dxxyy),
|
|
(y1y2-self.curve.a*x1x2)/(1-dxxyy))
|
|
|
|
def __init__(self, p, d, a):
|
|
self.p = p
|
|
self.d = ModP(p, d)
|
|
self.a = ModP(p, a)
|
|
|
|
def point(self, *args):
|
|
# This curve form represents the identity using finite
|
|
# numbers, so it doesn't need the special infinity flag.
|
|
# Detect a no-argument call to point() and substitute the pair
|
|
# of integers that gives the identity.
|
|
if len(args) == 0:
|
|
args = [0, 1]
|
|
return super(TwistedEdwardsCurve, self).point(*args)
|
|
|
|
def cpoint(self, y, xparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = RootModP(self.p)
|
|
y = ModP(self.p, y)
|
|
y2 = y**2
|
|
radicand = (y2 - 1) / (self.d * y2 - self.a)
|
|
x = self.sqrtmodp.root(radicand.n)
|
|
if (x - xparity) % 2:
|
|
x = -x
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.d, self.a)
|
|
|
|
def find_montgomery_power2_order_x_values(p, a):
|
|
# Find points on a Montgomery elliptic curve that have order a
|
|
# power of 2.
|
|
#
|
|
# Motivation: both Curve25519 and Curve448 are abelian groups
|
|
# whose overall order is a large prime times a small factor of 2.
|
|
# The approved base point of each curve generates a cyclic
|
|
# subgroup whose order is the large prime. Outside that cyclic
|
|
# subgroup there are many other points that have large prime
|
|
# order, plus just a handful that have tiny order. If one of the
|
|
# latter is presented to you as a Diffie-Hellman public value,
|
|
# nothing useful is going to happen, and RFC 7748 says we should
|
|
# outlaw those values. And any actual attempt to outlaw them is
|
|
# going to need to know what they are, either to check for each
|
|
# one directly, or to use them as test cases for some other
|
|
# approach.
|
|
#
|
|
# In a group of order p 2^k, an obvious way to search for points
|
|
# with order dividing 2^k is to generate random group elements and
|
|
# raise them to the power p. That guarantees that you end up with
|
|
# _something_ with order dividing 2^k (even if it's boringly the
|
|
# identity). And you also know from theory how many such points
|
|
# you expect to exist, so you can count the distinct ones you've
|
|
# found, and stop once you've got the right number.
|
|
#
|
|
# But that isn't actually good enough to find all the public
|
|
# values that are problematic! The reason why not is that in
|
|
# Montgomery key exchange we don't actually use a full elliptic
|
|
# curve point: we only use its x-coordinate. And the formulae for
|
|
# doubling and differential addition on x-coordinates can accept
|
|
# some values that don't correspond to group elements _at all_
|
|
# without detecting any error - and some of those nonsense x
|
|
# coordinates can also behave like low-order points.
|
|
#
|
|
# (For example, the x-coordinate -1 in Curve25519 is such a value.
|
|
# The reference ECC code in this module will raise an exception if
|
|
# you call curve25519.cpoint(-1): it corresponds to no valid point
|
|
# at all. But if you feed it into the doubling formula _anyway_,
|
|
# it doubles to the valid curve point with x-coord 0, which in
|
|
# turn doubles to the curve identity. Bang.)
|
|
#
|
|
# So we use an alternative approach which discards the group
|
|
# theory of the actual elliptic curve, and focuses purely on the
|
|
# doubling formula as an algebraic transformation on Z_p. Our
|
|
# question is: what values of x have the property that if you
|
|
# iterate the doubling map you eventually end up dividing by zero?
|
|
# To answer that, we must solve cubics and quartics mod p, via the
|
|
# code in numbertheory.py for doing so.
|
|
|
|
E = EquationSolverModP(p)
|
|
|
|
def viableSolutions(it):
|
|
for x in it:
|
|
try:
|
|
yield int(x)
|
|
except ValueError:
|
|
pass # some field-extension element that isn't a real value
|
|
|
|
def valuesDoublingTo(y):
|
|
# The doubling formula for a Montgomery curve point given only
|
|
# by x coordinate is (x+1)^2(x-1)^2 / (4(x^3+ax^2+x)).
|
|
#
|
|
# If we want to find a point that doubles to some particular
|
|
# value, we can set that formula equal to y and expand to get the
|
|
# quartic equation x^4 + (-4y)x^3 + (-4ay-2)x^2 + (-4y)x + 1 = 0.
|
|
return viableSolutions(E.solve_monic_quartic(-4*y, -4*a*y-2, -4*y, 1))
|
|
|
|
queue = []
|
|
qset = set()
|
|
pos = 0
|
|
def insert(x):
|
|
if x not in qset:
|
|
queue.append(x)
|
|
qset.add(x)
|
|
|
|
# Our ultimate aim is to find points that end up going to the
|
|
# curve identity / point at infinity after some number of
|
|
# doublings. So our starting point is: what values of x make the
|
|
# denominator of the doubling formula zero?
|
|
for x in viableSolutions(E.solve_monic_cubic(a, 1, 0)):
|
|
insert(x)
|
|
|
|
while pos < len(queue):
|
|
y = queue[pos]
|
|
pos += 1
|
|
for x in valuesDoublingTo(y):
|
|
insert(x)
|
|
|
|
return queue
|
|
|
|
p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
|
|
p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
|
|
p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
|
|
|
|
p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
|
|
p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
|
|
p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
|
|
|
|
p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
|
|
p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
|
|
p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
|
|
|
|
curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
|
|
curve25519.G = curve25519.cpoint(9)
|
|
|
|
curve448 = MontgomeryCurve(2**448-2**224-1, 0x262a6, 1)
|
|
curve448.G = curve448.cpoint(5)
|
|
|
|
ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
|
|
ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
|
|
ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
|
|
|
|
ed448 = TwistedEdwardsCurve(2**448-2**224-1, -39081, +1)
|
|
ed448.G = ed448.point(0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e,0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14)
|
|
ed448.G_order = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3
|