1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/sshbn.c
Simon Tatham d36a4c3685 Introduced wrapper macros snew(), snewn() and sresize() for the
malloc functions, which automatically cast to the same type they're
allocating the size of. Should prevent any future errors involving
mallocing the size of the wrong structure type, and will also make
life easier if we ever need to turn the PuTTY core code from real C
into C++-friendly C. I haven't touched the Mac frontend in this
checkin because I couldn't compile or test it.

[originally from svn r3014]
2003-03-29 16:14:26 +00:00

995 lines
22 KiB
C

/*
* Bignum routines for RSA and DH and stuff.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "misc.h"
#define BIGNUM_INTERNAL
typedef unsigned short *Bignum;
#include "ssh.h"
unsigned short bnZero[1] = { 0 };
unsigned short bnOne[2] = { 1, 1 };
/*
* The Bignum format is an array of `unsigned short'. The first
* element of the array counts the remaining elements. The
* remaining elements express the actual number, base 2^16, _least_
* significant digit first. (So it's trivial to extract the bit
* with value 2^n for any n.)
*
* All Bignums in this module are positive. Negative numbers must
* be dealt with outside it.
*
* INVARIANT: the most significant word of any Bignum must be
* nonzero.
*/
Bignum Zero = bnZero, One = bnOne;
static Bignum newbn(int length)
{
Bignum b = snewn(length + 1, unsigned short);
if (!b)
abort(); /* FIXME */
memset(b, 0, (length + 1) * sizeof(*b));
b[0] = length;
return b;
}
void bn_restore_invariant(Bignum b)
{
while (b[0] > 1 && b[b[0]] == 0)
b[0]--;
}
Bignum copybn(Bignum orig)
{
Bignum b = snewn(orig[0] + 1, unsigned short);
if (!b)
abort(); /* FIXME */
memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
return b;
}
void freebn(Bignum b)
{
/*
* Burn the evidence, just in case.
*/
memset(b, 0, sizeof(b[0]) * (b[0] + 1));
sfree(b);
}
Bignum bn_power_2(int n)
{
Bignum ret = newbn(n / 16 + 1);
bignum_set_bit(ret, n, 1);
return ret;
}
/*
* Compute c = a * b.
* Input is in the first len words of a and b.
* Result is returned in the first 2*len words of c.
*/
static void internal_mul(unsigned short *a, unsigned short *b,
unsigned short *c, int len)
{
int i, j;
unsigned long ai, t;
for (j = 0; j < 2 * len; j++)
c[j] = 0;
for (i = len - 1; i >= 0; i--) {
ai = a[i];
t = 0;
for (j = len - 1; j >= 0; j--) {
t += ai * (unsigned long) b[j];
t += (unsigned long) c[i + j + 1];
c[i + j + 1] = (unsigned short) t;
t = t >> 16;
}
c[i] = (unsigned short) t;
}
}
static void internal_add_shifted(unsigned short *number,
unsigned n, int shift)
{
int word = 1 + (shift / 16);
int bshift = shift % 16;
unsigned long addend;
addend = n << bshift;
while (addend) {
addend += number[word];
number[word] = (unsigned short) addend & 0xFFFF;
addend >>= 16;
word++;
}
}
/*
* Compute a = a % m.
* Input in first alen words of a and first mlen words of m.
* Output in first alen words of a
* (of which first alen-mlen words will be zero).
* The MSW of m MUST have its high bit set.
* Quotient is accumulated in the `quotient' array, which is a Bignum
* rather than the internal bigendian format. Quotient parts are shifted
* left by `qshift' before adding into quot.
*/
static void internal_mod(unsigned short *a, int alen,
unsigned short *m, int mlen,
unsigned short *quot, int qshift)
{
unsigned short m0, m1;
unsigned int h;
int i, k;
m0 = m[0];
if (mlen > 1)
m1 = m[1];
else
m1 = 0;
for (i = 0; i <= alen - mlen; i++) {
unsigned long t;
unsigned int q, r, c, ai1;
if (i == 0) {
h = 0;
} else {
h = a[i - 1];
a[i - 1] = 0;
}
if (i == alen - 1)
ai1 = 0;
else
ai1 = a[i + 1];
/* Find q = h:a[i] / m0 */
t = ((unsigned long) h << 16) + a[i];
q = t / m0;
r = t % m0;
/* Refine our estimate of q by looking at
h:a[i]:a[i+1] / m0:m1 */
t = (long) m1 *(long) q;
if (t > ((unsigned long) r << 16) + ai1) {
q--;
t -= m1;
r = (r + m0) & 0xffff; /* overflow? */
if (r >= (unsigned long) m0 &&
t > ((unsigned long) r << 16) + ai1) q--;
}
/* Subtract q * m from a[i...] */
c = 0;
for (k = mlen - 1; k >= 0; k--) {
t = (long) q *(long) m[k];
t += c;
c = t >> 16;
if ((unsigned short) t > a[i + k])
c++;
a[i + k] -= (unsigned short) t;
}
/* Add back m in case of borrow */
if (c != h) {
t = 0;
for (k = mlen - 1; k >= 0; k--) {
t += m[k];
t += a[i + k];
a[i + k] = (unsigned short) t;
t = t >> 16;
}
q--;
}
if (quot)
internal_add_shifted(quot, q, qshift + 16 * (alen - mlen - i));
}
}
/*
* Compute (base ^ exp) % mod.
* The base MUST be smaller than the modulus.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
*/
Bignum modpow(Bignum base, Bignum exp, Bignum mod)
{
unsigned short *a, *b, *n, *m;
int mshift;
int mlen, i, j;
Bignum result;
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, unsigned short);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < 15; mshift++)
if ((m[0] << mshift) & 0x8000)
break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift));
m[mlen - 1] = m[mlen - 1] << mshift;
}
/* Allocate n of size mlen, copy base to n */
n = snewn(mlen, unsigned short);
i = mlen - base[0];
for (j = 0; j < i; j++)
n[j] = 0;
for (j = 0; j < base[0]; j++)
n[i + j] = base[base[0] - j];
/* Allocate a and b of size 2*mlen. Set a = 1 */
a = snewn(2 * mlen, unsigned short);
b = snewn(2 * mlen, unsigned short);
for (i = 0; i < 2 * mlen; i++)
a[i] = 0;
a[2 * mlen - 1] = 1;
/* Skip leading zero bits of exp. */
i = 0;
j = 15;
while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
j--;
if (j < 0) {
i++;
j = 15;
}
}
/* Main computation */
while (i < exp[0]) {
while (j >= 0) {
internal_mul(a + mlen, a + mlen, b, mlen);
internal_mod(b, mlen * 2, m, mlen, NULL, 0);
if ((exp[exp[0] - i] & (1 << j)) != 0) {
internal_mul(b + mlen, n, a, mlen);
internal_mod(a, mlen * 2, m, mlen, NULL, 0);
} else {
unsigned short *t;
t = a;
a = b;
b = t;
}
j--;
}
i++;
j = 15;
}
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = mlen - 1; i < 2 * mlen - 1; i++)
a[i] = (a[i] << mshift) | (a[i + 1] >> (16 - mshift));
a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
internal_mod(a, mlen * 2, m, mlen, NULL, 0);
for (i = 2 * mlen - 1; i >= mlen; i--)
a[i] = (a[i] >> mshift) | (a[i - 1] << (16 - mshift));
}
/* Copy result to buffer */
result = newbn(mod[0]);
for (i = 0; i < mlen; i++)
result[result[0] - i] = a[i + mlen];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
for (i = 0; i < 2 * mlen; i++)
a[i] = 0;
sfree(a);
for (i = 0; i < 2 * mlen; i++)
b[i] = 0;
sfree(b);
for (i = 0; i < mlen; i++)
m[i] = 0;
sfree(m);
for (i = 0; i < mlen; i++)
n[i] = 0;
sfree(n);
return result;
}
/*
* Compute (p * q) % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
*/
Bignum modmul(Bignum p, Bignum q, Bignum mod)
{
unsigned short *a, *n, *m, *o;
int mshift;
int pqlen, mlen, rlen, i, j;
Bignum result;
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, unsigned short);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < 15; mshift++)
if ((m[0] << mshift) & 0x8000)
break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift));
m[mlen - 1] = m[mlen - 1] << mshift;
}
pqlen = (p[0] > q[0] ? p[0] : q[0]);
/* Allocate n of size pqlen, copy p to n */
n = snewn(pqlen, unsigned short);
i = pqlen - p[0];
for (j = 0; j < i; j++)
n[j] = 0;
for (j = 0; j < p[0]; j++)
n[i + j] = p[p[0] - j];
/* Allocate o of size pqlen, copy q to o */
o = snewn(pqlen, unsigned short);
i = pqlen - q[0];
for (j = 0; j < i; j++)
o[j] = 0;
for (j = 0; j < q[0]; j++)
o[i + j] = q[q[0] - j];
/* Allocate a of size 2*pqlen for result */
a = snewn(2 * pqlen, unsigned short);
/* Main computation */
internal_mul(n, o, a, pqlen);
internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
a[i] = (a[i] << mshift) | (a[i + 1] >> (16 - mshift));
a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
a[i] = (a[i] >> mshift) | (a[i - 1] << (16 - mshift));
}
/* Copy result to buffer */
rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
result = newbn(rlen);
for (i = 0; i < rlen; i++)
result[result[0] - i] = a[i + 2 * pqlen - rlen];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
for (i = 0; i < 2 * pqlen; i++)
a[i] = 0;
sfree(a);
for (i = 0; i < mlen; i++)
m[i] = 0;
sfree(m);
for (i = 0; i < pqlen; i++)
n[i] = 0;
sfree(n);
for (i = 0; i < pqlen; i++)
o[i] = 0;
sfree(o);
return result;
}
/*
* Compute p % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
* We optionally write out a quotient if `quotient' is non-NULL.
* We can avoid writing out the result if `result' is NULL.
*/
static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
{
unsigned short *n, *m;
int mshift;
int plen, mlen, i, j;
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, unsigned short);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < 15; mshift++)
if ((m[0] << mshift) & 0x8000)
break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift));
m[mlen - 1] = m[mlen - 1] << mshift;
}
plen = p[0];
/* Ensure plen > mlen */
if (plen <= mlen)
plen = mlen + 1;
/* Allocate n of size plen, copy p to n */
n = snewn(plen, unsigned short);
for (j = 0; j < plen; j++)
n[j] = 0;
for (j = 1; j <= p[0]; j++)
n[plen - j] = p[j];
/* Main computation */
internal_mod(n, plen, m, mlen, quotient, mshift);
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = plen - mlen - 1; i < plen - 1; i++)
n[i] = (n[i] << mshift) | (n[i + 1] >> (16 - mshift));
n[plen - 1] = n[plen - 1] << mshift;
internal_mod(n, plen, m, mlen, quotient, 0);
for (i = plen - 1; i >= plen - mlen; i--)
n[i] = (n[i] >> mshift) | (n[i - 1] << (16 - mshift));
}
/* Copy result to buffer */
if (result) {
for (i = 1; i <= result[0]; i++) {
int j = plen - i;
result[i] = j >= 0 ? n[j] : 0;
}
}
/* Free temporary arrays */
for (i = 0; i < mlen; i++)
m[i] = 0;
sfree(m);
for (i = 0; i < plen; i++)
n[i] = 0;
sfree(n);
}
/*
* Decrement a number.
*/
void decbn(Bignum bn)
{
int i = 1;
while (i < bn[0] && bn[i] == 0)
bn[i++] = 0xFFFF;
bn[i]--;
}
Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
{
Bignum result;
int w, i;
w = (nbytes + 1) / 2; /* bytes -> words */
result = newbn(w);
for (i = 1; i <= w; i++)
result[i] = 0;
for (i = nbytes; i--;) {
unsigned char byte = *data++;
if (i & 1)
result[1 + i / 2] |= byte << 8;
else
result[1 + i / 2] |= byte;
}
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
return result;
}
/*
* Read an ssh1-format bignum from a data buffer. Return the number
* of bytes consumed.
*/
int ssh1_read_bignum(const unsigned char *data, Bignum * result)
{
const unsigned char *p = data;
int i;
int w, b;
w = 0;
for (i = 0; i < 2; i++)
w = (w << 8) + *p++;
b = (w + 7) / 8; /* bits -> bytes */
if (!result) /* just return length */
return b + 2;
*result = bignum_from_bytes(p, b);
return p + b - data;
}
/*
* Return the bit count of a bignum, for ssh1 encoding.
*/
int bignum_bitcount(Bignum bn)
{
int bitcount = bn[0] * 16 - 1;
while (bitcount >= 0
&& (bn[bitcount / 16 + 1] >> (bitcount % 16)) == 0) bitcount--;
return bitcount + 1;
}
/*
* Return the byte length of a bignum when ssh1 encoded.
*/
int ssh1_bignum_length(Bignum bn)
{
return 2 + (bignum_bitcount(bn) + 7) / 8;
}
/*
* Return the byte length of a bignum when ssh2 encoded.
*/
int ssh2_bignum_length(Bignum bn)
{
return 4 + (bignum_bitcount(bn) + 8) / 8;
}
/*
* Return a byte from a bignum; 0 is least significant, etc.
*/
int bignum_byte(Bignum bn, int i)
{
if (i >= 2 * bn[0])
return 0; /* beyond the end */
else if (i & 1)
return (bn[i / 2 + 1] >> 8) & 0xFF;
else
return (bn[i / 2 + 1]) & 0xFF;
}
/*
* Return a bit from a bignum; 0 is least significant, etc.
*/
int bignum_bit(Bignum bn, int i)
{
if (i >= 16 * bn[0])
return 0; /* beyond the end */
else
return (bn[i / 16 + 1] >> (i % 16)) & 1;
}
/*
* Set a bit in a bignum; 0 is least significant, etc.
*/
void bignum_set_bit(Bignum bn, int bitnum, int value)
{
if (bitnum >= 16 * bn[0])
abort(); /* beyond the end */
else {
int v = bitnum / 16 + 1;
int mask = 1 << (bitnum % 16);
if (value)
bn[v] |= mask;
else
bn[v] &= ~mask;
}
}
/*
* Write a ssh1-format bignum into a buffer. It is assumed the
* buffer is big enough. Returns the number of bytes used.
*/
int ssh1_write_bignum(void *data, Bignum bn)
{
unsigned char *p = data;
int len = ssh1_bignum_length(bn);
int i;
int bitc = bignum_bitcount(bn);
*p++ = (bitc >> 8) & 0xFF;
*p++ = (bitc) & 0xFF;
for (i = len - 2; i--;)
*p++ = bignum_byte(bn, i);
return len;
}
/*
* Compare two bignums. Returns like strcmp.
*/
int bignum_cmp(Bignum a, Bignum b)
{
int amax = a[0], bmax = b[0];
int i = (amax > bmax ? amax : bmax);
while (i) {
unsigned short aval = (i > amax ? 0 : a[i]);
unsigned short bval = (i > bmax ? 0 : b[i]);
if (aval < bval)
return -1;
if (aval > bval)
return +1;
i--;
}
return 0;
}
/*
* Right-shift one bignum to form another.
*/
Bignum bignum_rshift(Bignum a, int shift)
{
Bignum ret;
int i, shiftw, shiftb, shiftbb, bits;
unsigned short ai, ai1;
bits = bignum_bitcount(a) - shift;
ret = newbn((bits + 15) / 16);
if (ret) {
shiftw = shift / 16;
shiftb = shift % 16;
shiftbb = 16 - shiftb;
ai1 = a[shiftw + 1];
for (i = 1; i <= ret[0]; i++) {
ai = ai1;
ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0);
ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & 0xFFFF;
}
}
return ret;
}
/*
* Non-modular multiplication and addition.
*/
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
{
int alen = a[0], blen = b[0];
int mlen = (alen > blen ? alen : blen);
int rlen, i, maxspot;
unsigned short *workspace;
Bignum ret;
/* mlen space for a, mlen space for b, 2*mlen for result */
workspace = snewn(mlen * 4, unsigned short);
for (i = 0; i < mlen; i++) {
workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0);
workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0);
}
internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
workspace + 2 * mlen, mlen);
/* now just copy the result back */
rlen = alen + blen + 1;
if (addend && rlen <= addend[0])
rlen = addend[0] + 1;
ret = newbn(rlen);
maxspot = 0;
for (i = 1; i <= ret[0]; i++) {
ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
/* now add in the addend, if any */
if (addend) {
unsigned long carry = 0;
for (i = 1; i <= rlen; i++) {
carry += (i <= ret[0] ? ret[i] : 0);
carry += (i <= addend[0] ? addend[i] : 0);
ret[i] = (unsigned short) carry & 0xFFFF;
carry >>= 16;
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
}
ret[0] = maxspot;
return ret;
}
/*
* Non-modular multiplication.
*/
Bignum bigmul(Bignum a, Bignum b)
{
return bigmuladd(a, b, NULL);
}
/*
* Create a bignum which is the bitmask covering another one. That
* is, the smallest integer which is >= N and is also one less than
* a power of two.
*/
Bignum bignum_bitmask(Bignum n)
{
Bignum ret = copybn(n);
int i;
unsigned short j;
i = ret[0];
while (n[i] == 0 && i > 0)
i--;
if (i <= 0)
return ret; /* input was zero */
j = 1;
while (j < n[i])
j = 2 * j + 1;
ret[i] = j;
while (--i > 0)
ret[i] = 0xFFFF;
return ret;
}
/*
* Convert a (max 32-bit) long into a bignum.
*/
Bignum bignum_from_long(unsigned long n)
{
Bignum ret;
ret = newbn(3);
ret[1] = (unsigned short)(n & 0xFFFF);
ret[2] = (unsigned short)((n >> 16) & 0xFFFF);
ret[3] = 0;
ret[0] = (ret[2] ? 2 : 1);
return ret;
}
/*
* Add a long to a bignum.
*/
Bignum bignum_add_long(Bignum number, unsigned long addend)
{
Bignum ret = newbn(number[0] + 1);
int i, maxspot = 0;
unsigned long carry = 0;
for (i = 1; i <= ret[0]; i++) {
carry += addend & 0xFFFF;
carry += (i <= number[0] ? number[i] : 0);
addend >>= 16;
ret[i] = (unsigned short) carry & 0xFFFF;
carry >>= 16;
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
return ret;
}
/*
* Compute the residue of a bignum, modulo a (max 16-bit) short.
*/
unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
{
unsigned long mod, r;
int i;
r = 0;
mod = modulus;
for (i = number[0]; i > 0; i--)
r = (r * 65536 + number[i]) % mod;
return (unsigned short) r;
}
#if 0
void diagbn(char *prefix, Bignum md)
{
#ifdef DEBUG
int i, nibbles, morenibbles;
static const char hex[] = "0123456789ABCDEF";
debug(("%s0x", prefix ? prefix : ""));
nibbles = (3 + bignum_bitcount(md)) / 4;
if (nibbles < 1)
nibbles = 1;
morenibbles = 4 * md[0] - nibbles;
for (i = 0; i < morenibbles; i++)
debug(("-"));
for (i = nibbles; i--;)
debug(("%c",
hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
if (prefix)
debug(("\n"));
#endif
}
#endif
/*
* Simple division.
*/
Bignum bigdiv(Bignum a, Bignum b)
{
Bignum q = newbn(a[0]);
bigdivmod(a, b, NULL, q);
return q;
}
/*
* Simple remainder.
*/
Bignum bigmod(Bignum a, Bignum b)
{
Bignum r = newbn(b[0]);
bigdivmod(a, b, r, NULL);
return r;
}
/*
* Greatest common divisor.
*/
Bignum biggcd(Bignum av, Bignum bv)
{
Bignum a = copybn(av);
Bignum b = copybn(bv);
while (bignum_cmp(b, Zero) != 0) {
Bignum t = newbn(b[0]);
bigdivmod(a, b, t, NULL);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
freebn(a);
a = b;
b = t;
}
freebn(b);
return a;
}
/*
* Modular inverse, using Euclid's extended algorithm.
*/
Bignum modinv(Bignum number, Bignum modulus)
{
Bignum a = copybn(modulus);
Bignum b = copybn(number);
Bignum xp = copybn(Zero);
Bignum x = copybn(One);
int sign = +1;
while (bignum_cmp(b, One) != 0) {
Bignum t = newbn(b[0]);
Bignum q = newbn(a[0]);
bigdivmod(a, b, t, q);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
freebn(a);
a = b;
b = t;
t = xp;
xp = x;
x = bigmuladd(q, xp, t);
sign = -sign;
freebn(t);
}
freebn(b);
freebn(a);
freebn(xp);
/* now we know that sign * x == 1, and that x < modulus */
if (sign < 0) {
/* set a new x to be modulus - x */
Bignum newx = newbn(modulus[0]);
unsigned short carry = 0;
int maxspot = 1;
int i;
for (i = 1; i <= newx[0]; i++) {
unsigned short aword = (i <= modulus[0] ? modulus[i] : 0);
unsigned short bword = (i <= x[0] ? x[i] : 0);
newx[i] = aword - bword - carry;
bword = ~bword;
carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
if (newx[i] != 0)
maxspot = i;
}
newx[0] = maxspot;
freebn(x);
x = newx;
}
/* and return. */
return x;
}
/*
* Render a bignum into decimal. Return a malloced string holding
* the decimal representation.
*/
char *bignum_decimal(Bignum x)
{
int ndigits, ndigit;
int i, iszero;
unsigned long carry;
char *ret;
unsigned short *workspace;
/*
* First, estimate the number of digits. Since log(10)/log(2)
* is just greater than 93/28 (the joys of continued fraction
* approximations...) we know that for every 93 bits, we need
* at most 28 digits. This will tell us how much to malloc.
*
* Formally: if x has i bits, that means x is strictly less
* than 2^i. Since 2 is less than 10^(28/93), this is less than
* 10^(28i/93). We need an integer power of ten, so we must
* round up (rounding down might make it less than x again).
* Therefore if we multiply the bit count by 28/93, rounding
* up, we will have enough digits.
*/
i = bignum_bitcount(x);
ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
ndigits++; /* allow for trailing \0 */
ret = snewn(ndigits, char);
/*
* Now allocate some workspace to hold the binary form as we
* repeatedly divide it by ten. Initialise this to the
* big-endian form of the number.
*/
workspace = snewn(x[0], unsigned short);
for (i = 0; i < x[0]; i++)
workspace[i] = x[x[0] - i];
/*
* Next, write the decimal number starting with the last digit.
* We use ordinary short division, dividing 10 into the
* workspace.
*/
ndigit = ndigits - 1;
ret[ndigit] = '\0';
do {
iszero = 1;
carry = 0;
for (i = 0; i < x[0]; i++) {
carry = (carry << 16) + workspace[i];
workspace[i] = (unsigned short) (carry / 10);
if (workspace[i])
iszero = 0;
carry %= 10;
}
ret[--ndigit] = (char) (carry + '0');
} while (!iszero);
/*
* There's a chance we've fallen short of the start of the
* string. Correct if so.
*/
if (ndigit > 0)
memmove(ret, ret + ndigit, ndigits - ndigit);
/*
* Done.
*/
return ret;
}