mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
2c76bd5b3a
[originally from svn r630]
696 lines
18 KiB
C
696 lines
18 KiB
C
/*
|
|
* tree234.c: reasonably generic 2-3-4 tree routines. Currently
|
|
* supports insert, delete, find and iterate operations.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "tree234.h"
|
|
|
|
#define mknew(typ) ( (typ *) malloc (sizeof (typ)) )
|
|
#define sfree free
|
|
|
|
#ifdef TEST
|
|
#define LOG(x) (printf x)
|
|
#else
|
|
#define LOG(x)
|
|
#endif
|
|
|
|
struct tree234_Tag {
|
|
node234 *root;
|
|
cmpfn234 cmp;
|
|
};
|
|
|
|
struct node234_Tag {
|
|
node234 *parent;
|
|
node234 *kids[4];
|
|
void *elems[3];
|
|
};
|
|
|
|
/*
|
|
* Create a 2-3-4 tree.
|
|
*/
|
|
tree234 *newtree234(cmpfn234 cmp) {
|
|
tree234 *ret = mknew(tree234);
|
|
LOG(("created tree %p\n", ret));
|
|
ret->root = NULL;
|
|
ret->cmp = cmp;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free a 2-3-4 tree (not including freeing the elements).
|
|
*/
|
|
static void freenode234(node234 *n) {
|
|
if (!n)
|
|
return;
|
|
freenode234(n->kids[0]);
|
|
freenode234(n->kids[1]);
|
|
freenode234(n->kids[2]);
|
|
freenode234(n->kids[3]);
|
|
sfree(n);
|
|
}
|
|
void freetree234(tree234 *t) {
|
|
freenode234(t->root);
|
|
sfree(t);
|
|
}
|
|
|
|
/*
|
|
* Add an element e to a 2-3-4 tree t. Returns e on success, or if
|
|
* an existing element compares equal, returns that.
|
|
*/
|
|
void *add234(tree234 *t, void *e) {
|
|
node234 *n, **np, *left, *right;
|
|
void *orig_e = e;
|
|
int c;
|
|
|
|
LOG(("adding node %p to tree %p\n", e, t));
|
|
if (t->root == NULL) {
|
|
t->root = mknew(node234);
|
|
t->root->elems[1] = t->root->elems[2] = NULL;
|
|
t->root->kids[0] = t->root->kids[1] = NULL;
|
|
t->root->kids[2] = t->root->kids[3] = NULL;
|
|
t->root->parent = NULL;
|
|
t->root->elems[0] = e;
|
|
LOG((" created root %p\n", t->root));
|
|
return orig_e;
|
|
}
|
|
|
|
np = &t->root;
|
|
while (*np) {
|
|
n = *np;
|
|
LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n",
|
|
n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
|
|
n->kids[2], n->elems[2], n->kids[3]));
|
|
if ((c = t->cmp(e, n->elems[0])) < 0)
|
|
np = &n->kids[0];
|
|
else if (c == 0)
|
|
return n->elems[0]; /* already exists */
|
|
else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
|
|
np = &n->kids[1];
|
|
else if (c == 0)
|
|
return n->elems[1]; /* already exists */
|
|
else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
|
|
np = &n->kids[2];
|
|
else if (c == 0)
|
|
return n->elems[2]; /* already exists */
|
|
else
|
|
np = &n->kids[3];
|
|
LOG((" moving to child %d (%p)\n", np - n->kids, *np));
|
|
}
|
|
|
|
/*
|
|
* We need to insert the new element in n at position np.
|
|
*/
|
|
left = NULL;
|
|
right = NULL;
|
|
while (n) {
|
|
LOG((" at %p: %p [%p] %p [%p] %p [%p] %p\n",
|
|
n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
|
|
n->kids[2], n->elems[2], n->kids[3]));
|
|
LOG((" need to insert %p [%p] %p at position %d\n",
|
|
left, e, right, np - n->kids));
|
|
if (n->elems[1] == NULL) {
|
|
/*
|
|
* Insert in a 2-node; simple.
|
|
*/
|
|
if (np == &n->kids[0]) {
|
|
LOG((" inserting on left of 2-node\n"));
|
|
n->kids[2] = n->kids[1];
|
|
n->elems[1] = n->elems[0];
|
|
n->kids[1] = right;
|
|
n->elems[0] = e;
|
|
n->kids[0] = left;
|
|
} else { /* np == &n->kids[1] */
|
|
LOG((" inserting on right of 2-node\n"));
|
|
n->kids[2] = right;
|
|
n->elems[1] = e;
|
|
n->kids[1] = left;
|
|
}
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
if (n->kids[2]) n->kids[2]->parent = n;
|
|
LOG((" done\n"));
|
|
break;
|
|
} else if (n->elems[2] == NULL) {
|
|
/*
|
|
* Insert in a 3-node; simple.
|
|
*/
|
|
if (np == &n->kids[0]) {
|
|
LOG((" inserting on left of 3-node\n"));
|
|
n->kids[3] = n->kids[2];
|
|
n->elems[2] = n->elems[1];
|
|
n->kids[2] = n->kids[1];
|
|
n->elems[1] = n->elems[0];
|
|
n->kids[1] = right;
|
|
n->elems[0] = e;
|
|
n->kids[0] = left;
|
|
} else if (np == &n->kids[1]) {
|
|
LOG((" inserting in middle of 3-node\n"));
|
|
n->kids[3] = n->kids[2];
|
|
n->elems[2] = n->elems[1];
|
|
n->kids[2] = right;
|
|
n->elems[1] = e;
|
|
n->kids[1] = left;
|
|
} else { /* np == &n->kids[2] */
|
|
LOG((" inserting on right of 3-node\n"));
|
|
n->kids[3] = right;
|
|
n->elems[2] = e;
|
|
n->kids[2] = left;
|
|
}
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
if (n->kids[2]) n->kids[2]->parent = n;
|
|
if (n->kids[3]) n->kids[3]->parent = n;
|
|
LOG((" done\n"));
|
|
break;
|
|
} else {
|
|
node234 *m = mknew(node234);
|
|
m->parent = n->parent;
|
|
LOG((" splitting a 4-node; created new node %p\n", m));
|
|
/*
|
|
* Insert in a 4-node; split into a 2-node and a
|
|
* 3-node, and move focus up a level.
|
|
*
|
|
* I don't think it matters which way round we put the
|
|
* 2 and the 3. For simplicity, we'll put the 3 first
|
|
* always.
|
|
*/
|
|
if (np == &n->kids[0]) {
|
|
m->kids[0] = left;
|
|
m->elems[0] = e;
|
|
m->kids[1] = right;
|
|
m->elems[1] = n->elems[0];
|
|
m->kids[2] = n->kids[1];
|
|
e = n->elems[1];
|
|
n->kids[0] = n->kids[2];
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3];
|
|
} else if (np == &n->kids[1]) {
|
|
m->kids[0] = n->kids[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = left;
|
|
m->elems[1] = e;
|
|
m->kids[2] = right;
|
|
e = n->elems[1];
|
|
n->kids[0] = n->kids[2];
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3];
|
|
} else if (np == &n->kids[2]) {
|
|
m->kids[0] = n->kids[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = n->kids[1];
|
|
m->elems[1] = n->elems[1];
|
|
m->kids[2] = left;
|
|
/* e = e; */
|
|
n->kids[0] = right;
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3];
|
|
} else { /* np == &n->kids[3] */
|
|
m->kids[0] = n->kids[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = n->kids[1];
|
|
m->elems[1] = n->elems[1];
|
|
m->kids[2] = n->kids[2];
|
|
n->kids[0] = left;
|
|
n->elems[0] = e;
|
|
n->kids[1] = right;
|
|
e = n->elems[2];
|
|
}
|
|
m->kids[3] = n->kids[3] = n->kids[2] = NULL;
|
|
m->elems[2] = n->elems[2] = n->elems[1] = NULL;
|
|
if (m->kids[0]) m->kids[0]->parent = m;
|
|
if (m->kids[1]) m->kids[1]->parent = m;
|
|
if (m->kids[2]) m->kids[2]->parent = m;
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
LOG((" left (%p): %p [%p] %p [%p] %p\n", m,
|
|
m->kids[0], m->elems[0],
|
|
m->kids[1], m->elems[1],
|
|
m->kids[2]));
|
|
LOG((" right (%p): %p [%p] %p\n", n,
|
|
n->kids[0], n->elems[0],
|
|
n->kids[1]));
|
|
left = m;
|
|
right = n;
|
|
}
|
|
if (n->parent)
|
|
np = (n->parent->kids[0] == n ? &n->parent->kids[0] :
|
|
n->parent->kids[1] == n ? &n->parent->kids[1] :
|
|
n->parent->kids[2] == n ? &n->parent->kids[2] :
|
|
&n->parent->kids[3]);
|
|
n = n->parent;
|
|
}
|
|
|
|
/*
|
|
* If we've come out of here by `break', n will still be
|
|
* non-NULL and we've finished. If we've come here because n is
|
|
* NULL, we need to create a new root for the tree because the
|
|
* old one has just split into two.
|
|
*/
|
|
if (!n) {
|
|
LOG((" root is overloaded, split into two\n"));
|
|
t->root = mknew(node234);
|
|
t->root->kids[0] = left;
|
|
t->root->elems[0] = e;
|
|
t->root->kids[1] = right;
|
|
t->root->elems[1] = NULL;
|
|
t->root->kids[2] = NULL;
|
|
t->root->elems[2] = NULL;
|
|
t->root->kids[3] = NULL;
|
|
t->root->parent = NULL;
|
|
if (t->root->kids[0]) t->root->kids[0]->parent = t->root;
|
|
if (t->root->kids[1]) t->root->kids[1]->parent = t->root;
|
|
LOG((" new root is %p [%p] %p\n",
|
|
t->root->kids[0], t->root->elems[0], t->root->kids[1]));
|
|
}
|
|
|
|
return orig_e;
|
|
}
|
|
|
|
/*
|
|
* Find an element e in a 2-3-4 tree t. Returns NULL if not found.
|
|
* e is always passed as the first argument to cmp, so cmp can be
|
|
* an asymmetric function if desired. cmp can also be passed as
|
|
* NULL, in which case the compare function from the tree proper
|
|
* will be used.
|
|
*/
|
|
void *find234(tree234 *t, void *e, cmpfn234 cmp) {
|
|
node234 *n;
|
|
int c;
|
|
|
|
if (t->root == NULL)
|
|
return NULL;
|
|
|
|
if (cmp == NULL)
|
|
cmp = t->cmp;
|
|
|
|
n = t->root;
|
|
while (n) {
|
|
if ( (c = cmp(e, n->elems[0])) < 0)
|
|
n = n->kids[0];
|
|
else if (c == 0)
|
|
return n->elems[0];
|
|
else if (n->elems[1] == NULL || (c = cmp(e, n->elems[1])) < 0)
|
|
n = n->kids[1];
|
|
else if (c == 0)
|
|
return n->elems[1];
|
|
else if (n->elems[2] == NULL || (c = cmp(e, n->elems[2])) < 0)
|
|
n = n->kids[2];
|
|
else if (c == 0)
|
|
return n->elems[2];
|
|
else
|
|
n = n->kids[3];
|
|
}
|
|
|
|
/*
|
|
* We've found our way to the bottom of the tree and we know
|
|
* where we would insert this node if we wanted to. But it
|
|
* isn't there.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Delete an element e in a 2-3-4 tree. Does not free the element,
|
|
* merely removes all links to it from the tree nodes.
|
|
*/
|
|
void del234(tree234 *t, void *e) {
|
|
node234 *n;
|
|
int ei = -1;
|
|
|
|
n = t->root;
|
|
LOG(("deleting %p from tree %p\n", e, t));
|
|
while (1) {
|
|
while (n) {
|
|
int c;
|
|
int ki;
|
|
node234 *sub;
|
|
|
|
LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n",
|
|
n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
|
|
n->kids[2], n->elems[2], n->kids[3]));
|
|
if ((c = t->cmp(e, n->elems[0])) < 0) {
|
|
ki = 0;
|
|
} else if (c == 0) {
|
|
ei = 0; break;
|
|
} else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) {
|
|
ki = 1;
|
|
} else if (c == 0) {
|
|
ei = 1; break;
|
|
} else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) {
|
|
ki = 2;
|
|
} else if (c == 0) {
|
|
ei = 2; break;
|
|
} else {
|
|
ki = 3;
|
|
}
|
|
/*
|
|
* Recurse down to subtree ki. If it has only one element,
|
|
* we have to do some transformation to start with.
|
|
*/
|
|
LOG((" moving to subtree %d\n", ki));
|
|
sub = n->kids[ki];
|
|
if (!sub->elems[1]) {
|
|
LOG((" subtree has only one element!\n", ki));
|
|
if (ki > 0 && n->kids[ki-1]->elems[1]) {
|
|
/*
|
|
* Case 3a, left-handed variant. Child ki has
|
|
* only one element, but child ki-1 has two or
|
|
* more. So we need to move a subtree from ki-1
|
|
* to ki.
|
|
*
|
|
* . C . . B .
|
|
* / \ -> / \
|
|
* [more] a A b B c d D e [more] a A b c C d D e
|
|
*/
|
|
node234 *sib = n->kids[ki-1];
|
|
int lastelem = (sib->elems[2] ? 2 :
|
|
sib->elems[1] ? 1 : 0);
|
|
sub->kids[2] = sub->kids[1];
|
|
sub->elems[1] = sub->elems[0];
|
|
sub->kids[1] = sub->kids[0];
|
|
sub->elems[0] = n->elems[ki-1];
|
|
sub->kids[0] = sib->kids[lastelem+1];
|
|
n->elems[ki-1] = sib->elems[lastelem];
|
|
sib->kids[lastelem+1] = NULL;
|
|
sib->elems[lastelem] = NULL;
|
|
LOG((" case 3a left\n"));
|
|
} else if (ki < 3 && n->kids[ki+1] &&
|
|
n->kids[ki+1]->elems[1]) {
|
|
/*
|
|
* Case 3a, right-handed variant. ki has only
|
|
* one element but ki+1 has two or more. Move a
|
|
* subtree from ki+1 to ki.
|
|
*
|
|
* . B . . C .
|
|
* / \ -> / \
|
|
* a A b c C d D e [more] a A b B c d D e [more]
|
|
*/
|
|
node234 *sib = n->kids[ki+1];
|
|
int j;
|
|
sub->elems[1] = n->elems[ki];
|
|
sub->kids[2] = sib->kids[0];
|
|
n->elems[ki] = sib->elems[0];
|
|
sib->kids[0] = sib->kids[1];
|
|
for (j = 0; j < 2 && sib->elems[j+1]; j++) {
|
|
sib->kids[j+1] = sib->kids[j+2];
|
|
sib->elems[j] = sib->elems[j+1];
|
|
}
|
|
sib->kids[j+1] = NULL;
|
|
sib->elems[j] = NULL;
|
|
LOG((" case 3a right\n"));
|
|
} else {
|
|
/*
|
|
* Case 3b. ki has only one element, and has no
|
|
* neighbour with more than one. So pick a
|
|
* neighbour and merge it with ki, taking an
|
|
* element down from n to go in the middle.
|
|
*
|
|
* . B . .
|
|
* / \ -> |
|
|
* a A b c C d a A b B c C d
|
|
*
|
|
* (Since at all points we have avoided
|
|
* descending to a node with only one element,
|
|
* we can be sure that n is not reduced to
|
|
* nothingness by this move, _unless_ it was
|
|
* the very first node, ie the root of the
|
|
* tree. In that case we remove the now-empty
|
|
* root and replace it with its single large
|
|
* child as shown.)
|
|
*/
|
|
node234 *sib;
|
|
int j;
|
|
|
|
if (ki > 0)
|
|
ki--;
|
|
sib = n->kids[ki];
|
|
sub = n->kids[ki+1];
|
|
|
|
sub->kids[3] = sub->kids[1];
|
|
sub->elems[2] = sub->elems[0];
|
|
sub->kids[2] = sub->kids[0];
|
|
sub->elems[1] = n->elems[ki];
|
|
sub->kids[1] = sib->kids[1];
|
|
sub->elems[0] = sib->elems[0];
|
|
sub->kids[0] = sib->kids[0];
|
|
|
|
sfree(sib);
|
|
|
|
/*
|
|
* That's built the big node in sub. Now we
|
|
* need to remove the reference to sib in n.
|
|
*/
|
|
for (j = ki; j < 3 && n->kids[j+1]; j++) {
|
|
n->kids[j] = n->kids[j+1];
|
|
n->elems[j] = j<2 ? n->elems[j+1] : NULL;
|
|
}
|
|
n->kids[j] = NULL;
|
|
if (j < 3) n->elems[j] = NULL;
|
|
LOG((" case 3b\n"));
|
|
|
|
if (!n->elems[0]) {
|
|
/*
|
|
* The root is empty and needs to be
|
|
* removed.
|
|
*/
|
|
LOG((" shifting root!\n"));
|
|
t->root = sub;
|
|
sub->parent = NULL;
|
|
sfree(n);
|
|
}
|
|
}
|
|
}
|
|
n = sub;
|
|
}
|
|
if (ei==-1)
|
|
return; /* nothing to do; `already removed' */
|
|
|
|
/*
|
|
* Treat special case: this is the one remaining item in
|
|
* the tree. n is the tree root (no parent), has one
|
|
* element (no elems[1]), and has no kids (no kids[0]).
|
|
*/
|
|
if (!n->parent && !n->elems[1] && !n->kids[0]) {
|
|
LOG((" removed last element in tree\n"));
|
|
sfree(n);
|
|
t->root = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now we have the element we want, as n->elems[ei], and we
|
|
* have also arranged for that element not to be the only
|
|
* one in its node. So...
|
|
*/
|
|
|
|
if (!n->kids[0] && n->elems[1]) {
|
|
/*
|
|
* Case 1. n is a leaf node with more than one element,
|
|
* so it's _really easy_. Just delete the thing and
|
|
* we're done.
|
|
*/
|
|
int i;
|
|
LOG((" case 1\n"));
|
|
for (i = ei; i < 3 && n->elems[i+1]; i++)
|
|
n->elems[i] = n->elems[i+1];
|
|
n->elems[i] = NULL;
|
|
return; /* finished! */
|
|
} else if (n->kids[ei]->elems[1]) {
|
|
/*
|
|
* Case 2a. n is an internal node, and the root of the
|
|
* subtree to the left of e has more than one element.
|
|
* So find the predecessor p to e (ie the largest node
|
|
* in that subtree), place it where e currently is, and
|
|
* then start the deletion process over again on the
|
|
* subtree with p as target.
|
|
*/
|
|
node234 *m = n->kids[ei];
|
|
void *target;
|
|
LOG((" case 2a\n"));
|
|
while (m->kids[0]) {
|
|
m = (m->kids[3] ? m->kids[3] :
|
|
m->kids[2] ? m->kids[2] :
|
|
m->kids[1] ? m->kids[1] : m->kids[0]);
|
|
}
|
|
target = (m->elems[2] ? m->elems[2] :
|
|
m->elems[1] ? m->elems[1] : m->elems[0]);
|
|
n->elems[ei] = target;
|
|
n = n->kids[ei];
|
|
e = target;
|
|
} else if (n->kids[ei+1]->elems[1]) {
|
|
/*
|
|
* Case 2b, symmetric to 2a but s/left/right/ and
|
|
* s/predecessor/successor/. (And s/largest/smallest/).
|
|
*/
|
|
node234 *m = n->kids[ei+1];
|
|
void *target;
|
|
LOG((" case 2b\n"));
|
|
while (m->kids[0]) {
|
|
m = m->kids[0];
|
|
}
|
|
target = m->elems[0];
|
|
n->elems[ei] = target;
|
|
n = n->kids[ei+1];
|
|
e = target;
|
|
} else {
|
|
/*
|
|
* Case 2c. n is an internal node, and the subtrees to
|
|
* the left and right of e both have only one element.
|
|
* So combine the two subnodes into a single big node
|
|
* with their own elements on the left and right and e
|
|
* in the middle, then restart the deletion process on
|
|
* that subtree, with e still as target.
|
|
*/
|
|
node234 *a = n->kids[ei], *b = n->kids[ei+1];
|
|
int j;
|
|
|
|
LOG((" case 2c\n"));
|
|
a->elems[1] = n->elems[ei];
|
|
a->kids[2] = b->kids[0];
|
|
a->elems[2] = b->elems[0];
|
|
a->kids[3] = b->kids[1];
|
|
sfree(b);
|
|
/*
|
|
* That's built the big node in a, and destroyed b. Now
|
|
* remove the reference to b (and e) in n.
|
|
*/
|
|
for (j = ei; j < 2 && n->elems[j+1]; j++) {
|
|
n->elems[j] = n->elems[j+1];
|
|
n->kids[j+1] = n->kids[j+2];
|
|
}
|
|
n->elems[j] = NULL;
|
|
n->kids[j+1] = NULL;
|
|
/*
|
|
* Now go round the deletion process again, with n
|
|
* pointing at the new big node and e still the same.
|
|
*/
|
|
n = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate over the elements of a tree234, in order.
|
|
*/
|
|
void *first234(tree234 *t, enum234 *e) {
|
|
node234 *n = t->root;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->kids[0])
|
|
n = n->kids[0];
|
|
e->node = n;
|
|
e->posn = 0;
|
|
return n->elems[0];
|
|
}
|
|
|
|
void *next234(enum234 *e) {
|
|
node234 *n = e->node;
|
|
int pos = e->posn;
|
|
|
|
if (n->kids[pos+1]) {
|
|
n = n->kids[pos+1];
|
|
while (n->kids[0])
|
|
n = n->kids[0];
|
|
e->node = n;
|
|
e->posn = 0;
|
|
return n->elems[0];
|
|
}
|
|
|
|
if (pos < 2 && n->elems[pos+1]) {
|
|
e->posn = pos+1;
|
|
return n->elems[e->posn];
|
|
}
|
|
|
|
do {
|
|
node234 *nn = n->parent;
|
|
if (nn == NULL)
|
|
return NULL; /* end of tree */
|
|
pos = (nn->kids[0] == n ? 0 :
|
|
nn->kids[1] == n ? 1 :
|
|
nn->kids[2] == n ? 2 : 3);
|
|
n = nn;
|
|
} while (pos == 3 || n->kids[pos+1] == NULL);
|
|
|
|
e->node = n;
|
|
e->posn = pos;
|
|
return n->elems[pos];
|
|
}
|
|
|
|
#ifdef TEST
|
|
|
|
int pnode(node234 *n, int level) {
|
|
printf("%*s%p\n", level*4, "", n);
|
|
if (n->kids[0]) pnode(n->kids[0], level+1);
|
|
if (n->elems[0]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[0]);
|
|
if (n->kids[1]) pnode(n->kids[1], level+1);
|
|
if (n->elems[1]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[1]);
|
|
if (n->kids[2]) pnode(n->kids[2], level+1);
|
|
if (n->elems[2]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[2]);
|
|
if (n->kids[3]) pnode(n->kids[3], level+1);
|
|
}
|
|
int ptree(tree234 *t) {
|
|
if (t->root)
|
|
pnode(t->root, 0);
|
|
else
|
|
printf("empty tree\n");
|
|
}
|
|
|
|
int cmp(void *av, void *bv) {
|
|
char *a = (char *)av;
|
|
char *b = (char *)bv;
|
|
return strcmp(a, b);
|
|
}
|
|
|
|
int main(void) {
|
|
tree234 *t = newtree234(cmp);
|
|
|
|
add234(t, "Richard");
|
|
add234(t, "Of");
|
|
add234(t, "York");
|
|
add234(t, "Gave");
|
|
add234(t, "Battle");
|
|
add234(t, "In");
|
|
add234(t, "Vain");
|
|
add234(t, "Rabbits");
|
|
add234(t, "On");
|
|
add234(t, "Your");
|
|
add234(t, "Garden");
|
|
add234(t, "Bring");
|
|
add234(t, "Invisible");
|
|
add234(t, "Vegetables");
|
|
|
|
ptree(t);
|
|
del234(t, find234(t, "Richard", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Of", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "York", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Gave", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Battle", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "In", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Vain", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Rabbits", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "On", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Your", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Garden", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Bring", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Invisible", NULL));
|
|
ptree(t);
|
|
del234(t, find234(t, "Vegetables", NULL));
|
|
ptree(t);
|
|
}
|
|
#endif
|