mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-08 08:58:00 +00:00
443 lines
16 KiB
C
443 lines
16 KiB
C
/*
|
|
* Header for misc.c.
|
|
*/
|
|
|
|
#ifndef PUTTY_MISC_H
|
|
#define PUTTY_MISC_H
|
|
|
|
#include "defs.h"
|
|
#include "puttymem.h"
|
|
#include "marshal.h"
|
|
|
|
#include <stdio.h> /* for FILE * */
|
|
#include <stdarg.h> /* for va_list */
|
|
#include <stdlib.h> /* for abort */
|
|
#include <time.h> /* for struct tm */
|
|
#include <limits.h> /* for INT_MAX/MIN */
|
|
#include <assert.h> /* for assert (obviously) */
|
|
|
|
unsigned long parse_blocksize(const char *bs);
|
|
char ctrlparse(char *s, char **next);
|
|
|
|
size_t host_strcspn(const char *s, const char *set);
|
|
char *host_strchr(const char *s, int c);
|
|
char *host_strrchr(const char *s, int c);
|
|
char *host_strduptrim(const char *s);
|
|
|
|
char *dupstr(const char *s);
|
|
char *dupcat_fn(const char *s1, ...);
|
|
#define dupcat(...) dupcat_fn(__VA_ARGS__, (const char *)NULL)
|
|
char *dupprintf(const char *fmt, ...) PRINTF_LIKE(1, 2);
|
|
char *dupvprintf(const char *fmt, va_list ap);
|
|
void burnstr(char *string);
|
|
|
|
/*
|
|
* The visible part of a strbuf structure. There's a surrounding
|
|
* implementation struct in misc.c, which isn't exposed to client
|
|
* code.
|
|
*/
|
|
struct strbuf {
|
|
char *s;
|
|
unsigned char *u;
|
|
size_t len;
|
|
BinarySink_IMPLEMENTATION;
|
|
};
|
|
|
|
/* strbuf constructors: strbuf_new_nm and strbuf_new differ in that a
|
|
* strbuf constructed using the _nm version will resize itself by
|
|
* alloc/copy/smemclr/free instead of realloc. Use that version for
|
|
* data sensitive enough that it's worth costing performance to
|
|
* avoid copies of it lingering in process memory. */
|
|
strbuf *strbuf_new(void);
|
|
strbuf *strbuf_new_nm(void);
|
|
|
|
void strbuf_free(strbuf *buf);
|
|
void *strbuf_append(strbuf *buf, size_t len);
|
|
void strbuf_shrink_to(strbuf *buf, size_t new_len);
|
|
void strbuf_shrink_by(strbuf *buf, size_t amount_to_remove);
|
|
char *strbuf_to_str(strbuf *buf); /* does free buf, but you must free result */
|
|
void strbuf_catf(strbuf *buf, const char *fmt, ...) PRINTF_LIKE(2, 3);
|
|
void strbuf_catfv(strbuf *buf, const char *fmt, va_list ap);
|
|
static inline void strbuf_clear(strbuf *buf) { strbuf_shrink_to(buf, 0); }
|
|
bool strbuf_chomp(strbuf *buf, char char_to_remove);
|
|
|
|
strbuf *strbuf_new_for_agent_query(void);
|
|
void strbuf_finalise_agent_query(strbuf *buf);
|
|
|
|
/* String-to-Unicode converters that auto-allocate the destination and
|
|
* work around the rather deficient interface of mb_to_wc.
|
|
*
|
|
* These actually live in miscucs.c, not misc.c (the distinction being
|
|
* that the former is only linked into tools that also have the main
|
|
* Unicode support). */
|
|
wchar_t *dup_mb_to_wc_c(int codepage, int flags, const char *string, int len);
|
|
wchar_t *dup_mb_to_wc(int codepage, int flags, const char *string);
|
|
|
|
static inline int toint(unsigned u)
|
|
{
|
|
/*
|
|
* Convert an unsigned to an int, without running into the
|
|
* undefined behaviour which happens by the strict C standard if
|
|
* the value overflows. You'd hope that sensible compilers would
|
|
* do the sensible thing in response to a cast, but actually I
|
|
* don't trust modern compilers not to do silly things like
|
|
* assuming that _obviously_ you wouldn't have caused an overflow
|
|
* and so they can elide an 'if (i < 0)' test immediately after
|
|
* the cast.
|
|
*
|
|
* Sensible compilers ought of course to optimise this entire
|
|
* function into 'just return the input value', and since it's
|
|
* also declared inline, elide it completely in their output.
|
|
*/
|
|
if (u <= (unsigned)INT_MAX)
|
|
return (int)u;
|
|
else if (u >= (unsigned)INT_MIN) /* wrap in cast _to_ unsigned is OK */
|
|
return INT_MIN + (int)(u - (unsigned)INT_MIN);
|
|
else
|
|
return INT_MIN; /* fallback; should never occur on binary machines */
|
|
}
|
|
|
|
char *fgetline(FILE *fp);
|
|
bool read_file_into(BinarySink *bs, FILE *fp);
|
|
char *chomp(char *str);
|
|
bool strstartswith(const char *s, const char *t);
|
|
bool strendswith(const char *s, const char *t);
|
|
|
|
void base64_encode_atom(const unsigned char *data, int n, char *out);
|
|
int base64_decode_atom(const char *atom, unsigned char *out);
|
|
|
|
struct bufchain_granule;
|
|
struct bufchain_tag {
|
|
struct bufchain_granule *head, *tail;
|
|
size_t buffersize; /* current amount of buffered data */
|
|
|
|
void (*queue_idempotent_callback)(IdempotentCallback *ic);
|
|
IdempotentCallback *ic;
|
|
};
|
|
|
|
void bufchain_init(bufchain *ch);
|
|
void bufchain_clear(bufchain *ch);
|
|
size_t bufchain_size(bufchain *ch);
|
|
void bufchain_add(bufchain *ch, const void *data, size_t len);
|
|
ptrlen bufchain_prefix(bufchain *ch);
|
|
void bufchain_consume(bufchain *ch, size_t len);
|
|
void bufchain_fetch(bufchain *ch, void *data, size_t len);
|
|
void bufchain_fetch_consume(bufchain *ch, void *data, size_t len);
|
|
bool bufchain_try_fetch_consume(bufchain *ch, void *data, size_t len);
|
|
size_t bufchain_fetch_consume_up_to(bufchain *ch, void *data, size_t len);
|
|
void bufchain_set_callback_inner(
|
|
bufchain *ch, IdempotentCallback *ic,
|
|
void (*queue_idempotent_callback)(IdempotentCallback *ic));
|
|
static inline void bufchain_set_callback(bufchain *ch, IdempotentCallback *ic)
|
|
{
|
|
extern void queue_idempotent_callback(struct IdempotentCallback *ic);
|
|
/* Wrapper that puts in the standard queue_idempotent_callback
|
|
* function. Lives here rather than in utils.c so that standalone
|
|
* programs can use the bufchain facility without this optional
|
|
* callback feature and not need to provide a stub of
|
|
* queue_idempotent_callback. */
|
|
bufchain_set_callback_inner(ch, ic, queue_idempotent_callback);
|
|
}
|
|
|
|
bool validate_manual_hostkey(char *key);
|
|
|
|
struct tm ltime(void);
|
|
|
|
/*
|
|
* Special form of strcmp which can cope with NULL inputs. NULL is
|
|
* defined to sort before even the empty string.
|
|
*/
|
|
int nullstrcmp(const char *a, const char *b);
|
|
|
|
static inline ptrlen make_ptrlen(const void *ptr, size_t len)
|
|
{
|
|
ptrlen pl;
|
|
pl.ptr = ptr;
|
|
pl.len = len;
|
|
return pl;
|
|
}
|
|
|
|
static inline ptrlen ptrlen_from_asciz(const char *str)
|
|
{
|
|
return make_ptrlen(str, strlen(str));
|
|
}
|
|
|
|
static inline ptrlen ptrlen_from_strbuf(strbuf *sb)
|
|
{
|
|
return make_ptrlen(sb->u, sb->len);
|
|
}
|
|
|
|
bool ptrlen_eq_string(ptrlen pl, const char *str);
|
|
bool ptrlen_eq_ptrlen(ptrlen pl1, ptrlen pl2);
|
|
int ptrlen_strcmp(ptrlen pl1, ptrlen pl2);
|
|
/* ptrlen_startswith and ptrlen_endswith write through their 'tail'
|
|
* argument if and only if it is non-NULL and they return true. Hence
|
|
* you can write ptrlen_startswith(thing, prefix, &thing), writing
|
|
* back to the same ptrlen it read from, to remove a prefix if present
|
|
* and say whether it did so. */
|
|
bool ptrlen_startswith(ptrlen whole, ptrlen prefix, ptrlen *tail);
|
|
bool ptrlen_endswith(ptrlen whole, ptrlen suffix, ptrlen *tail);
|
|
ptrlen ptrlen_get_word(ptrlen *input, const char *separators);
|
|
char *mkstr(ptrlen pl);
|
|
int string_length_for_printf(size_t);
|
|
/* Derive two printf arguments from a ptrlen, suitable for "%.*s" */
|
|
#define PTRLEN_PRINTF(pl) \
|
|
string_length_for_printf((pl).len), (const char *)(pl).ptr
|
|
/* Make a ptrlen out of a compile-time string literal. We try to
|
|
* enforce that it _is_ a string literal by token-pasting "" on to it,
|
|
* which should provoke a compile error if it's any other kind of
|
|
* string. */
|
|
#define PTRLEN_LITERAL(stringlit) \
|
|
TYPECHECK("" stringlit "", make_ptrlen(stringlit, sizeof(stringlit)-1))
|
|
/* Make a ptrlen out of a compile-time string literal in a way that
|
|
* allows you to declare the ptrlen itself as a compile-time initialiser. */
|
|
#define PTRLEN_DECL_LITERAL(stringlit) \
|
|
{ TYPECHECK("" stringlit "", stringlit), sizeof(stringlit)-1 }
|
|
/* Make a ptrlen out of a constant byte array. */
|
|
#define PTRLEN_FROM_CONST_BYTES(a) make_ptrlen(a, sizeof(a))
|
|
|
|
/* Wipe sensitive data out of memory that's about to be freed. Simpler
|
|
* than memset because we don't need the fill char parameter; also
|
|
* attempts (by fiddly use of volatile) to inhibit the compiler from
|
|
* over-cleverly trying to optimise the memset away because it knows
|
|
* the variable is going out of scope. */
|
|
void smemclr(void *b, size_t len);
|
|
|
|
/* Compare two fixed-length chunks of memory for equality, without
|
|
* data-dependent control flow (so an attacker with a very accurate
|
|
* stopwatch can't try to guess where the first mismatching byte was).
|
|
* Returns false for mismatch or true for equality (unlike memcmp),
|
|
* hinted at by the 'eq' in the name. */
|
|
bool smemeq(const void *av, const void *bv, size_t len);
|
|
|
|
/* Encode a single UTF-8 character. Assumes that illegal characters
|
|
* (such as things in the surrogate range, or > 0x10FFFF) have already
|
|
* been removed. */
|
|
size_t encode_utf8(void *output, unsigned long ch);
|
|
|
|
/* Write a string out in C string-literal format. */
|
|
void write_c_string_literal(FILE *fp, ptrlen str);
|
|
|
|
char *buildinfo(const char *newline);
|
|
|
|
/*
|
|
* A function you can put at points in the code where execution should
|
|
* never reach in the first place. Better than assert(false), or even
|
|
* assert(false && "some explanatory message"), because some compilers
|
|
* don't interpret assert(false) as a declaration of unreachability,
|
|
* so they may still warn about pointless things like some variable
|
|
* not being initialised on the unreachable code path.
|
|
*
|
|
* I follow the assertion with a call to abort() just in case someone
|
|
* compiles with -DNDEBUG, and I wrap that abort inside my own
|
|
* function labelled NORETURN just in case some unusual kind of system
|
|
* header wasn't foresighted enough to label abort() itself that way.
|
|
*/
|
|
static inline NORETURN void unreachable_internal(void) { abort(); }
|
|
#define unreachable(msg) (assert(false && msg), unreachable_internal())
|
|
|
|
/*
|
|
* Debugging functions.
|
|
*
|
|
* Output goes to debug.log
|
|
*
|
|
* debug() is like printf().
|
|
*
|
|
* dmemdump() and dmemdumpl() both do memory dumps. The difference
|
|
* is that dmemdumpl() is more suited for when the memory address is
|
|
* important (say because you'll be recording pointer values later
|
|
* on). dmemdump() is more concise.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
void debug_printf(const char *fmt, ...) PRINTF_LIKE(1, 2);
|
|
void debug_memdump(const void *buf, int len, bool L);
|
|
#define debug(...) (debug_printf(__VA_ARGS__))
|
|
#define dmemdump(buf,len) (debug_memdump(buf, len, false))
|
|
#define dmemdumpl(buf,len) (debug_memdump(buf, len, true))
|
|
#else
|
|
#define debug(...) ((void)0)
|
|
#define dmemdump(buf,len) ((void)0)
|
|
#define dmemdumpl(buf,len) ((void)0)
|
|
#endif
|
|
|
|
#ifndef lenof
|
|
#define lenof(x) ( (sizeof((x))) / (sizeof(*(x))))
|
|
#endif
|
|
|
|
#ifndef min
|
|
#define min(x,y) ( (x) < (y) ? (x) : (y) )
|
|
#endif
|
|
#ifndef max
|
|
#define max(x,y) ( (x) > (y) ? (x) : (y) )
|
|
#endif
|
|
|
|
static inline uint64_t GET_64BIT_LSB_FIRST(const void *vp)
|
|
{
|
|
const uint8_t *p = (const uint8_t *)vp;
|
|
return (((uint64_t)p[0] ) | ((uint64_t)p[1] << 8) |
|
|
((uint64_t)p[2] << 16) | ((uint64_t)p[3] << 24) |
|
|
((uint64_t)p[4] << 32) | ((uint64_t)p[5] << 40) |
|
|
((uint64_t)p[6] << 48) | ((uint64_t)p[7] << 56));
|
|
}
|
|
|
|
static inline void PUT_64BIT_LSB_FIRST(void *vp, uint64_t value)
|
|
{
|
|
uint8_t *p = (uint8_t *)vp;
|
|
p[0] = (uint8_t)(value);
|
|
p[1] = (uint8_t)(value >> 8);
|
|
p[2] = (uint8_t)(value >> 16);
|
|
p[3] = (uint8_t)(value >> 24);
|
|
p[4] = (uint8_t)(value >> 32);
|
|
p[5] = (uint8_t)(value >> 40);
|
|
p[6] = (uint8_t)(value >> 48);
|
|
p[7] = (uint8_t)(value >> 56);
|
|
}
|
|
|
|
static inline uint32_t GET_32BIT_LSB_FIRST(const void *vp)
|
|
{
|
|
const uint8_t *p = (const uint8_t *)vp;
|
|
return (((uint32_t)p[0] ) | ((uint32_t)p[1] << 8) |
|
|
((uint32_t)p[2] << 16) | ((uint32_t)p[3] << 24));
|
|
}
|
|
|
|
static inline void PUT_32BIT_LSB_FIRST(void *vp, uint32_t value)
|
|
{
|
|
uint8_t *p = (uint8_t *)vp;
|
|
p[0] = (uint8_t)(value);
|
|
p[1] = (uint8_t)(value >> 8);
|
|
p[2] = (uint8_t)(value >> 16);
|
|
p[3] = (uint8_t)(value >> 24);
|
|
}
|
|
|
|
static inline uint16_t GET_16BIT_LSB_FIRST(const void *vp)
|
|
{
|
|
const uint8_t *p = (const uint8_t *)vp;
|
|
return (((uint16_t)p[0] ) | ((uint16_t)p[1] << 8));
|
|
}
|
|
|
|
static inline void PUT_16BIT_LSB_FIRST(void *vp, uint16_t value)
|
|
{
|
|
uint8_t *p = (uint8_t *)vp;
|
|
p[0] = (uint8_t)(value);
|
|
p[1] = (uint8_t)(value >> 8);
|
|
}
|
|
|
|
static inline uint64_t GET_64BIT_MSB_FIRST(const void *vp)
|
|
{
|
|
const uint8_t *p = (const uint8_t *)vp;
|
|
return (((uint64_t)p[7] ) | ((uint64_t)p[6] << 8) |
|
|
((uint64_t)p[5] << 16) | ((uint64_t)p[4] << 24) |
|
|
((uint64_t)p[3] << 32) | ((uint64_t)p[2] << 40) |
|
|
((uint64_t)p[1] << 48) | ((uint64_t)p[0] << 56));
|
|
}
|
|
|
|
static inline void PUT_64BIT_MSB_FIRST(void *vp, uint64_t value)
|
|
{
|
|
uint8_t *p = (uint8_t *)vp;
|
|
p[7] = (uint8_t)(value);
|
|
p[6] = (uint8_t)(value >> 8);
|
|
p[5] = (uint8_t)(value >> 16);
|
|
p[4] = (uint8_t)(value >> 24);
|
|
p[3] = (uint8_t)(value >> 32);
|
|
p[2] = (uint8_t)(value >> 40);
|
|
p[1] = (uint8_t)(value >> 48);
|
|
p[0] = (uint8_t)(value >> 56);
|
|
}
|
|
|
|
static inline uint32_t GET_32BIT_MSB_FIRST(const void *vp)
|
|
{
|
|
const uint8_t *p = (const uint8_t *)vp;
|
|
return (((uint32_t)p[3] ) | ((uint32_t)p[2] << 8) |
|
|
((uint32_t)p[1] << 16) | ((uint32_t)p[0] << 24));
|
|
}
|
|
|
|
static inline void PUT_32BIT_MSB_FIRST(void *vp, uint32_t value)
|
|
{
|
|
uint8_t *p = (uint8_t *)vp;
|
|
p[3] = (uint8_t)(value);
|
|
p[2] = (uint8_t)(value >> 8);
|
|
p[1] = (uint8_t)(value >> 16);
|
|
p[0] = (uint8_t)(value >> 24);
|
|
}
|
|
|
|
static inline uint16_t GET_16BIT_MSB_FIRST(const void *vp)
|
|
{
|
|
const uint8_t *p = (const uint8_t *)vp;
|
|
return (((uint16_t)p[1] ) | ((uint16_t)p[0] << 8));
|
|
}
|
|
|
|
static inline void PUT_16BIT_MSB_FIRST(void *vp, uint16_t value)
|
|
{
|
|
uint8_t *p = (uint8_t *)vp;
|
|
p[1] = (uint8_t)(value);
|
|
p[0] = (uint8_t)(value >> 8);
|
|
}
|
|
|
|
/* Replace NULL with the empty string, permitting an idiom in which we
|
|
* get a string (pointer,length) pair that might be NULL,0 and can
|
|
* then safely say things like printf("%.*s", length, NULLTOEMPTY(ptr)) */
|
|
static inline const char *NULLTOEMPTY(const char *s)
|
|
{
|
|
return s ? s : "";
|
|
}
|
|
|
|
/* StripCtrlChars, defined in stripctrl.c: an adapter you can put on
|
|
* the front of one BinarySink and which functions as one in turn.
|
|
* Interprets its input as a stream of multibyte characters in the
|
|
* system locale, and removes any that are not either printable
|
|
* characters or newlines. */
|
|
struct StripCtrlChars {
|
|
BinarySink_IMPLEMENTATION;
|
|
/* and this is contained in a larger structure */
|
|
};
|
|
StripCtrlChars *stripctrl_new(
|
|
BinarySink *bs_out, bool permit_cr, wchar_t substitution);
|
|
StripCtrlChars *stripctrl_new_term_fn(
|
|
BinarySink *bs_out, bool permit_cr, wchar_t substitution,
|
|
Terminal *term, unsigned long (*translate)(
|
|
Terminal *, term_utf8_decode *, unsigned char));
|
|
#define stripctrl_new_term(bs, cr, sub, term) \
|
|
stripctrl_new_term_fn(bs, cr, sub, term, term_translate)
|
|
void stripctrl_retarget(StripCtrlChars *sccpub, BinarySink *new_bs_out);
|
|
void stripctrl_reset(StripCtrlChars *sccpub);
|
|
void stripctrl_free(StripCtrlChars *sanpub);
|
|
void stripctrl_enable_line_limiting(StripCtrlChars *sccpub);
|
|
char *stripctrl_string_ptrlen(StripCtrlChars *sccpub, ptrlen str);
|
|
static inline char *stripctrl_string(StripCtrlChars *sccpub, const char *str)
|
|
{
|
|
return stripctrl_string_ptrlen(sccpub, ptrlen_from_asciz(str));
|
|
}
|
|
|
|
/*
|
|
* A mechanism for loading a file from disk into a memory buffer where
|
|
* it can be picked apart as a BinarySource.
|
|
*/
|
|
struct LoadedFile {
|
|
char *data;
|
|
size_t len, max_size;
|
|
BinarySource_IMPLEMENTATION;
|
|
};
|
|
typedef enum {
|
|
LF_OK, /* file loaded successfully */
|
|
LF_TOO_BIG, /* file didn't fit in buffer */
|
|
LF_ERROR, /* error from stdio layer */
|
|
} LoadFileStatus;
|
|
LoadedFile *lf_new(size_t max_size);
|
|
void lf_free(LoadedFile *lf);
|
|
LoadFileStatus lf_load_fp(LoadedFile *lf, FILE *fp);
|
|
LoadFileStatus lf_load(LoadedFile *lf, const Filename *filename);
|
|
static inline ptrlen ptrlen_from_lf(LoadedFile *lf)
|
|
{ return make_ptrlen(lf->data, lf->len); }
|
|
|
|
/* Set the memory block of 'size' bytes at 'out' to the bitwise XOR of
|
|
* the two blocks of the same size at 'in1' and 'in2'.
|
|
*
|
|
* 'out' may point to exactly the same address as one of the inputs,
|
|
* but if the input and output blocks overlap in any other way, the
|
|
* result of this function is not guaranteed. No memmove-style effort
|
|
* is made to handle difficult overlap cases. */
|
|
void memxor(uint8_t *out, const uint8_t *in1, const uint8_t *in2, size_t size);
|
|
|
|
#endif
|