mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
0b14e7376e
I noticed a few of these in the course of preparing the previous commit. I must have been writing that idiom out by hand for _ages_ before it became totally habitual to #define it as 'lenof' in every codebase I touch. Now I've gone through and replaced all the old verbosity with nice terse lenofs.
1510 lines
44 KiB
C
1510 lines
44 KiB
C
/*
|
|
* Elliptic-curve crypto module for PuTTY
|
|
* Implements the three required curves, no optional curves
|
|
*
|
|
* NOTE: Only curves on prime field are handled by the maths functions
|
|
* in Weierstrass form using Jacobian co-ordinates.
|
|
*
|
|
* Montgomery form curves are supported for DH. (Curve25519)
|
|
*
|
|
* Edwards form curves are supported for DSA. (Ed25519)
|
|
*/
|
|
|
|
/*
|
|
* References:
|
|
*
|
|
* Elliptic curves in SSH are specified in RFC 5656:
|
|
* http://tools.ietf.org/html/rfc5656
|
|
*
|
|
* That specification delegates details of public key formatting and a
|
|
* lot of underlying mechanism to SEC 1:
|
|
* http://www.secg.org/sec1-v2.pdf
|
|
*
|
|
* Montgomery maths from:
|
|
* Handbook of elliptic and hyperelliptic curve cryptography, Chapter 13
|
|
* http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf
|
|
*
|
|
* Curve25519 spec from libssh (with reference to other things in the
|
|
* libssh code):
|
|
* https://git.libssh.org/users/aris/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt
|
|
*
|
|
* Edwards DSA:
|
|
* http://ed25519.cr.yp.to/ed25519-20110926.pdf
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "mpint.h"
|
|
#include "ecc.h"
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Elliptic curve definitions
|
|
*/
|
|
|
|
static void initialise_common(
|
|
struct ec_curve *curve, EllipticCurveType type, mp_int *p)
|
|
{
|
|
curve->type = type;
|
|
curve->p = mp_copy(p);
|
|
curve->fieldBits = mp_get_nbits(p);
|
|
curve->fieldBytes = (curve->fieldBits + 7) / 8;
|
|
}
|
|
|
|
static void initialise_wcurve(
|
|
struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b,
|
|
mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order)
|
|
{
|
|
initialise_common(curve, EC_WEIERSTRASS, p);
|
|
|
|
curve->w.wc = ecc_weierstrass_curve(p, a, b, nonsquare);
|
|
|
|
curve->w.G = ecc_weierstrass_point_new(curve->w.wc, G_x, G_y);
|
|
curve->w.G_order = mp_copy(G_order);
|
|
}
|
|
|
|
static void initialise_mcurve(
|
|
struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b,
|
|
mp_int *G_x)
|
|
{
|
|
initialise_common(curve, EC_MONTGOMERY, p);
|
|
|
|
curve->m.mc = ecc_montgomery_curve(p, a, b);
|
|
|
|
curve->m.G = ecc_montgomery_point_new(curve->m.mc, G_x);
|
|
}
|
|
|
|
static void initialise_ecurve(
|
|
struct ec_curve *curve, mp_int *p, mp_int *d, mp_int *a,
|
|
mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order)
|
|
{
|
|
initialise_common(curve, EC_EDWARDS, p);
|
|
|
|
curve->e.ec = ecc_edwards_curve(p, d, a, nonsquare);
|
|
|
|
curve->e.G = ecc_edwards_point_new(curve->e.ec, G_x, G_y);
|
|
curve->e.G_order = mp_copy(G_order);
|
|
}
|
|
|
|
static struct ec_curve *ec_p256(void)
|
|
{
|
|
static struct ec_curve curve = { 0 };
|
|
static bool initialised = false;
|
|
|
|
if (!initialised)
|
|
{
|
|
mp_int *p = MP_LITERAL(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff);
|
|
mp_int *a = MP_LITERAL(0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc);
|
|
mp_int *b = MP_LITERAL(0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b);
|
|
mp_int *G_x = MP_LITERAL(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296);
|
|
mp_int *G_y = MP_LITERAL(0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5);
|
|
mp_int *G_order = MP_LITERAL(0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551);
|
|
mp_int *nonsquare_mod_p = mp_from_integer(3);
|
|
initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order);
|
|
mp_free(p);
|
|
mp_free(a);
|
|
mp_free(b);
|
|
mp_free(G_x);
|
|
mp_free(G_y);
|
|
mp_free(G_order);
|
|
mp_free(nonsquare_mod_p);
|
|
|
|
curve.textname = curve.name = "nistp256";
|
|
|
|
/* Now initialised, no need to do it again */
|
|
initialised = true;
|
|
}
|
|
|
|
return &curve;
|
|
}
|
|
|
|
static struct ec_curve *ec_p384(void)
|
|
{
|
|
static struct ec_curve curve = { 0 };
|
|
static bool initialised = false;
|
|
|
|
if (!initialised)
|
|
{
|
|
mp_int *p = MP_LITERAL(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff);
|
|
mp_int *a = MP_LITERAL(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc);
|
|
mp_int *b = MP_LITERAL(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef);
|
|
mp_int *G_x = MP_LITERAL(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7);
|
|
mp_int *G_y = MP_LITERAL(0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f);
|
|
mp_int *G_order = MP_LITERAL(0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973);
|
|
mp_int *nonsquare_mod_p = mp_from_integer(19);
|
|
initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order);
|
|
mp_free(p);
|
|
mp_free(a);
|
|
mp_free(b);
|
|
mp_free(G_x);
|
|
mp_free(G_y);
|
|
mp_free(G_order);
|
|
mp_free(nonsquare_mod_p);
|
|
|
|
curve.textname = curve.name = "nistp384";
|
|
|
|
/* Now initialised, no need to do it again */
|
|
initialised = true;
|
|
}
|
|
|
|
return &curve;
|
|
}
|
|
|
|
static struct ec_curve *ec_p521(void)
|
|
{
|
|
static struct ec_curve curve = { 0 };
|
|
static bool initialised = false;
|
|
|
|
if (!initialised)
|
|
{
|
|
mp_int *p = MP_LITERAL(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
|
|
mp_int *a = MP_LITERAL(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc);
|
|
mp_int *b = MP_LITERAL(0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00);
|
|
mp_int *G_x = MP_LITERAL(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66);
|
|
mp_int *G_y = MP_LITERAL(0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650);
|
|
mp_int *G_order = MP_LITERAL(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409);
|
|
mp_int *nonsquare_mod_p = mp_from_integer(3);
|
|
initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order);
|
|
mp_free(p);
|
|
mp_free(a);
|
|
mp_free(b);
|
|
mp_free(G_x);
|
|
mp_free(G_y);
|
|
mp_free(G_order);
|
|
mp_free(nonsquare_mod_p);
|
|
|
|
curve.textname = curve.name = "nistp521";
|
|
|
|
/* Now initialised, no need to do it again */
|
|
initialised = true;
|
|
}
|
|
|
|
return &curve;
|
|
}
|
|
|
|
static struct ec_curve *ec_curve25519(void)
|
|
{
|
|
static struct ec_curve curve = { 0 };
|
|
static bool initialised = false;
|
|
|
|
if (!initialised)
|
|
{
|
|
mp_int *p = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
|
|
mp_int *a = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000076d06);
|
|
mp_int *b = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000001);
|
|
mp_int *G_x = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000009);
|
|
initialise_mcurve(&curve, p, a, b, G_x);
|
|
mp_free(p);
|
|
mp_free(a);
|
|
mp_free(b);
|
|
mp_free(G_x);
|
|
|
|
/* This curve doesn't need a name, because it's never used in
|
|
* any format that embeds the curve name */
|
|
curve.name = NULL;
|
|
curve.textname = "Curve25519";
|
|
|
|
/* Now initialised, no need to do it again */
|
|
initialised = true;
|
|
}
|
|
|
|
return &curve;
|
|
}
|
|
|
|
static struct ec_curve *ec_ed25519(void)
|
|
{
|
|
static struct ec_curve curve = { 0 };
|
|
static bool initialised = false;
|
|
|
|
if (!initialised)
|
|
{
|
|
mp_int *p = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
|
|
mp_int *d = MP_LITERAL(0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3);
|
|
mp_int *a = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec); /* == p-1 */
|
|
mp_int *G_x = MP_LITERAL(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a);
|
|
mp_int *G_y = MP_LITERAL(0x6666666666666666666666666666666666666666666666666666666666666658);
|
|
mp_int *G_order = MP_LITERAL(0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
|
|
mp_int *nonsquare_mod_p = mp_from_integer(2);
|
|
initialise_ecurve(&curve, p, d, a, nonsquare_mod_p, G_x, G_y, G_order);
|
|
mp_free(p);
|
|
mp_free(d);
|
|
mp_free(a);
|
|
mp_free(G_x);
|
|
mp_free(G_y);
|
|
mp_free(G_order);
|
|
mp_free(nonsquare_mod_p);
|
|
|
|
/* This curve doesn't need a name, because it's never used in
|
|
* any format that embeds the curve name */
|
|
curve.name = NULL;
|
|
|
|
curve.textname = "Ed25519";
|
|
|
|
/* Now initialised, no need to do it again */
|
|
initialised = true;
|
|
}
|
|
|
|
return &curve;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Public point from private
|
|
*/
|
|
|
|
struct ecsign_extra {
|
|
struct ec_curve *(*curve)(void);
|
|
const ssh_hashalg *hash;
|
|
|
|
/* These fields are used by the OpenSSH PEM format importer/exporter */
|
|
const unsigned char *oid;
|
|
int oidlen;
|
|
};
|
|
|
|
WeierstrassPoint *ecdsa_public(mp_int *private_key, const ssh_keyalg *alg)
|
|
{
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
assert(curve->type == EC_WEIERSTRASS);
|
|
|
|
mp_int *priv_reduced = mp_mod(private_key, curve->p);
|
|
WeierstrassPoint *toret = ecc_weierstrass_multiply(
|
|
curve->w.G, priv_reduced);
|
|
mp_free(priv_reduced);
|
|
return toret;
|
|
}
|
|
|
|
static mp_int *eddsa_exponent_from_hash(
|
|
ptrlen hash, const struct ec_curve *curve)
|
|
{
|
|
/*
|
|
* Make an integer out of the hash data, little-endian.
|
|
*/
|
|
assert(hash.len >= curve->fieldBytes);
|
|
mp_int *e = mp_from_bytes_le(make_ptrlen(hash.ptr, curve->fieldBytes));
|
|
|
|
/*
|
|
* Set the highest bit that fits in the modulus, and clear any
|
|
* above that.
|
|
*/
|
|
mp_set_bit(e, curve->fieldBits - 1, 1);
|
|
mp_reduce_mod_2to(e, curve->fieldBits);
|
|
|
|
/*
|
|
* Clear exactly three low bits.
|
|
*/
|
|
for (size_t bit = 0; bit < 3; bit++)
|
|
mp_set_bit(e, bit, 0);
|
|
|
|
return e;
|
|
}
|
|
|
|
EdwardsPoint *eddsa_public(mp_int *private_key, const ssh_keyalg *alg)
|
|
{
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
assert(curve->type == EC_EDWARDS);
|
|
|
|
ssh_hash *h = ssh_hash_new(extra->hash);
|
|
for (size_t i = 0; i < curve->fieldBytes; ++i)
|
|
put_byte(h, mp_get_byte(private_key, i));
|
|
|
|
unsigned char hash[MAX_HASH_LEN];
|
|
ssh_hash_final(h, hash);
|
|
|
|
mp_int *exponent = eddsa_exponent_from_hash(
|
|
make_ptrlen(hash, extra->hash->hlen), curve);
|
|
|
|
EdwardsPoint *toret = ecc_edwards_multiply(curve->e.G, exponent);
|
|
mp_free(exponent);
|
|
|
|
return toret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Marshalling and unmarshalling functions
|
|
*/
|
|
|
|
static mp_int *BinarySource_get_mp_le(BinarySource *src)
|
|
{
|
|
return mp_from_bytes_le(get_string(src));
|
|
}
|
|
#define get_mp_le(src) BinarySource_get_mp_le(BinarySource_UPCAST(src))
|
|
|
|
static void BinarySink_put_mp_le_unsigned(BinarySink *bs, mp_int *x)
|
|
{
|
|
size_t bytes = (mp_get_nbits(x) + 7) / 8;
|
|
|
|
put_uint32(bs, bytes);
|
|
for (size_t i = 0; i < bytes; ++i)
|
|
put_byte(bs, mp_get_byte(x, i));
|
|
}
|
|
#define put_mp_le_unsigned(bs, x) \
|
|
BinarySink_put_mp_le_unsigned(BinarySink_UPCAST(bs), x)
|
|
|
|
static WeierstrassPoint *ecdsa_decode(
|
|
ptrlen encoded, const struct ec_curve *curve)
|
|
{
|
|
assert(curve->type == EC_WEIERSTRASS);
|
|
BinarySource src[1];
|
|
|
|
BinarySource_BARE_INIT(src, encoded.ptr, encoded.len);
|
|
unsigned char format_type = get_byte(src);
|
|
|
|
WeierstrassPoint *P;
|
|
|
|
size_t len = get_avail(src);
|
|
mp_int *x;
|
|
mp_int *y;
|
|
|
|
switch (format_type) {
|
|
case 0:
|
|
/* The identity. */
|
|
P = ecc_weierstrass_point_new_identity(curve->w.wc);
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
/* A compressed point, in which the x-coordinate is stored in
|
|
* full, and y is deduced from that and a single bit
|
|
* indicating its parity (stored in the format type byte). */
|
|
x = mp_from_bytes_be(get_data(src, len));
|
|
P = ecc_weierstrass_point_new_from_x(curve->w.wc, x, format_type & 1);
|
|
mp_free(x);
|
|
if (!P) /* this can fail if the input is invalid */
|
|
return NULL;
|
|
break;
|
|
case 4:
|
|
/* An uncompressed point: the x,y coordinates are stored in
|
|
* full. We expect the rest of the string to have even length,
|
|
* and be divided half and half between the two values. */
|
|
if (len % 2 != 0)
|
|
return NULL;
|
|
len /= 2;
|
|
x = mp_from_bytes_be(get_data(src, len));
|
|
y = mp_from_bytes_be(get_data(src, len));
|
|
P = ecc_weierstrass_point_new(curve->w.wc, x, y);
|
|
mp_free(x);
|
|
mp_free(y);
|
|
break;
|
|
default:
|
|
/* An unrecognised type byte. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Verify the point is on the curve */
|
|
if (!ecc_weierstrass_point_valid(P)) {
|
|
ecc_weierstrass_point_free(P);
|
|
return NULL;
|
|
}
|
|
|
|
return P;
|
|
}
|
|
|
|
static WeierstrassPoint *BinarySource_get_wpoint(
|
|
BinarySource *src, const struct ec_curve *curve)
|
|
{
|
|
ptrlen str = get_string(src);
|
|
if (get_err(src))
|
|
return NULL;
|
|
return ecdsa_decode(str, curve);
|
|
}
|
|
#define get_wpoint(src, curve) \
|
|
BinarySource_get_wpoint(BinarySource_UPCAST(src), curve)
|
|
|
|
static void BinarySink_put_wpoint(
|
|
BinarySink *bs, WeierstrassPoint *point, const struct ec_curve *curve,
|
|
bool bare)
|
|
{
|
|
strbuf *sb;
|
|
BinarySink *bs_inner;
|
|
|
|
if (!bare) {
|
|
/*
|
|
* Encapsulate the raw data inside an outermost string layer.
|
|
*/
|
|
sb = strbuf_new();
|
|
bs_inner = BinarySink_UPCAST(sb);
|
|
} else {
|
|
/*
|
|
* Just write the data directly to the output.
|
|
*/
|
|
bs_inner = bs;
|
|
}
|
|
|
|
if (ecc_weierstrass_is_identity(point)) {
|
|
put_byte(bs_inner, 0);
|
|
} else {
|
|
mp_int *x, *y;
|
|
ecc_weierstrass_get_affine(point, &x, &y);
|
|
|
|
/*
|
|
* For ECDSA, we only ever output uncompressed points.
|
|
*/
|
|
put_byte(bs_inner, 0x04);
|
|
for (size_t i = curve->fieldBytes; i--;)
|
|
put_byte(bs_inner, mp_get_byte(x, i));
|
|
for (size_t i = curve->fieldBytes; i--;)
|
|
put_byte(bs_inner, mp_get_byte(y, i));
|
|
|
|
mp_free(x);
|
|
mp_free(y);
|
|
}
|
|
|
|
if (!bare)
|
|
put_stringsb(bs, sb);
|
|
}
|
|
#define put_wpoint(bs, point, curve, bare) \
|
|
BinarySink_put_wpoint(BinarySink_UPCAST(bs), point, curve, bare)
|
|
|
|
static EdwardsPoint *eddsa_decode(ptrlen encoded, const struct ec_curve *curve)
|
|
{
|
|
assert(curve->type == EC_EDWARDS);
|
|
assert(curve->fieldBits % 8 == 7);
|
|
|
|
mp_int *y = mp_from_bytes_le(encoded);
|
|
|
|
if (mp_get_nbits(y) > curve->fieldBits+1) {
|
|
mp_free(y);
|
|
return NULL;
|
|
}
|
|
|
|
/* The topmost bit of the encoding isn't part of y, so it stores
|
|
* the bottom bit of x. Extract it, and zero that bit in y. */
|
|
unsigned desired_x_parity = mp_get_bit(y, curve->fieldBits);
|
|
mp_set_bit(y, curve->fieldBits, 0);
|
|
|
|
EdwardsPoint *P = ecc_edwards_point_new_from_y(
|
|
curve->e.ec, y, desired_x_parity);
|
|
mp_free(y);
|
|
|
|
/* A point constructed in this way will always satisfy the curve
|
|
* equation, unless ecc.c wasn't able to construct one at all, in
|
|
* which case P is now NULL. Either way, return it. */
|
|
return P;
|
|
}
|
|
|
|
static EdwardsPoint *BinarySource_get_epoint(
|
|
BinarySource *src, const struct ec_curve *curve)
|
|
{
|
|
ptrlen str = get_string(src);
|
|
if (get_err(src))
|
|
return NULL;
|
|
return eddsa_decode(str, curve);
|
|
}
|
|
#define get_epoint(src, curve) \
|
|
BinarySource_get_epoint(BinarySource_UPCAST(src), curve)
|
|
|
|
static void BinarySink_put_epoint(
|
|
BinarySink *bs, EdwardsPoint *point, const struct ec_curve *curve,
|
|
bool bare)
|
|
{
|
|
mp_int *x, *y;
|
|
ecc_edwards_get_affine(point, &x, &y);
|
|
|
|
assert(curve->fieldBytes >= 2);
|
|
|
|
/*
|
|
* EdDSA requires point compression. We store a single integer,
|
|
* with bytes in little-endian order, which mostly contains y but
|
|
* in which the topmost bit is the low bit of x.
|
|
*/
|
|
if (!bare)
|
|
put_uint32(bs, curve->fieldBytes); /* string length field */
|
|
for (size_t i = 0; i < curve->fieldBytes - 1; i++)
|
|
put_byte(bs, mp_get_byte(y, i));
|
|
put_byte(bs, (mp_get_byte(y, curve->fieldBytes - 1) & 0x7F) |
|
|
(mp_get_bit(x, 0) << 7));
|
|
|
|
mp_free(x);
|
|
mp_free(y);
|
|
}
|
|
#define put_epoint(bs, point, curve, bare) \
|
|
BinarySink_put_epoint(BinarySink_UPCAST(bs), point, curve, bare)
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Exposed ECDSA interface
|
|
*/
|
|
|
|
static void ecdsa_freekey(ssh_key *key)
|
|
{
|
|
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
|
|
|
|
if (ek->publicKey)
|
|
ecc_weierstrass_point_free(ek->publicKey);
|
|
if (ek->privateKey)
|
|
mp_free(ek->privateKey);
|
|
sfree(ek);
|
|
}
|
|
|
|
static void eddsa_freekey(ssh_key *key)
|
|
{
|
|
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
|
|
|
|
if (ek->publicKey)
|
|
ecc_edwards_point_free(ek->publicKey);
|
|
if (ek->privateKey)
|
|
mp_free(ek->privateKey);
|
|
sfree(ek);
|
|
}
|
|
|
|
static ssh_key *ecdsa_new_pub(const ssh_keyalg *alg, ptrlen data)
|
|
{
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
assert(curve->type == EC_WEIERSTRASS);
|
|
|
|
BinarySource src[1];
|
|
BinarySource_BARE_INIT(src, data.ptr, data.len);
|
|
get_string(src);
|
|
|
|
/* Curve name is duplicated for Weierstrass form */
|
|
if (!ptrlen_eq_string(get_string(src), curve->name))
|
|
return NULL;
|
|
|
|
struct ecdsa_key *ek = snew(struct ecdsa_key);
|
|
ek->sshk.vt = alg;
|
|
ek->curve = curve;
|
|
|
|
ek->publicKey = get_wpoint(src, curve);
|
|
if (!ek->publicKey) {
|
|
ecdsa_freekey(&ek->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
ek->privateKey = NULL;
|
|
|
|
return &ek->sshk;
|
|
}
|
|
|
|
static ssh_key *eddsa_new_pub(const ssh_keyalg *alg, ptrlen data)
|
|
{
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
assert(curve->type == EC_EDWARDS);
|
|
|
|
BinarySource src[1];
|
|
BinarySource_BARE_INIT(src, data.ptr, data.len);
|
|
get_string(src);
|
|
|
|
struct eddsa_key *ek = snew(struct eddsa_key);
|
|
ek->sshk.vt = alg;
|
|
ek->curve = curve;
|
|
ek->privateKey = NULL;
|
|
|
|
ek->publicKey = get_epoint(src, curve);
|
|
if (!ek->publicKey) {
|
|
eddsa_freekey(&ek->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &ek->sshk;
|
|
}
|
|
|
|
static char *ecc_cache_str_shared(
|
|
const char *curve_name, mp_int *x, mp_int *y)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
|
|
if (curve_name)
|
|
strbuf_catf(sb, "%s,", curve_name);
|
|
|
|
char *hx = mp_get_hex(x);
|
|
char *hy = mp_get_hex(y);
|
|
strbuf_catf(sb, "0x%s,0x%s", hx, hy);
|
|
sfree(hx);
|
|
sfree(hy);
|
|
|
|
return strbuf_to_str(sb);
|
|
}
|
|
|
|
static char *ecdsa_cache_str(ssh_key *key)
|
|
{
|
|
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
|
|
mp_int *x, *y;
|
|
|
|
ecc_weierstrass_get_affine(ek->publicKey, &x, &y);
|
|
char *toret = ecc_cache_str_shared(ek->curve->name, x, y);
|
|
mp_free(x);
|
|
mp_free(y);
|
|
return toret;
|
|
}
|
|
|
|
static char *eddsa_cache_str(ssh_key *key)
|
|
{
|
|
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
|
|
mp_int *x, *y;
|
|
|
|
ecc_edwards_get_affine(ek->publicKey, &x, &y);
|
|
char *toret = ecc_cache_str_shared(ek->curve->name, x, y);
|
|
mp_free(x);
|
|
mp_free(y);
|
|
return toret;
|
|
}
|
|
|
|
static void ecdsa_public_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
|
|
|
|
put_stringz(bs, ek->sshk.vt->ssh_id);
|
|
put_stringz(bs, ek->curve->name);
|
|
put_wpoint(bs, ek->publicKey, ek->curve, false);
|
|
}
|
|
|
|
static void eddsa_public_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
|
|
|
|
put_stringz(bs, ek->sshk.vt->ssh_id);
|
|
put_epoint(bs, ek->publicKey, ek->curve, false);
|
|
}
|
|
|
|
static void ecdsa_private_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
|
|
|
|
/* ECDSA uses ordinary SSH-2 mpint format to store the private key */
|
|
assert(ek->privateKey);
|
|
put_mp_ssh2(bs, ek->privateKey);
|
|
}
|
|
|
|
static void eddsa_private_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
|
|
|
|
/* EdDSA stores the private key integer little-endian and unsigned */
|
|
assert(ek->privateKey);
|
|
put_mp_le_unsigned(bs, ek->privateKey);
|
|
}
|
|
|
|
static ssh_key *ecdsa_new_priv(const ssh_keyalg *alg, ptrlen pub, ptrlen priv)
|
|
{
|
|
ssh_key *sshk = ecdsa_new_pub(alg, pub);
|
|
if (!sshk)
|
|
return NULL;
|
|
struct ecdsa_key *ek = container_of(sshk, struct ecdsa_key, sshk);
|
|
|
|
BinarySource src[1];
|
|
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
|
|
ek->privateKey = get_mp_ssh2(src);
|
|
|
|
return &ek->sshk;
|
|
}
|
|
|
|
static ssh_key *eddsa_new_priv(const ssh_keyalg *alg, ptrlen pub, ptrlen priv)
|
|
{
|
|
ssh_key *sshk = eddsa_new_pub(alg, pub);
|
|
if (!sshk)
|
|
return NULL;
|
|
struct eddsa_key *ek = container_of(sshk, struct eddsa_key, sshk);
|
|
|
|
BinarySource src[1];
|
|
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
|
|
ek->privateKey = get_mp_le(src);
|
|
|
|
return &ek->sshk;
|
|
}
|
|
|
|
static ssh_key *eddsa_new_priv_openssh(
|
|
const ssh_keyalg *alg, BinarySource *src)
|
|
{
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
assert(curve->type == EC_EDWARDS);
|
|
|
|
ptrlen pubkey_pl = get_string(src);
|
|
ptrlen privkey_extended_pl = get_string(src);
|
|
if (get_err(src) || pubkey_pl.len != curve->fieldBytes)
|
|
return NULL;
|
|
|
|
/*
|
|
* The OpenSSH format for ed25519 private keys also for some
|
|
* reason encodes an extra copy of the public key in the second
|
|
* half of the secret-key string. Check that that's present and
|
|
* correct as well, otherwise the key we think we've imported
|
|
* won't behave identically to the way OpenSSH would have treated
|
|
* it.
|
|
*/
|
|
BinarySource subsrc[1];
|
|
BinarySource_BARE_INIT(
|
|
subsrc, privkey_extended_pl.ptr, privkey_extended_pl.len);
|
|
ptrlen privkey_pl = get_data(subsrc, curve->fieldBytes);
|
|
ptrlen pubkey_copy_pl = get_data(subsrc, curve->fieldBytes);
|
|
if (get_err(subsrc) || get_avail(subsrc))
|
|
return NULL;
|
|
if (!ptrlen_eq_ptrlen(pubkey_pl, pubkey_copy_pl))
|
|
return NULL;
|
|
|
|
struct eddsa_key *ek = snew(struct eddsa_key);
|
|
ek->sshk.vt = alg;
|
|
ek->curve = curve;
|
|
|
|
ek->publicKey = eddsa_decode(pubkey_pl, curve);
|
|
if (!ek->publicKey) {
|
|
eddsa_freekey(&ek->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
ek->privateKey = mp_from_bytes_le(privkey_pl);
|
|
|
|
return &ek->sshk;
|
|
}
|
|
|
|
static void eddsa_openssh_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
|
|
assert(ek->curve->type == EC_EDWARDS);
|
|
|
|
/* Encode the public and private points as strings */
|
|
strbuf *pub_sb = strbuf_new();
|
|
put_epoint(pub_sb, ek->publicKey, ek->curve, false);
|
|
ptrlen pub = make_ptrlen(pub_sb->s + 4, pub_sb->len - 4);
|
|
|
|
strbuf *priv_sb = strbuf_new();
|
|
put_mp_le_unsigned(priv_sb, ek->privateKey);
|
|
ptrlen priv = make_ptrlen(priv_sb->s + 4, priv_sb->len - 4);
|
|
|
|
put_stringpl(bs, pub);
|
|
|
|
/* Encode the private key as the concatenation of the
|
|
* little-endian key integer and the public key again */
|
|
put_uint32(bs, priv.len + pub.len);
|
|
put_datapl(bs, priv);
|
|
put_datapl(bs, pub);
|
|
|
|
strbuf_free(pub_sb);
|
|
strbuf_free(priv_sb);
|
|
}
|
|
|
|
static ssh_key *ecdsa_new_priv_openssh(
|
|
const ssh_keyalg *alg, BinarySource *src)
|
|
{
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
assert(curve->type == EC_WEIERSTRASS);
|
|
|
|
get_string(src);
|
|
|
|
struct eddsa_key *ek = snew(struct eddsa_key);
|
|
ek->sshk.vt = alg;
|
|
ek->curve = curve;
|
|
|
|
ek->publicKey = get_epoint(src, curve);
|
|
if (!ek->publicKey) {
|
|
eddsa_freekey(&ek->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
ek->privateKey = get_mp_ssh2(src);
|
|
|
|
return &ek->sshk;
|
|
}
|
|
|
|
static void ecdsa_openssh_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
|
|
put_stringz(bs, ek->curve->name);
|
|
put_wpoint(bs, ek->publicKey, ek->curve, false);
|
|
put_mp_ssh2(bs, ek->privateKey);
|
|
}
|
|
|
|
static int ec_shared_pubkey_bits(const ssh_keyalg *alg, ptrlen blob)
|
|
{
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
return curve->fieldBits;
|
|
}
|
|
|
|
static mp_int *ecdsa_signing_exponent_from_data(
|
|
const struct ec_curve *curve, const struct ecsign_extra *extra,
|
|
ptrlen data)
|
|
{
|
|
/* Hash the data being signed. */
|
|
unsigned char hash[MAX_HASH_LEN];
|
|
ssh_hash *h = ssh_hash_new(extra->hash);
|
|
put_datapl(h, data);
|
|
ssh_hash_final(h, hash);
|
|
|
|
/*
|
|
* Take the leftmost b bits of the hash of the signed data (where
|
|
* b is the number of bits in order(G)), interpreted big-endian.
|
|
*/
|
|
mp_int *z = mp_from_bytes_be(make_ptrlen(hash, extra->hash->hlen));
|
|
size_t zbits = mp_get_nbits(z);
|
|
size_t nbits = mp_get_nbits(curve->w.G_order);
|
|
size_t shift = zbits - nbits;
|
|
/* Bound the shift count below at 0, using bit twiddling to avoid
|
|
* a conditional branch */
|
|
shift &= ~-(shift >> (CHAR_BIT * sizeof(size_t) - 1));
|
|
mp_int *toret = mp_rshift_safe(z, shift);
|
|
mp_free(z);
|
|
|
|
return toret;
|
|
}
|
|
|
|
static bool ecdsa_verify(ssh_key *key, ptrlen sig, ptrlen data)
|
|
{
|
|
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)ek->sshk.vt->extra;
|
|
|
|
BinarySource src[1];
|
|
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
|
|
|
|
/* Check the signature starts with the algorithm name */
|
|
if (!ptrlen_eq_string(get_string(src), ek->sshk.vt->ssh_id))
|
|
return false;
|
|
|
|
/* Everything else is nested inside a sub-string. Descend into that. */
|
|
ptrlen sigstr = get_string(src);
|
|
if (get_err(src))
|
|
return false;
|
|
BinarySource_BARE_INIT(src, sigstr.ptr, sigstr.len);
|
|
|
|
/* Extract the signature integers r,s */
|
|
mp_int *r = get_mp_ssh2(src);
|
|
mp_int *s = get_mp_ssh2(src);
|
|
if (get_err(src)) {
|
|
mp_free(r);
|
|
mp_free(s);
|
|
return false;
|
|
}
|
|
|
|
/* Basic sanity checks: 0 < r,s < order(G) */
|
|
unsigned invalid = 0;
|
|
invalid |= mp_eq_integer(r, 0);
|
|
invalid |= mp_eq_integer(s, 0);
|
|
invalid |= mp_cmp_hs(r, ek->curve->w.G_order);
|
|
invalid |= mp_cmp_hs(s, ek->curve->w.G_order);
|
|
|
|
/* Get the hash of the signed data, converted to an integer */
|
|
mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data);
|
|
|
|
/* Verify the signature integers against the hash */
|
|
mp_int *w = mp_invert(s, ek->curve->w.G_order);
|
|
mp_int *u1 = mp_modmul(z, w, ek->curve->w.G_order);
|
|
mp_free(z);
|
|
mp_int *u2 = mp_modmul(r, w, ek->curve->w.G_order);
|
|
mp_free(w);
|
|
WeierstrassPoint *u1G = ecc_weierstrass_multiply(ek->curve->w.G, u1);
|
|
mp_free(u1);
|
|
WeierstrassPoint *u2P = ecc_weierstrass_multiply(ek->publicKey, u2);
|
|
mp_free(u2);
|
|
WeierstrassPoint *sum = ecc_weierstrass_add_general(u1G, u2P);
|
|
ecc_weierstrass_point_free(u1G);
|
|
ecc_weierstrass_point_free(u2P);
|
|
|
|
mp_int *x;
|
|
ecc_weierstrass_get_affine(sum, &x, NULL);
|
|
ecc_weierstrass_point_free(sum);
|
|
|
|
mp_divmod_into(x, ek->curve->w.G_order, NULL, x);
|
|
invalid |= (1 ^ mp_cmp_eq(r, x));
|
|
mp_free(x);
|
|
|
|
mp_free(r);
|
|
mp_free(s);
|
|
|
|
return !invalid;
|
|
}
|
|
|
|
static mp_int *eddsa_signing_exponent_from_data(
|
|
struct eddsa_key *ek, const struct ecsign_extra *extra,
|
|
ptrlen r_encoded, ptrlen data)
|
|
{
|
|
/* Hash (r || public key || message) */
|
|
unsigned char hash[MAX_HASH_LEN];
|
|
ssh_hash *h = ssh_hash_new(extra->hash);
|
|
put_datapl(h, r_encoded);
|
|
put_epoint(h, ek->publicKey, ek->curve, true); /* omit string header */
|
|
put_datapl(h, data);
|
|
ssh_hash_final(h, hash);
|
|
|
|
/* Convert to an integer */
|
|
mp_int *toret = mp_from_bytes_le(make_ptrlen(hash, extra->hash->hlen));
|
|
|
|
smemclr(hash, extra->hash->hlen);
|
|
return toret;
|
|
}
|
|
|
|
static bool eddsa_verify(ssh_key *key, ptrlen sig, ptrlen data)
|
|
{
|
|
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)ek->sshk.vt->extra;
|
|
|
|
BinarySource src[1];
|
|
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
|
|
|
|
/* Check the signature starts with the algorithm name */
|
|
if (!ptrlen_eq_string(get_string(src), ek->sshk.vt->ssh_id))
|
|
return false;
|
|
|
|
/* Now expect a single string which is the concatenation of an
|
|
* encoded curve point r and an integer s. */
|
|
ptrlen sigstr = get_string(src);
|
|
if (get_err(src))
|
|
return false;
|
|
BinarySource_BARE_INIT(src, sigstr.ptr, sigstr.len);
|
|
ptrlen rstr = get_data(src, ek->curve->fieldBytes);
|
|
ptrlen sstr = get_data(src, ek->curve->fieldBytes);
|
|
if (get_err(src) || get_avail(src))
|
|
return false;
|
|
|
|
EdwardsPoint *r = eddsa_decode(rstr, ek->curve);
|
|
if (!r)
|
|
return false;
|
|
mp_int *s = mp_from_bytes_le(sstr);
|
|
|
|
mp_int *H = eddsa_signing_exponent_from_data(ek, extra, rstr, data);
|
|
|
|
/* Verify that s*G == r + H*publicKey */
|
|
EdwardsPoint *lhs = ecc_edwards_multiply(ek->curve->e.G, s);
|
|
mp_free(s);
|
|
EdwardsPoint *hpk = ecc_edwards_multiply(ek->publicKey, H);
|
|
mp_free(H);
|
|
EdwardsPoint *rhs = ecc_edwards_add(r, hpk);
|
|
ecc_edwards_point_free(hpk);
|
|
unsigned valid = ecc_edwards_eq(lhs, rhs);
|
|
ecc_edwards_point_free(lhs);
|
|
ecc_edwards_point_free(rhs);
|
|
ecc_edwards_point_free(r);
|
|
|
|
return valid;
|
|
}
|
|
|
|
static void ecdsa_sign(ssh_key *key, ptrlen data,
|
|
unsigned flags, BinarySink *bs)
|
|
{
|
|
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)ek->sshk.vt->extra;
|
|
assert(ek->privateKey);
|
|
|
|
mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data);
|
|
|
|
/* Generate k between 1 and curve->n, using the same deterministic
|
|
* k generation system we use for conventional DSA. */
|
|
mp_int *k;
|
|
{
|
|
unsigned char digest[20];
|
|
SHA_Simple(data.ptr, data.len, digest);
|
|
k = dss_gen_k(
|
|
"ECDSA deterministic k generator", ek->curve->w.G_order,
|
|
ek->privateKey, digest, sizeof(digest));
|
|
}
|
|
|
|
WeierstrassPoint *kG = ecc_weierstrass_multiply(ek->curve->w.G, k);
|
|
mp_int *x;
|
|
ecc_weierstrass_get_affine(kG, &x, NULL);
|
|
ecc_weierstrass_point_free(kG);
|
|
|
|
/* r = kG.x mod order(G) */
|
|
mp_int *r = mp_mod(x, ek->curve->w.G_order);
|
|
mp_free(x);
|
|
|
|
/* s = (z + r * priv)/k mod n */
|
|
mp_int *rPriv = mp_modmul(r, ek->privateKey, ek->curve->w.G_order);
|
|
mp_int *numerator = mp_modadd(z, rPriv, ek->curve->w.G_order);
|
|
mp_free(z);
|
|
mp_free(rPriv);
|
|
mp_int *kInv = mp_invert(k, ek->curve->w.G_order);
|
|
mp_free(k);
|
|
mp_int *s = mp_modmul(numerator, kInv, ek->curve->w.G_order);
|
|
mp_free(numerator);
|
|
mp_free(kInv);
|
|
|
|
/* Format the output */
|
|
put_stringz(bs, ek->sshk.vt->ssh_id);
|
|
|
|
strbuf *substr = strbuf_new();
|
|
put_mp_ssh2(substr, r);
|
|
put_mp_ssh2(substr, s);
|
|
put_stringsb(bs, substr);
|
|
|
|
mp_free(r);
|
|
mp_free(s);
|
|
}
|
|
|
|
static void eddsa_sign(ssh_key *key, ptrlen data,
|
|
unsigned flags, BinarySink *bs)
|
|
{
|
|
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)ek->sshk.vt->extra;
|
|
assert(ek->privateKey);
|
|
|
|
/*
|
|
* EdDSA prescribes a specific method of generating the random
|
|
* nonce integer for the signature. (A verifier can't tell
|
|
* whether you followed that method, but it's important to
|
|
* follow it anyway, because test vectors will want a specific
|
|
* signature for a given message, and because this preserves
|
|
* determinism of signatures even if the same signature were
|
|
* made twice by different software.)
|
|
*/
|
|
|
|
/*
|
|
* First, we hash the private key integer (bare, little-endian)
|
|
* into a hash generating 2*fieldBytes of output.
|
|
*/
|
|
unsigned char hash[MAX_HASH_LEN];
|
|
ssh_hash *h = ssh_hash_new(extra->hash);
|
|
for (size_t i = 0; i < ek->curve->fieldBytes; ++i)
|
|
put_byte(h, mp_get_byte(ek->privateKey, i));
|
|
ssh_hash_final(h, hash);
|
|
|
|
/*
|
|
* The first half of the output hash is converted into an
|
|
* integer a, by the standard EdDSA transformation.
|
|
*/
|
|
mp_int *a = eddsa_exponent_from_hash(
|
|
make_ptrlen(hash, ek->curve->fieldBytes), ek->curve);
|
|
|
|
/*
|
|
* The second half of the hash of the private key is hashed again
|
|
* with the message to be signed, and used as an exponent to
|
|
* generate the signature point r.
|
|
*/
|
|
h = ssh_hash_new(extra->hash);
|
|
put_data(h, hash + ek->curve->fieldBytes,
|
|
extra->hash->hlen - ek->curve->fieldBytes);
|
|
put_datapl(h, data);
|
|
ssh_hash_final(h, hash);
|
|
mp_int *log_r_unreduced = mp_from_bytes_le(
|
|
make_ptrlen(hash, extra->hash->hlen));
|
|
mp_int *log_r = mp_mod(log_r_unreduced, ek->curve->e.G_order);
|
|
mp_free(log_r_unreduced);
|
|
EdwardsPoint *r = ecc_edwards_multiply(ek->curve->e.G, log_r);
|
|
|
|
/*
|
|
* Encode r now, because we'll need its encoding for the next
|
|
* hashing step as well as to write into the actual signature.
|
|
*/
|
|
strbuf *r_enc = strbuf_new();
|
|
put_epoint(r_enc, r, ek->curve, true); /* omit string header */
|
|
ecc_edwards_point_free(r);
|
|
|
|
/*
|
|
* Compute the hash of (r || public key || message) just as
|
|
* eddsa_verify does.
|
|
*/
|
|
mp_int *H = eddsa_signing_exponent_from_data(
|
|
ek, extra, ptrlen_from_strbuf(r_enc), data);
|
|
|
|
/* And then s = (log(r) + H*a) mod order(G). */
|
|
mp_int *Ha = mp_modmul(H, a, ek->curve->e.G_order);
|
|
mp_int *s = mp_modadd(log_r, Ha, ek->curve->e.G_order);
|
|
mp_free(H);
|
|
mp_free(a);
|
|
mp_free(Ha);
|
|
mp_free(log_r);
|
|
|
|
/* Format the output */
|
|
put_stringz(bs, ek->sshk.vt->ssh_id);
|
|
put_uint32(bs, r_enc->len + ek->curve->fieldBytes);
|
|
put_data(bs, r_enc->u, r_enc->len);
|
|
strbuf_free(r_enc);
|
|
for (size_t i = 0; i < ek->curve->fieldBytes; ++i)
|
|
put_byte(bs, mp_get_byte(s, i));
|
|
mp_free(s);
|
|
}
|
|
|
|
const struct ecsign_extra sign_extra_ed25519 = {
|
|
ec_ed25519, &ssh_sha512,
|
|
NULL, 0,
|
|
};
|
|
const ssh_keyalg ssh_ecdsa_ed25519 = {
|
|
eddsa_new_pub,
|
|
eddsa_new_priv,
|
|
eddsa_new_priv_openssh,
|
|
|
|
eddsa_freekey,
|
|
eddsa_sign,
|
|
eddsa_verify,
|
|
eddsa_public_blob,
|
|
eddsa_private_blob,
|
|
eddsa_openssh_blob,
|
|
eddsa_cache_str,
|
|
|
|
ec_shared_pubkey_bits,
|
|
|
|
"ssh-ed25519",
|
|
"ssh-ed25519",
|
|
&sign_extra_ed25519,
|
|
0, /* no supported flags */
|
|
};
|
|
|
|
/* OID: 1.2.840.10045.3.1.7 (ansiX9p256r1) */
|
|
static const unsigned char nistp256_oid[] = {
|
|
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
|
|
};
|
|
const struct ecsign_extra sign_extra_nistp256 = {
|
|
ec_p256, &ssh_sha256,
|
|
nistp256_oid, lenof(nistp256_oid),
|
|
};
|
|
const ssh_keyalg ssh_ecdsa_nistp256 = {
|
|
ecdsa_new_pub,
|
|
ecdsa_new_priv,
|
|
ecdsa_new_priv_openssh,
|
|
|
|
ecdsa_freekey,
|
|
ecdsa_sign,
|
|
ecdsa_verify,
|
|
ecdsa_public_blob,
|
|
ecdsa_private_blob,
|
|
ecdsa_openssh_blob,
|
|
ecdsa_cache_str,
|
|
|
|
ec_shared_pubkey_bits,
|
|
|
|
"ecdsa-sha2-nistp256",
|
|
"ecdsa-sha2-nistp256",
|
|
&sign_extra_nistp256,
|
|
0, /* no supported flags */
|
|
};
|
|
|
|
/* OID: 1.3.132.0.34 (secp384r1) */
|
|
static const unsigned char nistp384_oid[] = {
|
|
0x2b, 0x81, 0x04, 0x00, 0x22
|
|
};
|
|
const struct ecsign_extra sign_extra_nistp384 = {
|
|
ec_p384, &ssh_sha384,
|
|
nistp384_oid, lenof(nistp384_oid),
|
|
};
|
|
const ssh_keyalg ssh_ecdsa_nistp384 = {
|
|
ecdsa_new_pub,
|
|
ecdsa_new_priv,
|
|
ecdsa_new_priv_openssh,
|
|
|
|
ecdsa_freekey,
|
|
ecdsa_sign,
|
|
ecdsa_verify,
|
|
ecdsa_public_blob,
|
|
ecdsa_private_blob,
|
|
ecdsa_openssh_blob,
|
|
ecdsa_cache_str,
|
|
|
|
ec_shared_pubkey_bits,
|
|
|
|
"ecdsa-sha2-nistp384",
|
|
"ecdsa-sha2-nistp384",
|
|
&sign_extra_nistp384,
|
|
0, /* no supported flags */
|
|
};
|
|
|
|
/* OID: 1.3.132.0.35 (secp521r1) */
|
|
static const unsigned char nistp521_oid[] = {
|
|
0x2b, 0x81, 0x04, 0x00, 0x23
|
|
};
|
|
const struct ecsign_extra sign_extra_nistp521 = {
|
|
ec_p521, &ssh_sha512,
|
|
nistp521_oid, lenof(nistp521_oid),
|
|
};
|
|
const ssh_keyalg ssh_ecdsa_nistp521 = {
|
|
ecdsa_new_pub,
|
|
ecdsa_new_priv,
|
|
ecdsa_new_priv_openssh,
|
|
|
|
ecdsa_freekey,
|
|
ecdsa_sign,
|
|
ecdsa_verify,
|
|
ecdsa_public_blob,
|
|
ecdsa_private_blob,
|
|
ecdsa_openssh_blob,
|
|
ecdsa_cache_str,
|
|
|
|
ec_shared_pubkey_bits,
|
|
|
|
"ecdsa-sha2-nistp521",
|
|
"ecdsa-sha2-nistp521",
|
|
&sign_extra_nistp521,
|
|
0, /* no supported flags */
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Exposed ECDH interface
|
|
*/
|
|
|
|
struct eckex_extra {
|
|
struct ec_curve *(*curve)(void);
|
|
void (*setup)(ecdh_key *dh);
|
|
void (*cleanup)(ecdh_key *dh);
|
|
void (*getpublic)(ecdh_key *dh, BinarySink *bs);
|
|
mp_int *(*getkey)(ecdh_key *dh, ptrlen remoteKey);
|
|
};
|
|
|
|
struct ecdh_key {
|
|
const struct eckex_extra *extra;
|
|
const struct ec_curve *curve;
|
|
mp_int *private;
|
|
union {
|
|
WeierstrassPoint *w_public;
|
|
MontgomeryPoint *m_public;
|
|
};
|
|
};
|
|
|
|
const char *ssh_ecdhkex_curve_textname(const ssh_kex *kex)
|
|
{
|
|
const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra;
|
|
struct ec_curve *curve = extra->curve();
|
|
return curve->textname;
|
|
}
|
|
|
|
static void ssh_ecdhkex_w_setup(ecdh_key *dh)
|
|
{
|
|
mp_int *one = mp_from_integer(1);
|
|
dh->private = mp_random_in_range(one, dh->curve->w.G_order);
|
|
mp_free(one);
|
|
|
|
dh->w_public = ecc_weierstrass_multiply(dh->curve->w.G, dh->private);
|
|
}
|
|
|
|
static void ssh_ecdhkex_m_setup(ecdh_key *dh)
|
|
{
|
|
strbuf *bytes = strbuf_new();
|
|
for (size_t i = 0; i < dh->curve->fieldBytes; ++i)
|
|
put_byte(bytes, random_byte());
|
|
|
|
bytes->u[0] &= 0xF8;
|
|
bytes->u[bytes->len-1] &= 0x7F;
|
|
bytes->u[bytes->len-1] |= 0x40;
|
|
dh->private = mp_from_bytes_le(ptrlen_from_strbuf(bytes));
|
|
strbuf_free(bytes);
|
|
|
|
dh->m_public = ecc_montgomery_multiply(dh->curve->m.G, dh->private);
|
|
}
|
|
|
|
ecdh_key *ssh_ecdhkex_newkey(const ssh_kex *kex)
|
|
{
|
|
const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra;
|
|
const struct ec_curve *curve = extra->curve();
|
|
|
|
ecdh_key *dh = snew(ecdh_key);
|
|
dh->extra = extra;
|
|
dh->curve = curve;
|
|
dh->extra->setup(dh);
|
|
return dh;
|
|
}
|
|
|
|
static void ssh_ecdhkex_w_getpublic(ecdh_key *dh, BinarySink *bs)
|
|
{
|
|
put_wpoint(bs, dh->w_public, dh->curve, true);
|
|
}
|
|
|
|
static void ssh_ecdhkex_m_getpublic(ecdh_key *dh, BinarySink *bs)
|
|
{
|
|
mp_int *x;
|
|
ecc_montgomery_get_affine(dh->m_public, &x);
|
|
for (size_t i = 0; i < dh->curve->fieldBytes; ++i)
|
|
put_byte(bs, mp_get_byte(x, i));
|
|
mp_free(x);
|
|
}
|
|
|
|
void ssh_ecdhkex_getpublic(ecdh_key *dh, BinarySink *bs)
|
|
{
|
|
dh->extra->getpublic(dh, bs);
|
|
}
|
|
|
|
static mp_int *ssh_ecdhkex_w_getkey(ecdh_key *dh, ptrlen remoteKey)
|
|
{
|
|
WeierstrassPoint *remote_p = ecdsa_decode(remoteKey, dh->curve);
|
|
if (!remote_p)
|
|
return NULL;
|
|
|
|
WeierstrassPoint *p = ecc_weierstrass_multiply(remote_p, dh->private);
|
|
|
|
mp_int *x;
|
|
ecc_weierstrass_get_affine(p, &x, NULL);
|
|
|
|
ecc_weierstrass_point_free(remote_p);
|
|
ecc_weierstrass_point_free(p);
|
|
|
|
return x;
|
|
}
|
|
|
|
static mp_int *ssh_ecdhkex_m_getkey(ecdh_key *dh, ptrlen remoteKey)
|
|
{
|
|
mp_int *remote_x = mp_from_bytes_le(remoteKey);
|
|
MontgomeryPoint *remote_p = ecc_montgomery_point_new(
|
|
dh->curve->m.mc, remote_x);
|
|
mp_free(remote_x);
|
|
|
|
MontgomeryPoint *p = ecc_montgomery_multiply(remote_p, dh->private);
|
|
mp_int *x;
|
|
ecc_montgomery_get_affine(p, &x);
|
|
|
|
ecc_montgomery_point_free(remote_p);
|
|
ecc_montgomery_point_free(p);
|
|
|
|
/*
|
|
* Endianness-swap. The Curve25519 algorithm definition assumes
|
|
* you were doing your computation in arrays of 32 little-endian
|
|
* bytes, and now specifies that you take your final one of those
|
|
* and convert it into a bignum in _network_ byte order, i.e.
|
|
* big-endian.
|
|
*
|
|
* In particular, the spec says, you convert the _whole_ 32 bytes
|
|
* into a bignum. That is, on the rare occasions that x has come
|
|
* out with the most significant 8 bits zero, we have to imagine
|
|
* that being represented by a 32-byte string with the last byte
|
|
* being zero, so that has to be converted into an SSH-2 bignum
|
|
* with the _low_ byte zero, i.e. a multiple of 256.
|
|
*/
|
|
strbuf *sb = strbuf_new();
|
|
for (size_t i = 0; i < dh->curve->fieldBytes; ++i)
|
|
put_byte(sb, mp_get_byte(x, i));
|
|
mp_free(x);
|
|
x = mp_from_bytes_be(ptrlen_from_strbuf(sb));
|
|
strbuf_free(sb);
|
|
|
|
return x;
|
|
}
|
|
|
|
mp_int *ssh_ecdhkex_getkey(ecdh_key *dh, ptrlen remoteKey)
|
|
{
|
|
return dh->extra->getkey(dh, remoteKey);
|
|
}
|
|
|
|
static void ssh_ecdhkex_w_cleanup(ecdh_key *dh)
|
|
{
|
|
ecc_weierstrass_point_free(dh->w_public);
|
|
}
|
|
|
|
static void ssh_ecdhkex_m_cleanup(ecdh_key *dh)
|
|
{
|
|
ecc_montgomery_point_free(dh->m_public);
|
|
}
|
|
|
|
void ssh_ecdhkex_freekey(ecdh_key *dh)
|
|
{
|
|
mp_free(dh->private);
|
|
dh->extra->cleanup(dh);
|
|
sfree(dh);
|
|
}
|
|
|
|
static const struct eckex_extra kex_extra_curve25519 = {
|
|
ec_curve25519,
|
|
ssh_ecdhkex_m_setup,
|
|
ssh_ecdhkex_m_cleanup,
|
|
ssh_ecdhkex_m_getpublic,
|
|
ssh_ecdhkex_m_getkey,
|
|
};
|
|
const ssh_kex ssh_ec_kex_curve25519 = {
|
|
"curve25519-sha256@libssh.org", NULL, KEXTYPE_ECDH,
|
|
&ssh_sha256, &kex_extra_curve25519,
|
|
};
|
|
|
|
const struct eckex_extra kex_extra_nistp256 = {
|
|
ec_p256,
|
|
ssh_ecdhkex_w_setup,
|
|
ssh_ecdhkex_w_cleanup,
|
|
ssh_ecdhkex_w_getpublic,
|
|
ssh_ecdhkex_w_getkey,
|
|
};
|
|
const ssh_kex ssh_ec_kex_nistp256 = {
|
|
"ecdh-sha2-nistp256", NULL, KEXTYPE_ECDH,
|
|
&ssh_sha256, &kex_extra_nistp256,
|
|
};
|
|
|
|
const struct eckex_extra kex_extra_nistp384 = {
|
|
ec_p384,
|
|
ssh_ecdhkex_w_setup,
|
|
ssh_ecdhkex_w_cleanup,
|
|
ssh_ecdhkex_w_getpublic,
|
|
ssh_ecdhkex_w_getkey,
|
|
};
|
|
const ssh_kex ssh_ec_kex_nistp384 = {
|
|
"ecdh-sha2-nistp384", NULL, KEXTYPE_ECDH,
|
|
&ssh_sha384, &kex_extra_nistp384,
|
|
};
|
|
|
|
const struct eckex_extra kex_extra_nistp521 = {
|
|
ec_p521,
|
|
ssh_ecdhkex_w_setup,
|
|
ssh_ecdhkex_w_cleanup,
|
|
ssh_ecdhkex_w_getpublic,
|
|
ssh_ecdhkex_w_getkey,
|
|
};
|
|
const ssh_kex ssh_ec_kex_nistp521 = {
|
|
"ecdh-sha2-nistp521", NULL, KEXTYPE_ECDH,
|
|
&ssh_sha512, &kex_extra_nistp521,
|
|
};
|
|
|
|
static const ssh_kex *const ec_kex_list[] = {
|
|
&ssh_ec_kex_curve25519,
|
|
&ssh_ec_kex_nistp256,
|
|
&ssh_ec_kex_nistp384,
|
|
&ssh_ec_kex_nistp521,
|
|
};
|
|
|
|
const ssh_kexes ssh_ecdh_kex = { lenof(ec_kex_list), ec_kex_list };
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Helper functions for finding key algorithms and returning auxiliary
|
|
* data.
|
|
*/
|
|
|
|
const ssh_keyalg *ec_alg_by_oid(int len, const void *oid,
|
|
const struct ec_curve **curve)
|
|
{
|
|
static const ssh_keyalg *algs_with_oid[] = {
|
|
&ssh_ecdsa_nistp256,
|
|
&ssh_ecdsa_nistp384,
|
|
&ssh_ecdsa_nistp521,
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; i < lenof(algs_with_oid); i++) {
|
|
const ssh_keyalg *alg = algs_with_oid[i];
|
|
const struct ecsign_extra *extra =
|
|
(const struct ecsign_extra *)alg->extra;
|
|
if (len == extra->oidlen && !memcmp(oid, extra->oid, len)) {
|
|
*curve = extra->curve();
|
|
return alg;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
const unsigned char *ec_alg_oid(const ssh_keyalg *alg,
|
|
int *oidlen)
|
|
{
|
|
const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra;
|
|
*oidlen = extra->oidlen;
|
|
return extra->oid;
|
|
}
|
|
|
|
const int ec_nist_curve_lengths[] = { 256, 384, 521 };
|
|
const int n_ec_nist_curve_lengths = lenof(ec_nist_curve_lengths);
|
|
|
|
bool ec_nist_alg_and_curve_by_bits(
|
|
int bits, const struct ec_curve **curve, const ssh_keyalg **alg)
|
|
{
|
|
switch (bits) {
|
|
case 256: *alg = &ssh_ecdsa_nistp256; break;
|
|
case 384: *alg = &ssh_ecdsa_nistp384; break;
|
|
case 521: *alg = &ssh_ecdsa_nistp521; break;
|
|
default: return false;
|
|
}
|
|
*curve = ((struct ecsign_extra *)(*alg)->extra)->curve();
|
|
return true;
|
|
}
|
|
|
|
bool ec_ed_alg_and_curve_by_bits(
|
|
int bits, const struct ec_curve **curve, const ssh_keyalg **alg)
|
|
{
|
|
switch (bits) {
|
|
case 256: *alg = &ssh_ecdsa_ed25519; break;
|
|
default: return false;
|
|
}
|
|
*curve = ((struct ecsign_extra *)(*alg)->extra)->curve();
|
|
return true;
|
|
}
|