1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/unix/uxmisc.c
Simon Tatham 6c924ba862 GPG key rollover.
This commit adds the new ids and fingerprints in the keys appendix of
the manual, and moves the old ones down into the historic-keys
section. I've tweaked a few pieces of wording for ongoing use, so that
they don't imply a specific number of past key rollovers.

The -pgpfp option in all the tools now shows the new Master Key
fingerprint and the previous (2015) one. I've adjusted all the uses of
the #defines in putty.h so that future rollovers should only have to
modify the #defines themselves.

Most importantly, sign.sh bakes in the ids of the current release and
snapshot keys, so that snapshots will automatically be signed with the
new snapshot key and the -r option will invoke the new release key.
2018-08-25 14:38:47 +01:00

368 lines
9.6 KiB
C

/*
* PuTTY miscellaneous Unix stuff
*/
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <pwd.h>
#include "putty.h"
unsigned long getticks(void)
{
/*
* We want to use milliseconds rather than the microseconds or
* nanoseconds given by the underlying clock functions, because we
* need a decent number of them to fit into a 32-bit word so it
* can be used for keepalives.
*/
#if defined HAVE_CLOCK_GETTIME && defined HAVE_DECL_CLOCK_MONOTONIC
{
/* Use CLOCK_MONOTONIC if available, so as to be unconfused if
* the system clock changes. */
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0)
return ts.tv_sec * TICKSPERSEC +
ts.tv_nsec / (1000000000 / TICKSPERSEC);
}
#endif
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * TICKSPERSEC + tv.tv_usec / (1000000 / TICKSPERSEC);
}
}
Filename *filename_from_str(const char *str)
{
Filename *ret = snew(Filename);
ret->path = dupstr(str);
return ret;
}
Filename *filename_copy(const Filename *fn)
{
return filename_from_str(fn->path);
}
const char *filename_to_str(const Filename *fn)
{
return fn->path;
}
int filename_equal(const Filename *f1, const Filename *f2)
{
return !strcmp(f1->path, f2->path);
}
int filename_is_null(const Filename *fn)
{
return !fn->path[0];
}
void filename_free(Filename *fn)
{
sfree(fn->path);
sfree(fn);
}
void filename_serialise(BinarySink *bs, const Filename *f)
{
put_asciz(bs, f->path);
}
Filename *filename_deserialise(BinarySource *src)
{
return filename_from_str(get_asciz(src));
}
char filename_char_sanitise(char c)
{
if (c == '/')
return '.';
return c;
}
#ifdef DEBUG
static FILE *debug_fp = NULL;
void dputs(const char *buf)
{
if (!debug_fp) {
debug_fp = fopen("debug.log", "w");
}
if (write(1, buf, strlen(buf)) < 0) {} /* 'error check' to placate gcc */
fputs(buf, debug_fp);
fflush(debug_fp);
}
#endif
char *get_username(void)
{
struct passwd *p;
uid_t uid = getuid();
char *user, *ret = NULL;
/*
* First, find who we think we are using getlogin. If this
* agrees with our uid, we'll go along with it. This should
* allow sharing of uids between several login names whilst
* coping correctly with people who have su'ed.
*/
user = getlogin();
setpwent();
if (user)
p = getpwnam(user);
else
p = NULL;
if (p && p->pw_uid == uid) {
/*
* The result of getlogin() really does correspond to
* our uid. Fine.
*/
ret = user;
} else {
/*
* If that didn't work, for whatever reason, we'll do
* the simpler version: look up our uid in the password
* file and map it straight to a name.
*/
p = getpwuid(uid);
if (!p)
return NULL;
ret = p->pw_name;
}
endpwent();
return dupstr(ret);
}
/*
* Display the fingerprints of the PGP Master Keys to the user.
* (This is here rather than in uxcons because it's appropriate even for
* Unix GUI apps.)
*/
void pgp_fingerprints(void)
{
fputs("These are the fingerprints of the PuTTY PGP Master Keys. They can\n"
"be used to establish a trust path from this executable to another\n"
"one. See the manual for more information.\n"
"(Note: these fingerprints have nothing to do with SSH!)\n"
"\n"
"PuTTY Master Key as of " PGP_MASTER_KEY_YEAR
" (" PGP_MASTER_KEY_DETAILS "):\n"
" " PGP_MASTER_KEY_FP "\n\n"
"Previous Master Key (" PGP_PREV_MASTER_KEY_YEAR
", " PGP_PREV_MASTER_KEY_DETAILS "):\n"
" " PGP_PREV_MASTER_KEY_FP "\n", stdout);
}
/*
* Set and clear fcntl options on a file descriptor. We don't
* realistically expect any of these operations to fail (the most
* plausible error condition is EBADF, but we always believe ourselves
* to be passing a valid fd so even that's an assertion-fail sort of
* response), so we don't make any effort to return sensible error
* codes to the caller - we just log to standard error and die
* unceremoniously. However, nonblock and no_nonblock do return the
* previous state of O_NONBLOCK.
*/
void cloexec(int fd) {
int fdflags;
fdflags = fcntl(fd, F_GETFD);
if (fdflags < 0) {
fprintf(stderr, "%d: fcntl(F_GETFD): %s\n", fd, strerror(errno));
exit(1);
}
if (fcntl(fd, F_SETFD, fdflags | FD_CLOEXEC) < 0) {
fprintf(stderr, "%d: fcntl(F_SETFD): %s\n", fd, strerror(errno));
exit(1);
}
}
void noncloexec(int fd) {
int fdflags;
fdflags = fcntl(fd, F_GETFD);
if (fdflags < 0) {
fprintf(stderr, "%d: fcntl(F_GETFD): %s\n", fd, strerror(errno));
exit(1);
}
if (fcntl(fd, F_SETFD, fdflags & ~FD_CLOEXEC) < 0) {
fprintf(stderr, "%d: fcntl(F_SETFD): %s\n", fd, strerror(errno));
exit(1);
}
}
int nonblock(int fd) {
int fdflags;
fdflags = fcntl(fd, F_GETFL);
if (fdflags < 0) {
fprintf(stderr, "%d: fcntl(F_GETFL): %s\n", fd, strerror(errno));
exit(1);
}
if (fcntl(fd, F_SETFL, fdflags | O_NONBLOCK) < 0) {
fprintf(stderr, "%d: fcntl(F_SETFL): %s\n", fd, strerror(errno));
exit(1);
}
return fdflags & O_NONBLOCK;
}
int no_nonblock(int fd) {
int fdflags;
fdflags = fcntl(fd, F_GETFL);
if (fdflags < 0) {
fprintf(stderr, "%d: fcntl(F_GETFL): %s\n", fd, strerror(errno));
exit(1);
}
if (fcntl(fd, F_SETFL, fdflags & ~O_NONBLOCK) < 0) {
fprintf(stderr, "%d: fcntl(F_SETFL): %s\n", fd, strerror(errno));
exit(1);
}
return fdflags & O_NONBLOCK;
}
FILE *f_open(const Filename *filename, char const *mode, int is_private)
{
if (!is_private) {
return fopen(filename->path, mode);
} else {
int fd;
assert(mode[0] == 'w'); /* is_private is meaningless for read,
and tricky for append */
fd = open(filename->path, O_WRONLY | O_CREAT | O_TRUNC, 0600);
if (fd < 0)
return NULL;
return fdopen(fd, mode);
}
}
FontSpec *fontspec_new(const char *name)
{
FontSpec *f = snew(FontSpec);
f->name = dupstr(name);
return f;
}
FontSpec *fontspec_copy(const FontSpec *f)
{
return fontspec_new(f->name);
}
void fontspec_free(FontSpec *f)
{
sfree(f->name);
sfree(f);
}
void fontspec_serialise(BinarySink *bs, FontSpec *f)
{
put_asciz(bs, f->name);
}
FontSpec *fontspec_deserialise(BinarySource *src)
{
return fontspec_new(get_asciz(src));
}
char *make_dir_and_check_ours(const char *dirname)
{
struct stat st;
/*
* Create the directory. We might have created it before, so
* EEXIST is an OK error; but anything else is doom.
*/
if (mkdir(dirname, 0700) < 0 && errno != EEXIST)
return dupprintf("%s: mkdir: %s", dirname, strerror(errno));
/*
* Now check that that directory is _owned by us_ and not writable
* by anybody else. This protects us against somebody else
* previously having created the directory in a way that's
* writable to us, and thus manipulating us into creating the
* actual socket in a directory they can see so that they can
* connect to it and use our authenticated SSH sessions.
*/
if (stat(dirname, &st) < 0)
return dupprintf("%s: stat: %s", dirname, strerror(errno));
if (st.st_uid != getuid())
return dupprintf("%s: directory owned by uid %d, not by us",
dirname, st.st_uid);
if ((st.st_mode & 077) != 0)
return dupprintf("%s: directory has overgenerous permissions %03o"
" (expected 700)", dirname, st.st_mode & 0777);
return NULL;
}
char *make_dir_path(const char *path, mode_t mode)
{
int pos = 0;
char *prefix;
while (1) {
pos += strcspn(path + pos, "/");
if (pos > 0) {
prefix = dupprintf("%.*s", pos, path);
if (mkdir(prefix, mode) < 0 && errno != EEXIST) {
char *ret = dupprintf("%s: mkdir: %s",
prefix, strerror(errno));
sfree(prefix);
return ret;
}
sfree(prefix);
}
if (!path[pos])
return NULL;
pos += strspn(path + pos, "/");
}
}
int open_for_write_would_lose_data(const Filename *fn)
{
struct stat st;
if (stat(fn->path, &st) < 0) {
/*
* If the file doesn't even exist, we obviously want to return
* false. If we failed to stat it for any other reason,
* ignoring the precise error code and returning false still
* doesn't seem too unreasonable, because then we'll try to
* open the file for writing and report _that_ error, which is
* likely to be more to the point.
*/
return FALSE;
}
/*
* OK, something exists at this pathname and we've found out
* something about it. But an open-for-write will only
* destructively truncate it if it's a regular file with nonzero
* size. If it's empty, or some other kind of special thing like a
* character device (e.g. /dev/tty) or a named pipe, then opening
* it for write is already non-destructive and it's pointless and
* annoying to warn about it just because the same file can be
* opened for reading. (Indeed, if it's a named pipe, opening it
* for reading actually _causes inconvenience_ in its own right,
* even before the question of whether it gives misleading
* information.)
*/
if (S_ISREG(st.st_mode) && st.st_size > 0) {
return TRUE;
}
return FALSE;
}