1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 09:27:59 +00:00
putty-source/test/eccref.py
Simon Tatham 2ec2b796ed Migrate all Python scripts to Python 3.
Most of them are now _mandatory_ P3 scripts, because I'm tired of
maintaining everything to be compatible with both versions.

The current exceptions are gdb.py (which has to live with whatever gdb
gives it), and kh2reg.py (which is actually designed for other people
to use, and some of them might still be stuck on P2 for the moment).
2020-03-04 21:23:49 +00:00

332 lines
14 KiB
Python

import sys
import numbers
import itertools
assert sys.version_info[:2] >= (3,0), "This is Python 3 code"
from numbertheory import *
class AffinePoint(object):
"""Base class for points on an elliptic curve."""
def __init__(self, curve, *args):
self.curve = curve
if len(args) == 0:
self.infinite = True
self.x = self.y = None
else:
assert len(args) == 2
self.infinite = False
self.x = ModP(self.curve.p, args[0])
self.y = ModP(self.curve.p, args[1])
self.check_equation()
def __neg__(self):
if self.infinite:
return self
return type(self)(self.curve, self.x, -self.y)
def __mul__(self, rhs):
if not isinstance(rhs, numbers.Integral):
raise ValueError("Elliptic curve points can only be multiplied by integers")
P = self
if rhs < 0:
rhs = -rhs
P = -P
toret = self.curve.point()
n = 1
nP = P
while rhs != 0:
if rhs & n:
rhs -= n
toret += nP
n += n
nP += nP
return toret
def __rmul__(self, rhs):
return self * rhs
def __sub__(self, rhs):
return self + (-rhs)
def __rsub__(self, rhs):
return (-self) + rhs
def __str__(self):
if self.infinite:
return "inf"
else:
return "({},{})".format(self.x, self.y)
def __repr__(self):
if self.infinite:
args = ""
else:
args = ", {}, {}".format(self.x, self.y)
return "{}.Point({}{})".format(type(self.curve).__name__,
self.curve, args)
def __eq__(self, rhs):
if self.infinite or rhs.infinite:
return self.infinite and rhs.infinite
return (self.x, self.y) == (rhs.x, rhs.y)
def __ne__(self, rhs):
return not (self == rhs)
def __lt__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __le__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __gt__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __ge__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __hash__(self):
if self.infinite:
return hash((True,))
else:
return hash((False, self.x, self.y))
class CurveBase(object):
def point(self, *args):
return self.Point(self, *args)
class WeierstrassCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
assert (self.y*self.y ==
self.x*self.x*self.x +
self.curve.a*self.x + self.curve.b)
def __add__(self, rhs):
if self.infinite:
return rhs
if rhs.infinite:
return self
if self.x == rhs.x and self.y != rhs.y:
return self.curve.point()
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
xdiff = x2-x1
if xdiff != 0:
slope = (y2-y1) / xdiff
else:
assert y1 == y2
slope = (3*x1*x1 + self.curve.a) / (2*y1)
xp = slope*slope - x1 - x2
yp = -(y1 + slope * (xp-x1))
return self.curve.point(xp, yp)
def __init__(self, p, a, b):
self.p = p
self.a = ModP(p, a)
self.b = ModP(p, b)
def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = RootModP(2, self.p)
rhs = x**3 + self.a.n * x + self.b.n
y = self.sqrtmodp.root(rhs)
if (y - yparity) % 2:
y = -y
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.a, self.b)
class MontgomeryCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
assert (self.curve.b*self.y*self.y ==
self.x*self.x*self.x +
self.curve.a*self.x*self.x + self.x)
def __add__(self, rhs):
if self.infinite:
return rhs
if rhs.infinite:
return self
if self.x == rhs.x and self.y != rhs.y:
return self.curve.point()
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
xdiff = x2-x1
if xdiff != 0:
slope = (y2-y1) / xdiff
elif y1 != 0:
assert y1 == y2
slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
else:
# If y1 was 0 as well, then we must have found an
# order-2 point that doubles to the identity.
return self.curve.point()
xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
yp = -(y1 + slope * (xp-x1))
return self.curve.point(xp, yp)
def __init__(self, p, a, b):
self.p = p
self.a = ModP(p, a)
self.b = ModP(p, b)
def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = RootModP(2, self.p)
rhs = (x**3 + self.a.n * x**2 + x) / self.b
y = self.sqrtmodp.root(int(rhs))
if (y - yparity) % 2:
y = -y
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.a, self.b)
class TwistedEdwardsCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
x2, y2 = self.x*self.x, self.y*self.y
assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
def __neg__(self):
return type(self)(self.curve, -self.x, self.y)
def __add__(self, rhs):
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
dxxyy = self.curve.d*x1x2*y1y2
return self.curve.point((x1y2+y1x2)/(1+dxxyy),
(y1y2-self.curve.a*x1x2)/(1-dxxyy))
def __init__(self, p, d, a):
self.p = p
self.d = ModP(p, d)
self.a = ModP(p, a)
def point(self, *args):
# This curve form represents the identity using finite
# numbers, so it doesn't need the special infinity flag.
# Detect a no-argument call to point() and substitute the pair
# of integers that gives the identity.
if len(args) == 0:
args = [0, 1]
return super(TwistedEdwardsCurve, self).point(*args)
def cpoint(self, y, xparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = RootModP(self.p)
y = ModP(self.p, y)
y2 = y**2
radicand = (y2 - 1) / (self.d * y2 - self.a)
x = self.sqrtmodp.root(radicand.n)
if (x - xparity) % 2:
x = -x
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.d, self.a)
def find_montgomery_power2_order_x_values(p, a):
# Find points on a Montgomery elliptic curve that have order a
# power of 2.
#
# Motivation: both Curve25519 and Curve448 are abelian groups
# whose overall order is a large prime times a small factor of 2.
# The approved base point of each curve generates a cyclic
# subgroup whose order is the large prime. Outside that cyclic
# subgroup there are many other points that have large prime
# order, plus just a handful that have tiny order. If one of the
# latter is presented to you as a Diffie-Hellman public value,
# nothing useful is going to happen, and RFC 7748 says we should
# outlaw those values. And any actual attempt to outlaw them is
# going to need to know what they are, either to check for each
# one directly, or to use them as test cases for some other
# approach.
#
# In a group of order p 2^k, an obvious way to search for points
# with order dividing 2^k is to generate random group elements and
# raise them to the power p. That guarantees that you end up with
# _something_ with order dividing 2^k (even if it's boringly the
# identity). And you also know from theory how many such points
# you expect to exist, so you can count the distinct ones you've
# found, and stop once you've got the right number.
#
# But that isn't actually good enough to find all the public
# values that are problematic! The reason why not is that in
# Montgomery key exchange we don't actually use a full elliptic
# curve point: we only use its x-coordinate. And the formulae for
# doubling and differential addition on x-coordinates can accept
# some values that don't correspond to group elements _at all_
# without detecting any error - and some of those nonsense x
# coordinates can also behave like low-order points.
#
# (For example, the x-coordinate -1 in Curve25519 is such a value.
# The reference ECC code in this module will raise an exception if
# you call curve25519.cpoint(-1): it corresponds to no valid point
# at all. But if you feed it into the doubling formula _anyway_,
# it doubles to the valid curve point with x-coord 0, which in
# turn doubles to the curve identity. Bang.)
#
# So we use an alternative approach which discards the group
# theory of the actual elliptic curve, and focuses purely on the
# doubling formula as an algebraic transformation on Z_p. Our
# question is: what values of x have the property that if you
# iterate the doubling map you eventually end up dividing by zero?
# To answer that, we must solve cubics and quartics mod p, via the
# code in numbertheory.py for doing so.
E = EquationSolverModP(p)
def viableSolutions(it):
for x in it:
try:
yield int(x)
except ValueError:
pass # some field-extension element that isn't a real value
def valuesDoublingTo(y):
# The doubling formula for a Montgomery curve point given only
# by x coordinate is (x+1)^2(x-1)^2 / (4(x^3+ax^2+x)).
#
# If we want to find a point that doubles to some particular
# value, we can set that formula equal to y and expand to get the
# quartic equation x^4 + (-4y)x^3 + (-4ay-2)x^2 + (-4y)x + 1 = 0.
return viableSolutions(E.solve_monic_quartic(-4*y, -4*a*y-2, -4*y, 1))
queue = []
qset = set()
pos = 0
def insert(x):
if x not in qset:
queue.append(x)
qset.add(x)
# Our ultimate aim is to find points that end up going to the
# curve identity / point at infinity after some number of
# doublings. So our starting point is: what values of x make the
# denominator of the doubling formula zero?
for x in viableSolutions(E.solve_monic_cubic(a, 1, 0)):
insert(x)
while pos < len(queue):
y = queue[pos]
pos += 1
for x in valuesDoublingTo(y):
insert(x)
return queue
p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
curve25519.G = curve25519.cpoint(9)
curve448 = MontgomeryCurve(2**448-2**224-1, 0x262a6, 1)
curve448.G = curve448.cpoint(5)
ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
ed448 = TwistedEdwardsCurve(2**448-2**224-1, -39081, +1)
ed448.G = ed448.point(0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e,0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14)
ed448.G_order = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3