1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/ssh/kex2-client.c
Simon Tatham f00c72cc2a Framework for announcing which Interactor is talking.
All this Interactor business has been gradually working towards being
able to inform the user _which_ network connection is currently
presenting them with a password prompt (or whatever), in situations
where more than one of them might be, such as an SSH connection being
used as a proxy for another SSH connection when neither one has
one-touch login configured.

At some point, we have to arrange that any attempt to do a user
interaction during connection setup - be it a password prompt, a host
key confirmation dialog, or just displaying an SSH login banner -
makes it clear which host it's come from. That's going to mean calling
some kind of announcement function before doing any of those things.

But there are several of those functions in the Seat API, and calls to
them are scattered far and wide across the SSH backend. (And not even
just there - the Rlogin backend also uses seat_get_userpass_input).
How can we possibly make sure we don't forget a vital call site on
some obscure little-tested code path, and leave the user confused in
just that one case which nobody might notice for years?

Today I thought of a trick to solve that problem. We can use the C
type system to enforce it for us!

The plan is: we invent a new struct type which contains nothing but a
'Seat *'. Then, for every Seat method which does a thing that ought to
be clearly identified as relating to a particular Interactor, we
adjust the API for that function to take the new struct type where it
previously took a plain 'Seat *'. Or rather - doing less violence to
the existing code - we only need to adjust the API of the dispatch
functions inline in putty.h.

How does that help? Because the way you _get_ one of these
struct-wrapped Seat pointers is by calling interactor_announce() on
your Interactor, which will in turn call interactor_get_seat(), and
wrap the returned pointer into one of these structs.

The effect is that whenever the SSH (or Rlogin) code wants to call one
of those particular Seat methods, it _has_ to call
interactor_announce() just beforehand, which (once I finish all of
this) will make sure the user is aware of who is presenting the prompt
or banner or whatever. And you can't forget to call it, because if you
don't call it, then you just don't have a struct of the right type to
give to the Seat method you wanted to call!

(Of course, there's nothing stopping code from _deliberately_ taking a
Seat * it already has and wrapping it into the new struct. In fact
SshProxy has to do that, in order to forward these requests up the
chain of Seats. But the point is that you can't do it _by accident_,
just by forgetting to make a vital function call - when you do that,
you _know_ you're doing it on purpose.)

No functional change: the new interactor_announce() function exists,
and the type-system trick ensures it's called in all the right places,
but it doesn't actually _do_ anything yet.
2021-10-30 18:20:33 +01:00

925 lines
35 KiB
C

/*
* Client side of key exchange for the SSH-2 transport protocol (RFC 4253).
*/
#include <assert.h>
#include "putty.h"
#include "ssh.h"
#include "bpp.h"
#include "ppl.h"
#include "sshcr.h"
#include "storage.h"
#include "transport2.h"
#include "mpint.h"
/*
* Another copy of the symbol defined in mpunsafe.c. See the comment
* there.
*/
const int deliberate_symbol_clash = 12345;
void ssh2kex_coroutine(struct ssh2_transport_state *s, bool *aborted)
{
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
PktIn *pktin;
PktOut *pktout;
crBegin(s->crStateKex);
if (s->kex_alg->main_type == KEXTYPE_DH) {
/*
* Work out the number of bits of key we will need from the
* key exchange. We start with the maximum key length of
* either cipher...
*/
{
int csbits, scbits;
csbits = s->out.cipher ? s->out.cipher->real_keybits : 0;
scbits = s->in.cipher ? s->in.cipher->real_keybits : 0;
s->nbits = (csbits > scbits ? csbits : scbits);
}
/* The keys only have hlen-bit entropy, since they're based on
* a hash. So cap the key size at hlen bits. */
if (s->nbits > s->kex_alg->hash->hlen * 8)
s->nbits = s->kex_alg->hash->hlen * 8;
/*
* If we're doing Diffie-Hellman group exchange, start by
* requesting a group.
*/
if (dh_is_gex(s->kex_alg)) {
ppl_logevent("Doing Diffie-Hellman group exchange");
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGEX;
/*
* Work out how big a DH group we will need to allow that
* much data.
*/
s->pbits = 512 << ((s->nbits - 1) / 64);
if (s->pbits < DH_MIN_SIZE)
s->pbits = DH_MIN_SIZE;
if (s->pbits > DH_MAX_SIZE)
s->pbits = DH_MAX_SIZE;
if ((s->ppl.remote_bugs & BUG_SSH2_OLDGEX)) {
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, SSH2_MSG_KEX_DH_GEX_REQUEST_OLD);
put_uint32(pktout, s->pbits);
} else {
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, SSH2_MSG_KEX_DH_GEX_REQUEST);
put_uint32(pktout, DH_MIN_SIZE);
put_uint32(pktout, s->pbits);
put_uint32(pktout, DH_MAX_SIZE);
}
pq_push(s->ppl.out_pq, pktout);
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
if (pktin->type != SSH2_MSG_KEX_DH_GEX_GROUP) {
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
"expecting Diffie-Hellman group, type %d (%s)",
pktin->type,
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
s->ppl.bpp->pls->actx,
pktin->type));
*aborted = true;
return;
}
s->p = get_mp_ssh2(pktin);
s->g = get_mp_ssh2(pktin);
if (get_err(pktin)) {
ssh_proto_error(s->ppl.ssh,
"Unable to parse Diffie-Hellman group packet");
*aborted = true;
return;
}
s->dh_ctx = dh_setup_gex(s->p, s->g);
s->kex_init_value = SSH2_MSG_KEX_DH_GEX_INIT;
s->kex_reply_value = SSH2_MSG_KEX_DH_GEX_REPLY;
ppl_logevent("Doing Diffie-Hellman key exchange using %d-bit "
"modulus and hash %s with a server-supplied group",
dh_modulus_bit_size(s->dh_ctx),
ssh_hash_alg(s->exhash)->text_name);
} else {
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGROUP;
s->dh_ctx = dh_setup_group(s->kex_alg);
s->kex_init_value = SSH2_MSG_KEXDH_INIT;
s->kex_reply_value = SSH2_MSG_KEXDH_REPLY;
ppl_logevent("Doing Diffie-Hellman key exchange using %d-bit "
"modulus and hash %s with standard group \"%s\"",
dh_modulus_bit_size(s->dh_ctx),
ssh_hash_alg(s->exhash)->text_name,
s->kex_alg->groupname);
}
/*
* Now generate and send e for Diffie-Hellman.
*/
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
s->e = dh_create_e(s->dh_ctx, s->nbits * 2);
pktout = ssh_bpp_new_pktout(s->ppl.bpp, s->kex_init_value);
put_mp_ssh2(pktout, s->e);
pq_push(s->ppl.out_pq, pktout);
seat_set_busy_status(s->ppl.seat, BUSY_WAITING);
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
if (pktin->type != s->kex_reply_value) {
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
"expecting Diffie-Hellman reply, type %d (%s)",
pktin->type,
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
s->ppl.bpp->pls->actx,
pktin->type));
*aborted = true;
return;
}
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
s->hostkeydata = get_string(pktin);
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
s->f = get_mp_ssh2(pktin);
s->sigdata = get_string(pktin);
if (get_err(pktin)) {
ssh_proto_error(s->ppl.ssh,
"Unable to parse Diffie-Hellman reply packet");
*aborted = true;
return;
}
{
const char *err = dh_validate_f(s->dh_ctx, s->f);
if (err) {
ssh_proto_error(s->ppl.ssh, "Diffie-Hellman reply failed "
"validation: %s", err);
*aborted = true;
return;
}
}
s->K = dh_find_K(s->dh_ctx, s->f);
/* We assume everything from now on will be quick, and it might
* involve user interaction. */
seat_set_busy_status(s->ppl.seat, BUSY_NOT);
put_stringpl(s->exhash, s->hostkeydata);
if (dh_is_gex(s->kex_alg)) {
if (!(s->ppl.remote_bugs & BUG_SSH2_OLDGEX))
put_uint32(s->exhash, DH_MIN_SIZE);
put_uint32(s->exhash, s->pbits);
if (!(s->ppl.remote_bugs & BUG_SSH2_OLDGEX))
put_uint32(s->exhash, DH_MAX_SIZE);
put_mp_ssh2(s->exhash, s->p);
put_mp_ssh2(s->exhash, s->g);
}
put_mp_ssh2(s->exhash, s->e);
put_mp_ssh2(s->exhash, s->f);
dh_cleanup(s->dh_ctx);
s->dh_ctx = NULL;
mp_free(s->f); s->f = NULL;
if (dh_is_gex(s->kex_alg)) {
mp_free(s->g); s->g = NULL;
mp_free(s->p); s->p = NULL;
}
} else if (s->kex_alg->main_type == KEXTYPE_ECDH) {
ppl_logevent("Doing ECDH key exchange with curve %s and hash %s",
ssh_ecdhkex_curve_textname(s->kex_alg),
ssh_hash_alg(s->exhash)->text_name);
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_ECDHKEX;
s->ecdh_key = ssh_ecdhkex_newkey(s->kex_alg);
if (!s->ecdh_key) {
ssh_sw_abort(s->ppl.ssh, "Unable to generate key for ECDH");
*aborted = true;
return;
}
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEX_ECDH_INIT);
{
strbuf *pubpoint = strbuf_new();
ssh_ecdhkex_getpublic(s->ecdh_key, BinarySink_UPCAST(pubpoint));
put_stringsb(pktout, pubpoint);
}
pq_push(s->ppl.out_pq, pktout);
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
if (pktin->type != SSH2_MSG_KEX_ECDH_REPLY) {
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
"expecting ECDH reply, type %d (%s)", pktin->type,
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
s->ppl.bpp->pls->actx,
pktin->type));
*aborted = true;
return;
}
s->hostkeydata = get_string(pktin);
put_stringpl(s->exhash, s->hostkeydata);
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
{
strbuf *pubpoint = strbuf_new();
ssh_ecdhkex_getpublic(s->ecdh_key, BinarySink_UPCAST(pubpoint));
put_string(s->exhash, pubpoint->u, pubpoint->len);
strbuf_free(pubpoint);
}
{
ptrlen keydata = get_string(pktin);
put_stringpl(s->exhash, keydata);
s->K = ssh_ecdhkex_getkey(s->ecdh_key, keydata);
if (!get_err(pktin) && !s->K) {
ssh_proto_error(s->ppl.ssh, "Received invalid elliptic curve "
"point in ECDH reply");
*aborted = true;
return;
}
}
s->sigdata = get_string(pktin);
if (get_err(pktin)) {
ssh_proto_error(s->ppl.ssh, "Unable to parse ECDH reply packet");
*aborted = true;
return;
}
ssh_ecdhkex_freekey(s->ecdh_key);
s->ecdh_key = NULL;
#ifndef NO_GSSAPI
} else if (s->kex_alg->main_type == KEXTYPE_GSS) {
ptrlen data;
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_GSSKEX;
s->init_token_sent = false;
s->complete_rcvd = false;
s->hkey = NULL;
s->keystr = NULL;
/*
* Work out the number of bits of key we will need from the
* key exchange. We start with the maximum key length of
* either cipher...
*
* This is rote from the KEXTYPE_DH section above.
*/
{
int csbits, scbits;
csbits = s->out.cipher->real_keybits;
scbits = s->in.cipher->real_keybits;
s->nbits = (csbits > scbits ? csbits : scbits);
}
/* The keys only have hlen-bit entropy, since they're based on
* a hash. So cap the key size at hlen bits. */
if (s->nbits > s->kex_alg->hash->hlen * 8)
s->nbits = s->kex_alg->hash->hlen * 8;
if (dh_is_gex(s->kex_alg)) {
/*
* Work out how big a DH group we will need to allow that
* much data.
*/
s->pbits = 512 << ((s->nbits - 1) / 64);
ppl_logevent("Doing GSSAPI (with Kerberos V5) Diffie-Hellman "
"group exchange, with minimum %d bits", s->pbits);
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXGSS_GROUPREQ);
put_uint32(pktout, s->pbits); /* min */
put_uint32(pktout, s->pbits); /* preferred */
put_uint32(pktout, s->pbits * 2); /* max */
pq_push(s->ppl.out_pq, pktout);
crMaybeWaitUntilV(
(pktin = ssh2_transport_pop(s)) != NULL);
if (pktin->type != SSH2_MSG_KEXGSS_GROUP) {
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
"expecting Diffie-Hellman group, type %d (%s)",
pktin->type,
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
s->ppl.bpp->pls->actx,
pktin->type));
*aborted = true;
return;
}
s->p = get_mp_ssh2(pktin);
s->g = get_mp_ssh2(pktin);
if (get_err(pktin)) {
ssh_proto_error(s->ppl.ssh,
"Unable to parse Diffie-Hellman group packet");
*aborted = true;
return;
}
s->dh_ctx = dh_setup_gex(s->p, s->g);
} else {
s->dh_ctx = dh_setup_group(s->kex_alg);
ppl_logevent("Using GSSAPI (with Kerberos V5) Diffie-Hellman with"
" standard group \"%s\"", s->kex_alg->groupname);
}
ppl_logevent("Doing GSSAPI (with Kerberos V5) Diffie-Hellman key "
"exchange with hash %s", ssh_hash_alg(s->exhash)->text_name);
/* Now generate e for Diffie-Hellman. */
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
s->e = dh_create_e(s->dh_ctx, s->nbits * 2);
if (s->shgss->lib->gsslogmsg)
ppl_logevent("%s", s->shgss->lib->gsslogmsg);
/* initial tokens are empty */
SSH_GSS_CLEAR_BUF(&s->gss_rcvtok);
SSH_GSS_CLEAR_BUF(&s->gss_sndtok);
SSH_GSS_CLEAR_BUF(&s->mic);
s->gss_stat = s->shgss->lib->acquire_cred(
s->shgss->lib, &s->shgss->ctx, &s->gss_cred_expiry);
if (s->gss_stat != SSH_GSS_OK) {
ssh_sw_abort(s->ppl.ssh,
"GSSAPI key exchange failed to initialise");
*aborted = true;
return;
}
/* now enter the loop */
assert(s->shgss->srv_name);
do {
/*
* When acquire_cred yields no useful expiration, go with the
* service ticket expiration.
*/
s->gss_stat = s->shgss->lib->init_sec_context(
s->shgss->lib, &s->shgss->ctx, s->shgss->srv_name,
s->gss_delegate, &s->gss_rcvtok, &s->gss_sndtok,
(s->gss_cred_expiry == GSS_NO_EXPIRATION ?
&s->gss_cred_expiry : NULL), NULL);
SSH_GSS_CLEAR_BUF(&s->gss_rcvtok);
if (s->gss_stat == SSH_GSS_S_COMPLETE && s->complete_rcvd)
break; /* MIC is verified after the loop */
if (s->gss_stat != SSH_GSS_S_COMPLETE &&
s->gss_stat != SSH_GSS_S_CONTINUE_NEEDED) {
if (s->shgss->lib->display_status(
s->shgss->lib, s->shgss->ctx,
&s->gss_buf) == SSH_GSS_OK) {
char *err = s->gss_buf.value;
ssh_sw_abort(s->ppl.ssh,
"GSSAPI key exchange failed to initialise "
"context: %s", err);
sfree(err);
*aborted = true;
return;
}
}
assert(s->gss_stat == SSH_GSS_S_COMPLETE ||
s->gss_stat == SSH_GSS_S_CONTINUE_NEEDED);
if (!s->init_token_sent) {
s->init_token_sent = true;
pktout = ssh_bpp_new_pktout(s->ppl.bpp,
SSH2_MSG_KEXGSS_INIT);
if (s->gss_sndtok.length == 0) {
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange failed: "
"no initial context token");
*aborted = true;
return;
}
put_string(pktout,
s->gss_sndtok.value, s->gss_sndtok.length);
put_mp_ssh2(pktout, s->e);
pq_push(s->ppl.out_pq, pktout);
s->shgss->lib->free_tok(s->shgss->lib, &s->gss_sndtok);
ppl_logevent("GSSAPI key exchange initialised");
} else if (s->gss_sndtok.length != 0) {
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, SSH2_MSG_KEXGSS_CONTINUE);
put_string(pktout,
s->gss_sndtok.value, s->gss_sndtok.length);
pq_push(s->ppl.out_pq, pktout);
s->shgss->lib->free_tok(s->shgss->lib, &s->gss_sndtok);
}
if (s->gss_stat == SSH_GSS_S_COMPLETE && s->complete_rcvd)
break;
wait_for_gss_token:
crMaybeWaitUntilV(
(pktin = ssh2_transport_pop(s)) != NULL);
switch (pktin->type) {
case SSH2_MSG_KEXGSS_CONTINUE:
data = get_string(pktin);
s->gss_rcvtok.value = (char *)data.ptr;
s->gss_rcvtok.length = data.len;
continue;
case SSH2_MSG_KEXGSS_COMPLETE:
s->complete_rcvd = true;
s->f = get_mp_ssh2(pktin);
data = get_string(pktin);
s->mic.value = (char *)data.ptr;
s->mic.length = data.len;
/* If there's a final token we loop to consume it */
if (get_bool(pktin)) {
data = get_string(pktin);
s->gss_rcvtok.value = (char *)data.ptr;
s->gss_rcvtok.length = data.len;
continue;
}
break;
case SSH2_MSG_KEXGSS_HOSTKEY:
s->hostkeydata = get_string(pktin);
if (s->hostkey_alg) {
s->hkey = ssh_key_new_pub(s->hostkey_alg,
s->hostkeydata);
put_stringpl(s->exhash, s->hostkeydata);
}
/*
* Can't loop as we have no token to pass to
* init_sec_context.
*/
goto wait_for_gss_token;
case SSH2_MSG_KEXGSS_ERROR:
/*
* We have no use for the server's major and minor
* status. The minor status is really only
* meaningful to the server, and with luck the major
* status means something to us (but not really all
* that much). The string is more meaningful, and
* hopefully the server sends any error tokens, as
* that will produce the most useful information for
* us.
*/
get_uint32(pktin); /* server's major status */
get_uint32(pktin); /* server's minor status */
data = get_string(pktin);
ppl_logevent("GSSAPI key exchange failed; "
"server's message: %.*s", PTRLEN_PRINTF(data));
/* Language tag, but we have no use for it */
get_string(pktin);
/*
* Wait for an error token, if there is one, or the
* server's disconnect. The error token, if there
* is one, must follow the SSH2_MSG_KEXGSS_ERROR
* message, per the RFC.
*/
goto wait_for_gss_token;
default:
ssh_proto_error(s->ppl.ssh, "Received unexpected packet "
"during GSSAPI key exchange, type %d (%s)",
pktin->type,
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
s->ppl.bpp->pls->actx,
pktin->type));
*aborted = true;
return;
}
} while (s->gss_rcvtok.length ||
s->gss_stat == SSH_GSS_S_CONTINUE_NEEDED ||
!s->complete_rcvd);
{
const char *err = dh_validate_f(s->dh_ctx, s->f);
if (err) {
ssh_proto_error(s->ppl.ssh, "GSSAPI reply failed "
"validation: %s", err);
*aborted = true;
return;
}
}
s->K = dh_find_K(s->dh_ctx, s->f);
/* We assume everything from now on will be quick, and it might
* involve user interaction. */
seat_set_busy_status(s->ppl.seat, BUSY_NOT);
if (!s->hkey)
put_stringz(s->exhash, "");
if (dh_is_gex(s->kex_alg)) {
/* min, preferred, max */
put_uint32(s->exhash, s->pbits);
put_uint32(s->exhash, s->pbits);
put_uint32(s->exhash, s->pbits * 2);
put_mp_ssh2(s->exhash, s->p);
put_mp_ssh2(s->exhash, s->g);
}
put_mp_ssh2(s->exhash, s->e);
put_mp_ssh2(s->exhash, s->f);
/*
* MIC verification is done below, after we compute the hash
* used as the MIC input.
*/
dh_cleanup(s->dh_ctx);
s->dh_ctx = NULL;
mp_free(s->f); s->f = NULL;
if (dh_is_gex(s->kex_alg)) {
mp_free(s->g); s->g = NULL;
mp_free(s->p); s->p = NULL;
}
#endif
} else {
ptrlen rsakeydata;
assert(s->kex_alg->main_type == KEXTYPE_RSA);
ppl_logevent("Doing RSA key exchange with hash %s",
ssh_hash_alg(s->exhash)->text_name);
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_RSAKEX;
/*
* RSA key exchange. First expect a KEXRSA_PUBKEY packet
* from the server.
*/
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
if (pktin->type != SSH2_MSG_KEXRSA_PUBKEY) {
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
"expecting RSA public key, type %d (%s)",
pktin->type,
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
s->ppl.bpp->pls->actx,
pktin->type));
*aborted = true;
return;
}
s->hostkeydata = get_string(pktin);
put_stringpl(s->exhash, s->hostkeydata);
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
rsakeydata = get_string(pktin);
s->rsa_kex_key = ssh_rsakex_newkey(rsakeydata);
if (!s->rsa_kex_key) {
ssh_proto_error(s->ppl.ssh,
"Unable to parse RSA public key packet");
*aborted = true;
return;
}
s->rsa_kex_key_needs_freeing = true;
put_stringpl(s->exhash, rsakeydata);
/*
* Next, set up a shared secret K, of precisely KLEN -
* 2*HLEN - 49 bits, where KLEN is the bit length of the
* RSA key modulus and HLEN is the bit length of the hash
* we're using.
*/
{
int klen = ssh_rsakex_klen(s->rsa_kex_key);
const struct ssh_rsa_kex_extra *extra =
(const struct ssh_rsa_kex_extra *)s->kex_alg->extra;
if (klen < extra->minklen) {
ssh_proto_error(s->ppl.ssh, "Server sent %d-bit RSA key, "
"less than the minimum size %d for %s "
"key exchange", klen, extra->minklen,
s->kex_alg->name);
*aborted = true;
return;
}
int nbits = klen - (2*s->kex_alg->hash->hlen*8 + 49);
assert(nbits > 0);
strbuf *buf, *outstr;
mp_int *tmp = mp_random_bits(nbits - 1);
s->K = mp_power_2(nbits - 1);
mp_add_into(s->K, s->K, tmp);
mp_free(tmp);
/*
* Encode this as an mpint.
*/
buf = strbuf_new_nm();
put_mp_ssh2(buf, s->K);
/*
* Encrypt it with the given RSA key.
*/
outstr = ssh_rsakex_encrypt(s->rsa_kex_key, s->kex_alg->hash,
ptrlen_from_strbuf(buf));
/*
* And send it off in a return packet.
*/
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXRSA_SECRET);
put_stringpl(pktout, ptrlen_from_strbuf(outstr));
pq_push(s->ppl.out_pq, pktout);
put_stringsb(s->exhash, outstr); /* frees outstr */
strbuf_free(buf);
}
ssh_rsakex_freekey(s->rsa_kex_key);
s->rsa_kex_key = NULL;
s->rsa_kex_key_needs_freeing = false;
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
if (pktin->type != SSH2_MSG_KEXRSA_DONE) {
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
"expecting RSA kex signature, type %d (%s)",
pktin->type,
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
s->ppl.bpp->pls->actx,
pktin->type));
*aborted = true;
return;
}
s->sigdata = get_string(pktin);
if (get_err(pktin)) {
ssh_proto_error(s->ppl.ssh, "Unable to parse RSA kex signature");
*aborted = true;
return;
}
}
ssh2transport_finalise_exhash(s);
#ifndef NO_GSSAPI
if (s->kex_alg->main_type == KEXTYPE_GSS) {
Ssh_gss_buf gss_buf;
SSH_GSS_CLEAR_BUF(&s->gss_buf);
gss_buf.value = s->exchange_hash;
gss_buf.length = s->kex_alg->hash->hlen;
s->gss_stat = s->shgss->lib->verify_mic(
s->shgss->lib, s->shgss->ctx, &gss_buf, &s->mic);
if (s->gss_stat != SSH_GSS_OK) {
if (s->shgss->lib->display_status(
s->shgss->lib, s->shgss->ctx, &s->gss_buf) == SSH_GSS_OK) {
char *err = s->gss_buf.value;
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange MIC was "
"not valid: %s", err);
sfree(err);
} else {
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange MIC was "
"not valid");
}
*aborted = true;
return;
}
s->gss_kex_used = true;
/*-
* If this the first KEX, save the GSS context for "gssapi-keyex"
* authentication.
*
* http://tools.ietf.org/html/rfc4462#section-4
*
* This method may be used only if the initial key exchange was
* performed using a GSS-API-based key exchange method defined in
* accordance with Section 2. The GSS-API context used with this
* method is always that established during an initial GSS-API-based
* key exchange. Any context established during key exchange for the
* purpose of rekeying MUST NOT be used with this method.
*/
if (s->got_session_id) {
s->shgss->lib->release_cred(s->shgss->lib, &s->shgss->ctx);
}
ppl_logevent("GSSAPI Key Exchange complete!");
}
#endif
s->dh_ctx = NULL;
/* In GSS keyex there's no hostkey signature to verify */
if (s->kex_alg->main_type != KEXTYPE_GSS) {
if (!s->hkey) {
ssh_proto_error(s->ppl.ssh, "Server's host key is invalid");
*aborted = true;
return;
}
if (!ssh_key_verify(
s->hkey, s->sigdata,
make_ptrlen(s->exchange_hash, s->kex_alg->hash->hlen))) {
#ifndef FUZZING
ssh_proto_error(s->ppl.ssh, "Signature from server's host key "
"is invalid");
*aborted = true;
return;
#endif
}
}
s->keystr = (s->hkey ? ssh_key_cache_str(s->hkey) : NULL);
#ifndef NO_GSSAPI
if (s->gss_kex_used) {
/*
* In a GSS-based session, check the host key (if any) against
* the transient host key cache.
*/
if (s->kex_alg->main_type == KEXTYPE_GSS) {
/*
* We've just done a GSS key exchange. If it gave us a
* host key, store it.
*/
if (s->hkey) {
char *fingerprint = ssh2_fingerprint(
s->hkey, SSH_FPTYPE_DEFAULT);
ppl_logevent("GSS kex provided fallback host key:");
ppl_logevent("%s", fingerprint);
sfree(fingerprint);
ssh_transient_hostkey_cache_add(s->thc, s->hkey);
} else if (!ssh_transient_hostkey_cache_non_empty(s->thc)) {
/*
* But if it didn't, then we currently have no
* fallback host key to use in subsequent non-GSS
* rekeys. So we should immediately trigger a non-GSS
* rekey of our own, to set one up, before the session
* keys have been used for anything else.
*
* This is similar to the cross-certification done at
* user request in the permanent host key cache, but
* here we do it automatically, once, at session
* startup, and only add the key to the transient
* cache.
*/
if (s->hostkey_alg) {
s->need_gss_transient_hostkey = true;
} else {
/*
* If we negotiated the "null" host key algorithm
* in the key exchange, that's an indication that
* no host key at all is available from the server
* (both because we listed "null" last, and
* because RFC 4462 section 5 says that a server
* MUST NOT offer "null" as a host key algorithm
* unless that is the only algorithm it provides
* at all).
*
* In that case we actually _can't_ perform a
* non-GSSAPI key exchange, so it's pointless to
* attempt one proactively. This is also likely to
* cause trouble later if a rekey is required at a
* moment whne GSS credentials are not available,
* but someone setting up a server in this
* configuration presumably accepts that as a
* consequence.
*/
if (!s->warned_about_no_gss_transient_hostkey) {
ppl_logevent("No fallback host key available");
s->warned_about_no_gss_transient_hostkey = true;
}
}
}
} else {
/*
* We've just done a fallback key exchange, so make
* sure the host key it used is in the cache of keys
* we previously received in GSS kexes.
*
* An exception is if this was the non-GSS key exchange we
* triggered on purpose to populate the transient cache.
*/
assert(s->hkey); /* only KEXTYPE_GSS lets this be null */
char *fingerprint = ssh2_fingerprint(s->hkey, SSH_FPTYPE_DEFAULT);
if (s->need_gss_transient_hostkey) {
ppl_logevent("Post-GSS rekey provided fallback host key:");
ppl_logevent("%s", fingerprint);
ssh_transient_hostkey_cache_add(s->thc, s->hkey);
s->need_gss_transient_hostkey = false;
} else if (!ssh_transient_hostkey_cache_verify(s->thc, s->hkey)) {
ppl_logevent("Non-GSS rekey after initial GSS kex "
"used host key:");
ppl_logevent("%s", fingerprint);
sfree(fingerprint);
ssh_sw_abort(s->ppl.ssh, "Server's host key did not match any "
"used in previous GSS kex");
*aborted = true;
return;
}
sfree(fingerprint);
}
} else
#endif /* NO_GSSAPI */
if (!s->got_session_id) {
/*
* Make a note of any other host key formats that are available.
*/
{
int i, j, nkeys = 0;
char *list = NULL;
for (i = 0; i < lenof(ssh2_hostkey_algs); i++) {
if (ssh2_hostkey_algs[i].alg == s->hostkey_alg)
continue;
for (j = 0; j < s->n_uncert_hostkeys; j++)
if (s->uncert_hostkeys[j] == i)
break;
if (j < s->n_uncert_hostkeys) {
char *newlist;
if (list)
newlist = dupprintf(
"%s/%s", list,
ssh2_hostkey_algs[i].alg->ssh_id);
else
newlist = dupprintf(
"%s", ssh2_hostkey_algs[i].alg->ssh_id);
sfree(list);
list = newlist;
nkeys++;
}
}
if (list) {
ppl_logevent("Server also has %s host key%s, but we "
"don't know %s", list,
nkeys > 1 ? "s" : "",
nkeys > 1 ? "any of them" : "it");
sfree(list);
}
}
/*
* Authenticate remote host: verify host key. (We've already
* checked the signature of the exchange hash.)
*/
{
ssh2_userkey uk = { .key = s->hkey, .comment = NULL };
char *keydisp = ssh2_pubkey_openssh_str(&uk);
char **fingerprints = ssh2_all_fingerprints(s->hkey);
FingerprintType fptype_default =
ssh2_pick_default_fingerprint(fingerprints);
ppl_logevent("Host key fingerprint is:");
ppl_logevent("%s", fingerprints[fptype_default]);
s->dlgret = verify_ssh_host_key(
ppl_get_iseat(&s->ppl), s->conf, s->savedhost, s->savedport,
s->hkey, ssh_key_cache_id(s->hkey), s->keystr, keydisp,
fingerprints, ssh2_transport_dialog_callback, s);
ssh2_free_all_fingerprints(fingerprints);
sfree(keydisp);
}
#ifdef FUZZING
s->dlgret = 1;
#endif
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->dlgret == 0) {
ssh_user_close(s->ppl.ssh,
"User aborted at host key verification");
*aborted = true;
return;
}
/*
* Save this host key, to check against the one presented in
* subsequent rekeys.
*/
s->hostkey_str = s->keystr;
s->keystr = NULL;
} else if (s->cross_certifying) {
assert(s->hkey);
assert(ssh_key_alg(s->hkey) == s->cross_certifying);
char *fingerprint = ssh2_fingerprint(s->hkey, SSH_FPTYPE_DEFAULT);
ppl_logevent("Storing additional host key for this host:");
ppl_logevent("%s", fingerprint);
sfree(fingerprint);
store_host_key(s->savedhost, s->savedport,
ssh_key_cache_id(s->hkey), s->keystr);
/*
* Don't forget to store the new key as the one we'll be
* re-checking in future normal rekeys.
*/
s->hostkey_str = s->keystr;
s->keystr = NULL;
} else {
/*
* In a rekey, we never present an interactive host key
* verification request to the user. Instead, we simply
* enforce that the key we're seeing this time is identical to
* the one we saw before.
*/
assert(s->keystr); /* filled in by prior key exchange */
if (strcmp(s->hostkey_str, s->keystr)) {
#ifndef FUZZING
ssh_sw_abort(s->ppl.ssh,
"Host key was different in repeat key exchange");
*aborted = true;
return;
#endif
}
}
sfree(s->keystr);
s->keystr = NULL;
if (s->hkey) {
ssh_key_free(s->hkey);
s->hkey = NULL;
}
crFinishV;
}