1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/sshbpp.h
Simon Tatham 2e7ced6480 Give BPPs a Frontend, so they can do their own logging.
The sshverstring quasi-frontend is passed a Frontend pointer at setup
time, so that it can generate Event Log entries containing the local
and remote version strings and the results of remote bug detection.

I'm promoting that field of sshverstring to a field of the public BPP
structure, so now all BPPs have the right to talk directly to the
frontend if they want to. This means I can move all the log messages
of the form 'Initialised so-and-so cipher/MAC/compression' down into
the BPPs themselves, where they can live exactly alongside the actual
initialisation of those primitives.

It also means BPPs will be able to log interesting things they detect
at any point in the packet stream, which is about to come in useful
for another purpose.
2018-10-07 09:10:14 +01:00

133 lines
5.2 KiB
C

/*
* Abstraction of the binary packet protocols used in SSH.
*/
#ifndef PUTTY_SSHBPP_H
#define PUTTY_SSHBPP_H
struct BinaryPacketProtocolVtable {
void (*free)(BinaryPacketProtocol *);
void (*handle_input)(BinaryPacketProtocol *);
void (*handle_output)(BinaryPacketProtocol *);
PktOut *(*new_pktout)(int type);
void (*queue_disconnect)(BinaryPacketProtocol *,
const char *msg, int category);
};
struct BinaryPacketProtocol {
const struct BinaryPacketProtocolVtable *vt;
bufchain *in_raw, *out_raw;
int input_eof; /* set this if in_raw will never be added to again */
PktInQueue in_pq;
PktOutQueue out_pq;
PacketLogSettings *pls;
LogContext *logctx;
Ssh *ssh;
Frontend *frontend;
/* ic_in_raw is filled in by the BPP (probably by calling
* ssh_bpp_common_setup). The BPP's owner triggers it when data is
* added to in_raw, and also when the BPP is newly created. */
IdempotentCallback ic_in_raw;
/* ic_out_pq is entirely internal to the BPP itself; it's used as
* the callback on out_pq. */
IdempotentCallback ic_out_pq;
int remote_bugs;
/* Set this if remote connection closure should not generate an
* error message (either because it's not to be treated as an
* error at all, or because some other error message has already
* been emitted). */
int expect_close;
};
#define ssh_bpp_handle_input(bpp) ((bpp)->vt->handle_input(bpp))
#define ssh_bpp_handle_output(bpp) ((bpp)->vt->handle_output(bpp))
#define ssh_bpp_new_pktout(bpp, type) ((bpp)->vt->new_pktout(type))
#define ssh_bpp_queue_disconnect(bpp, msg, cat) \
((bpp)->vt->queue_disconnect(bpp, msg, cat))
/* ssh_bpp_free is more than just a macro wrapper on the vtable; it
* does centralised parts of the freeing too. */
void ssh_bpp_free(BinaryPacketProtocol *bpp);
BinaryPacketProtocol *ssh1_bpp_new(Frontend *frontend);
void ssh1_bpp_new_cipher(BinaryPacketProtocol *bpp,
const struct ssh1_cipheralg *cipher,
const void *session_key);
/* requested_compression() notifies the SSH-1 BPP that we've just sent
* a request to enable compression, which means that on receiving the
* next SSH1_SMSG_SUCCESS or SSH1_SMSG_FAILURE message, it should set
* up zlib compression if it was SUCCESS. */
void ssh1_bpp_requested_compression(BinaryPacketProtocol *bpp);
/* Helper routine which does common BPP initialisation, e.g. setting
* up in_pq and out_pq, and initialising input_consumer. */
void ssh_bpp_common_setup(BinaryPacketProtocol *);
/* Common helper functions between the SSH-2 full and bare BPPs */
void ssh2_bpp_queue_disconnect(BinaryPacketProtocol *bpp,
const char *msg, int category);
int ssh2_bpp_check_unimplemented(BinaryPacketProtocol *bpp, PktIn *pktin);
/*
* Structure that tracks how much data is sent and received, for
* purposes of triggering an SSH-2 rekey when either one gets over a
* configured limit. In each direction, the flag 'running' indicates
* that we haven't hit the limit yet, and 'remaining' tracks how much
* longer until we do. The macro DTS_CONSUME subtracts a given amount
* from the counter in a particular direction, and evaluates to a
* boolean indicating whether the limit has been hit.
*
* The limit is sticky: once 'running' has flipped to false,
* 'remaining' is no longer decremented, so it shouldn't dangerously
* wrap round.
*/
struct DataTransferStats {
struct {
int running;
unsigned long remaining;
} in, out;
};
#define DTS_CONSUME(stats, direction, size) \
((stats)->direction.running && \
(stats)->direction.remaining <= (size) ? \
((stats)->direction.running = FALSE, TRUE) : \
((stats)->direction.remaining -= (size), FALSE))
BinaryPacketProtocol *ssh2_bpp_new(
Frontend *frontend, struct DataTransferStats *stats);
void ssh2_bpp_new_outgoing_crypto(
BinaryPacketProtocol *bpp,
const struct ssh2_cipheralg *cipher, const void *ckey, const void *iv,
const struct ssh2_macalg *mac, int etm_mode, const void *mac_key,
const struct ssh_compression_alg *compression);
void ssh2_bpp_new_incoming_crypto(
BinaryPacketProtocol *bpp,
const struct ssh2_cipheralg *cipher, const void *ckey, const void *iv,
const struct ssh2_macalg *mac, int etm_mode, const void *mac_key,
const struct ssh_compression_alg *compression);
BinaryPacketProtocol *ssh2_bare_bpp_new(Frontend *frontend);
/*
* The initial code to handle the SSH version exchange is also
* structured as an implementation of BinaryPacketProtocol, because
* that makes it easy to switch from that to the next BPP once it
* tells us which one we're using.
*/
struct ssh_version_receiver {
void (*got_ssh_version)(struct ssh_version_receiver *rcv,
int major_version);
};
BinaryPacketProtocol *ssh_verstring_new(
Conf *conf, Frontend *frontend, int bare_connection_mode,
const char *protoversion, struct ssh_version_receiver *rcv);
const char *ssh_verstring_get_remote(BinaryPacketProtocol *);
const char *ssh_verstring_get_local(BinaryPacketProtocol *);
int ssh_verstring_get_bugs(BinaryPacketProtocol *);
#endif /* PUTTY_SSHBPP_H */