mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
4251d28f71
uxnet.c's sk_namelookup and the sorting-key construction in pangofont_enum_fonts() were both using s[n]printf and strncpy into buffers that had no real need to be fixed-size; format_telnet_command and the GTK Event Log selection-data builder were doing their own sresize loops, but now we have strbuf they can just use that and save redoing the same work.
1741 lines
44 KiB
C
1741 lines
44 KiB
C
/*
|
|
* Unix networking abstraction.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <arpa/inet.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netdb.h>
|
|
#include <sys/un.h>
|
|
#include <pwd.h>
|
|
#include <grp.h>
|
|
|
|
#include "putty.h"
|
|
#include "network.h"
|
|
#include "tree234.h"
|
|
|
|
/* Solaris needs <sys/sockio.h> for SIOCATMARK. */
|
|
#ifndef SIOCATMARK
|
|
#include <sys/sockio.h>
|
|
#endif
|
|
|
|
#ifndef X11_UNIX_PATH
|
|
# define X11_UNIX_PATH "/tmp/.X11-unix/X"
|
|
#endif
|
|
|
|
/*
|
|
* Access to sockaddr types without breaking C strict aliasing rules.
|
|
*/
|
|
union sockaddr_union {
|
|
struct sockaddr_storage storage;
|
|
struct sockaddr sa;
|
|
struct sockaddr_in sin;
|
|
#ifndef NO_IPV6
|
|
struct sockaddr_in6 sin6;
|
|
#endif
|
|
struct sockaddr_un su;
|
|
};
|
|
|
|
/*
|
|
* Mutable state that goes with a SockAddr: stores information
|
|
* about where in the list of candidate IP(v*) addresses we've
|
|
* currently got to.
|
|
*/
|
|
typedef struct SockAddrStep_tag SockAddrStep;
|
|
struct SockAddrStep_tag {
|
|
#ifndef NO_IPV6
|
|
struct addrinfo *ai; /* steps along addr->ais */
|
|
#endif
|
|
int curraddr;
|
|
};
|
|
|
|
typedef struct NetSocket NetSocket;
|
|
struct NetSocket {
|
|
const char *error;
|
|
int s;
|
|
Plug *plug;
|
|
bufchain output_data;
|
|
bool connected; /* irrelevant for listening sockets */
|
|
bool writable;
|
|
bool frozen; /* this causes readability notifications to be ignored */
|
|
bool localhost_only; /* for listening sockets */
|
|
char oobdata[1];
|
|
int sending_oob;
|
|
bool oobpending; /* is there OOB data available to read? */
|
|
bool oobinline;
|
|
enum { EOF_NO, EOF_PENDING, EOF_SENT } outgoingeof;
|
|
bool incomingeof;
|
|
int pending_error; /* in case send() returns error */
|
|
bool listener;
|
|
bool nodelay, keepalive; /* for connect()-type sockets */
|
|
bool privport;
|
|
int port; /* and again */
|
|
SockAddr *addr;
|
|
SockAddrStep step;
|
|
/*
|
|
* We sometimes need pairs of Socket structures to be linked:
|
|
* if we are listening on the same IPv6 and v4 port, for
|
|
* example. So here we define `parent' and `child' pointers to
|
|
* track this link.
|
|
*/
|
|
NetSocket *parent, *child;
|
|
|
|
Socket sock;
|
|
};
|
|
|
|
struct SockAddr {
|
|
int refcount;
|
|
const char *error;
|
|
enum { UNRESOLVED, UNIX, IP } superfamily;
|
|
#ifndef NO_IPV6
|
|
struct addrinfo *ais; /* Addresses IPv6 style. */
|
|
#else
|
|
unsigned long *addresses; /* Addresses IPv4 style. */
|
|
int naddresses;
|
|
#endif
|
|
char hostname[512]; /* Store an unresolved host name. */
|
|
};
|
|
|
|
/*
|
|
* Which address family this address belongs to. AF_INET for IPv4;
|
|
* AF_INET6 for IPv6; AF_UNSPEC indicates that name resolution has
|
|
* not been done and a simple host name is held in this SockAddr
|
|
* structure.
|
|
*/
|
|
#ifndef NO_IPV6
|
|
#define SOCKADDR_FAMILY(addr, step) \
|
|
((addr)->superfamily == UNRESOLVED ? AF_UNSPEC : \
|
|
(addr)->superfamily == UNIX ? AF_UNIX : \
|
|
(step).ai ? (step).ai->ai_family : AF_INET)
|
|
#else
|
|
/* Here we gratuitously reference 'step' to avoid gcc warnings about
|
|
* 'set but not used' when compiling -DNO_IPV6 */
|
|
#define SOCKADDR_FAMILY(addr, step) \
|
|
((addr)->superfamily == UNRESOLVED ? AF_UNSPEC : \
|
|
(addr)->superfamily == UNIX ? AF_UNIX : \
|
|
(step).curraddr ? AF_INET : AF_INET)
|
|
#endif
|
|
|
|
/*
|
|
* Start a SockAddrStep structure to step through multiple
|
|
* addresses.
|
|
*/
|
|
#ifndef NO_IPV6
|
|
#define START_STEP(addr, step) \
|
|
((step).ai = (addr)->ais, (step).curraddr = 0)
|
|
#else
|
|
#define START_STEP(addr, step) \
|
|
((step).curraddr = 0)
|
|
#endif
|
|
|
|
static tree234 *sktree;
|
|
|
|
static void uxsel_tell(NetSocket *s);
|
|
|
|
static int cmpfortree(void *av, void *bv)
|
|
{
|
|
NetSocket *a = (NetSocket *) av, *b = (NetSocket *) bv;
|
|
int as = a->s, bs = b->s;
|
|
if (as < bs)
|
|
return -1;
|
|
if (as > bs)
|
|
return +1;
|
|
if (a < b)
|
|
return -1;
|
|
if (a > b)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
static int cmpforsearch(void *av, void *bv)
|
|
{
|
|
NetSocket *b = (NetSocket *) bv;
|
|
int as = *(int *)av, bs = b->s;
|
|
if (as < bs)
|
|
return -1;
|
|
if (as > bs)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
void sk_init(void)
|
|
{
|
|
sktree = newtree234(cmpfortree);
|
|
}
|
|
|
|
void sk_cleanup(void)
|
|
{
|
|
NetSocket *s;
|
|
int i;
|
|
|
|
if (sktree) {
|
|
for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
|
|
close(s->s);
|
|
}
|
|
}
|
|
}
|
|
|
|
SockAddr *sk_namelookup(const char *host, char **canonicalname, int address_family)
|
|
{
|
|
SockAddr *ret = snew(SockAddr);
|
|
#ifndef NO_IPV6
|
|
struct addrinfo hints;
|
|
int err;
|
|
#else
|
|
unsigned long a;
|
|
struct hostent *h = NULL;
|
|
int n;
|
|
#endif
|
|
strbuf *realhost;
|
|
|
|
/* Clear the structure and default to IPv4. */
|
|
memset(ret, 0, sizeof(SockAddr));
|
|
ret->superfamily = UNRESOLVED;
|
|
ret->error = NULL;
|
|
ret->refcount = 1;
|
|
|
|
#ifndef NO_IPV6
|
|
hints.ai_flags = AI_CANONNAME;
|
|
hints.ai_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
|
|
address_family == ADDRTYPE_IPV6 ? AF_INET6 :
|
|
AF_UNSPEC);
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_protocol = 0;
|
|
hints.ai_addrlen = 0;
|
|
hints.ai_addr = NULL;
|
|
hints.ai_canonname = NULL;
|
|
hints.ai_next = NULL;
|
|
{
|
|
char *trimmed_host = host_strduptrim(host); /* strip [] on literals */
|
|
err = getaddrinfo(trimmed_host, NULL, &hints, &ret->ais);
|
|
sfree(trimmed_host);
|
|
}
|
|
if (err != 0) {
|
|
ret->error = gai_strerror(err);
|
|
return ret;
|
|
}
|
|
ret->superfamily = IP;
|
|
|
|
realhost = strbuf_new();
|
|
if (ret->ais->ai_canonname != NULL)
|
|
strbuf_catf(realhost, "%s", ret->ais->ai_canonname);
|
|
else
|
|
strbuf_catf(realhost, "%s", host);
|
|
#else
|
|
if ((a = inet_addr(host)) == (unsigned long)(in_addr_t)(-1)) {
|
|
/*
|
|
* Otherwise use the IPv4-only gethostbyname... (NOTE:
|
|
* we don't use gethostbyname as a fallback!)
|
|
*/
|
|
if (ret->superfamily == UNRESOLVED) {
|
|
/*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
|
|
if ( (h = gethostbyname(host)) )
|
|
ret->superfamily = IP;
|
|
}
|
|
if (ret->superfamily == UNRESOLVED) {
|
|
ret->error = (h_errno == HOST_NOT_FOUND ||
|
|
h_errno == NO_DATA ||
|
|
h_errno == NO_ADDRESS ? "Host does not exist" :
|
|
h_errno == TRY_AGAIN ?
|
|
"Temporary name service failure" :
|
|
"gethostbyname: unknown error");
|
|
strbuf_free(realhost);
|
|
return ret;
|
|
}
|
|
/* This way we are always sure the h->h_name is valid :) */
|
|
realhost->len = 0;
|
|
strbuf_catf(realhost, "%s", h->h_name);
|
|
for (n = 0; h->h_addr_list[n]; n++);
|
|
ret->addresses = snewn(n, unsigned long);
|
|
ret->naddresses = n;
|
|
for (n = 0; n < ret->naddresses; n++) {
|
|
memcpy(&a, h->h_addr_list[n], sizeof(a));
|
|
ret->addresses[n] = ntohl(a);
|
|
}
|
|
} else {
|
|
/*
|
|
* This must be a numeric IPv4 address because it caused a
|
|
* success return from inet_addr.
|
|
*/
|
|
ret->superfamily = IP;
|
|
realhost->len = 0;
|
|
strbuf_catf(realhost, "%s", host);
|
|
ret->addresses = snew(unsigned long);
|
|
ret->naddresses = 1;
|
|
ret->addresses[0] = ntohl(a);
|
|
}
|
|
#endif
|
|
*canonicalname = strbuf_to_str(realhost);
|
|
return ret;
|
|
}
|
|
|
|
SockAddr *sk_nonamelookup(const char *host)
|
|
{
|
|
SockAddr *ret = snew(SockAddr);
|
|
ret->error = NULL;
|
|
ret->superfamily = UNRESOLVED;
|
|
strncpy(ret->hostname, host, lenof(ret->hostname));
|
|
ret->hostname[lenof(ret->hostname)-1] = '\0';
|
|
#ifndef NO_IPV6
|
|
ret->ais = NULL;
|
|
#else
|
|
ret->addresses = NULL;
|
|
#endif
|
|
ret->refcount = 1;
|
|
return ret;
|
|
}
|
|
|
|
static bool sk_nextaddr(SockAddr *addr, SockAddrStep *step)
|
|
{
|
|
#ifndef NO_IPV6
|
|
if (step->ai && step->ai->ai_next) {
|
|
step->ai = step->ai->ai_next;
|
|
return true;
|
|
} else
|
|
return false;
|
|
#else
|
|
if (step->curraddr+1 < addr->naddresses) {
|
|
step->curraddr++;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void sk_getaddr(SockAddr *addr, char *buf, int buflen)
|
|
{
|
|
if (addr->superfamily == UNRESOLVED || addr->superfamily == UNIX) {
|
|
strncpy(buf, addr->hostname, buflen);
|
|
buf[buflen-1] = '\0';
|
|
} else {
|
|
#ifndef NO_IPV6
|
|
if (getnameinfo(addr->ais->ai_addr, addr->ais->ai_addrlen, buf, buflen,
|
|
NULL, 0, NI_NUMERICHOST) != 0) {
|
|
buf[0] = '\0';
|
|
strncat(buf, "<unknown>", buflen - 1);
|
|
}
|
|
#else
|
|
struct in_addr a;
|
|
SockAddrStep step;
|
|
START_STEP(addr, step);
|
|
assert(SOCKADDR_FAMILY(addr, step) == AF_INET);
|
|
a.s_addr = htonl(addr->addresses[0]);
|
|
strncpy(buf, inet_ntoa(a), buflen);
|
|
buf[buflen-1] = '\0';
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This constructs a SockAddr that points at one specific sub-address
|
|
* of a parent SockAddr. The returned SockAddr does not own all its
|
|
* own memory: it points into the old one's data structures, so it
|
|
* MUST NOT be used after the old one is freed, and it MUST NOT be
|
|
* passed to sk_addr_free. (The latter is why it's returned by value
|
|
* rather than dynamically allocated - that should clue in anyone
|
|
* writing a call to it that something is weird about it.)
|
|
*/
|
|
static SockAddr sk_extractaddr_tmp(
|
|
SockAddr *addr, const SockAddrStep *step)
|
|
{
|
|
SockAddr toret;
|
|
toret = *addr; /* structure copy */
|
|
toret.refcount = 1;
|
|
|
|
if (addr->superfamily == IP) {
|
|
#ifndef NO_IPV6
|
|
toret.ais = step->ai;
|
|
#else
|
|
assert(SOCKADDR_FAMILY(addr, *step) == AF_INET);
|
|
toret.addresses += step->curraddr;
|
|
#endif
|
|
}
|
|
|
|
return toret;
|
|
}
|
|
|
|
bool sk_addr_needs_port(SockAddr *addr)
|
|
{
|
|
if (addr->superfamily == UNRESOLVED || addr->superfamily == UNIX) {
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool sk_hostname_is_local(const char *name)
|
|
{
|
|
return !strcmp(name, "localhost") ||
|
|
!strcmp(name, "::1") ||
|
|
!strncmp(name, "127.", 4);
|
|
}
|
|
|
|
#define ipv4_is_loopback(addr) \
|
|
(((addr).s_addr & htonl(0xff000000)) == htonl(0x7f000000))
|
|
|
|
static bool sockaddr_is_loopback(struct sockaddr *sa)
|
|
{
|
|
union sockaddr_union *u = (union sockaddr_union *)sa;
|
|
switch (u->sa.sa_family) {
|
|
case AF_INET:
|
|
return ipv4_is_loopback(u->sin.sin_addr);
|
|
#ifndef NO_IPV6
|
|
case AF_INET6:
|
|
return IN6_IS_ADDR_LOOPBACK(&u->sin6.sin6_addr);
|
|
#endif
|
|
case AF_UNIX:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool sk_address_is_local(SockAddr *addr)
|
|
{
|
|
if (addr->superfamily == UNRESOLVED)
|
|
return false; /* we don't know; assume not */
|
|
else if (addr->superfamily == UNIX)
|
|
return true;
|
|
else {
|
|
#ifndef NO_IPV6
|
|
return sockaddr_is_loopback(addr->ais->ai_addr);
|
|
#else
|
|
struct in_addr a;
|
|
SockAddrStep step;
|
|
START_STEP(addr, step);
|
|
assert(SOCKADDR_FAMILY(addr, step) == AF_INET);
|
|
a.s_addr = htonl(addr->addresses[0]);
|
|
return ipv4_is_loopback(a);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool sk_address_is_special_local(SockAddr *addr)
|
|
{
|
|
return addr->superfamily == UNIX;
|
|
}
|
|
|
|
int sk_addrtype(SockAddr *addr)
|
|
{
|
|
SockAddrStep step;
|
|
int family;
|
|
START_STEP(addr, step);
|
|
family = SOCKADDR_FAMILY(addr, step);
|
|
|
|
return (family == AF_INET ? ADDRTYPE_IPV4 :
|
|
#ifndef NO_IPV6
|
|
family == AF_INET6 ? ADDRTYPE_IPV6 :
|
|
#endif
|
|
ADDRTYPE_NAME);
|
|
}
|
|
|
|
void sk_addrcopy(SockAddr *addr, char *buf)
|
|
{
|
|
SockAddrStep step;
|
|
int family;
|
|
START_STEP(addr, step);
|
|
family = SOCKADDR_FAMILY(addr, step);
|
|
|
|
#ifndef NO_IPV6
|
|
if (family == AF_INET)
|
|
memcpy(buf, &((struct sockaddr_in *)step.ai->ai_addr)->sin_addr,
|
|
sizeof(struct in_addr));
|
|
else if (family == AF_INET6)
|
|
memcpy(buf, &((struct sockaddr_in6 *)step.ai->ai_addr)->sin6_addr,
|
|
sizeof(struct in6_addr));
|
|
else
|
|
assert(false);
|
|
#else
|
|
struct in_addr a;
|
|
|
|
assert(family == AF_INET);
|
|
a.s_addr = htonl(addr->addresses[step.curraddr]);
|
|
memcpy(buf, (char*) &a.s_addr, 4);
|
|
#endif
|
|
}
|
|
|
|
void sk_addr_free(SockAddr *addr)
|
|
{
|
|
if (--addr->refcount > 0)
|
|
return;
|
|
#ifndef NO_IPV6
|
|
if (addr->ais != NULL)
|
|
freeaddrinfo(addr->ais);
|
|
#else
|
|
sfree(addr->addresses);
|
|
#endif
|
|
sfree(addr);
|
|
}
|
|
|
|
SockAddr *sk_addr_dup(SockAddr *addr)
|
|
{
|
|
addr->refcount++;
|
|
return addr;
|
|
}
|
|
|
|
static Plug *sk_net_plug(Socket *sock, Plug *p)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
Plug *ret = s->plug;
|
|
if (p)
|
|
s->plug = p;
|
|
return ret;
|
|
}
|
|
|
|
static void sk_net_flush(Socket *s)
|
|
{
|
|
/*
|
|
* We send data to the socket as soon as we can anyway,
|
|
* so we don't need to do anything here. :-)
|
|
*/
|
|
}
|
|
|
|
static void sk_net_close(Socket *s);
|
|
static int sk_net_write(Socket *s, const void *data, int len);
|
|
static int sk_net_write_oob(Socket *s, const void *data, int len);
|
|
static void sk_net_write_eof(Socket *s);
|
|
static void sk_net_set_frozen(Socket *s, bool is_frozen);
|
|
static SocketPeerInfo *sk_net_peer_info(Socket *s);
|
|
static const char *sk_net_socket_error(Socket *s);
|
|
|
|
static struct SocketVtable NetSocket_sockvt = {
|
|
sk_net_plug,
|
|
sk_net_close,
|
|
sk_net_write,
|
|
sk_net_write_oob,
|
|
sk_net_write_eof,
|
|
sk_net_flush,
|
|
sk_net_set_frozen,
|
|
sk_net_socket_error,
|
|
sk_net_peer_info,
|
|
};
|
|
|
|
static Socket *sk_net_accept(accept_ctx_t ctx, Plug *plug)
|
|
{
|
|
int sockfd = ctx.i;
|
|
NetSocket *ret;
|
|
|
|
/*
|
|
* Create NetSocket structure.
|
|
*/
|
|
ret = snew(NetSocket);
|
|
ret->sock.vt = &NetSocket_sockvt;
|
|
ret->error = NULL;
|
|
ret->plug = plug;
|
|
bufchain_init(&ret->output_data);
|
|
ret->writable = true; /* to start with */
|
|
ret->sending_oob = 0;
|
|
ret->frozen = true;
|
|
ret->localhost_only = false; /* unused, but best init anyway */
|
|
ret->pending_error = 0;
|
|
ret->oobpending = false;
|
|
ret->outgoingeof = EOF_NO;
|
|
ret->incomingeof = false;
|
|
ret->listener = false;
|
|
ret->parent = ret->child = NULL;
|
|
ret->addr = NULL;
|
|
ret->connected = true;
|
|
|
|
ret->s = sockfd;
|
|
|
|
if (ret->s < 0) {
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
ret->oobinline = false;
|
|
|
|
uxsel_tell(ret);
|
|
add234(sktree, ret);
|
|
|
|
return &ret->sock;
|
|
}
|
|
|
|
static int try_connect(NetSocket *sock)
|
|
{
|
|
int s;
|
|
union sockaddr_union u;
|
|
const union sockaddr_union *sa;
|
|
int err = 0;
|
|
short localport;
|
|
int salen, family;
|
|
|
|
/*
|
|
* Remove the socket from the tree before we overwrite its
|
|
* internal socket id, because that forms part of the tree's
|
|
* sorting criterion. We'll add it back before exiting this
|
|
* function, whether we changed anything or not.
|
|
*/
|
|
del234(sktree, sock);
|
|
|
|
if (sock->s >= 0)
|
|
close(sock->s);
|
|
|
|
{
|
|
SockAddr thisaddr = sk_extractaddr_tmp(
|
|
sock->addr, &sock->step);
|
|
plug_log(sock->plug, 0, &thisaddr, sock->port, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Open socket.
|
|
*/
|
|
family = SOCKADDR_FAMILY(sock->addr, sock->step);
|
|
assert(family != AF_UNSPEC);
|
|
s = socket(family, SOCK_STREAM, 0);
|
|
sock->s = s;
|
|
|
|
if (s < 0) {
|
|
err = errno;
|
|
goto ret;
|
|
}
|
|
|
|
cloexec(s);
|
|
|
|
if (sock->oobinline) {
|
|
int b = 1;
|
|
if (setsockopt(s, SOL_SOCKET, SO_OOBINLINE,
|
|
(void *) &b, sizeof(b)) < 0) {
|
|
err = errno;
|
|
close(s);
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
if (sock->nodelay) {
|
|
int b = 1;
|
|
if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY,
|
|
(void *) &b, sizeof(b)) < 0) {
|
|
err = errno;
|
|
close(s);
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
if (sock->keepalive) {
|
|
int b = 1;
|
|
if (setsockopt(s, SOL_SOCKET, SO_KEEPALIVE,
|
|
(void *) &b, sizeof(b)) < 0) {
|
|
err = errno;
|
|
close(s);
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bind to local address.
|
|
*/
|
|
if (sock->privport)
|
|
localport = 1023; /* count from 1023 downwards */
|
|
else
|
|
localport = 0; /* just use port 0 (ie kernel picks) */
|
|
|
|
/* BSD IP stacks need sockaddr_in zeroed before filling in */
|
|
memset(&u,'\0',sizeof(u));
|
|
|
|
/* We don't try to bind to a local address for UNIX domain sockets. (Why
|
|
* do we bother doing the bind when localport == 0 anyway?) */
|
|
if (family != AF_UNIX) {
|
|
/* Loop round trying to bind */
|
|
while (1) {
|
|
int retcode;
|
|
|
|
#ifndef NO_IPV6
|
|
if (family == AF_INET6) {
|
|
/* XXX use getaddrinfo to get a local address? */
|
|
u.sin6.sin6_family = AF_INET6;
|
|
u.sin6.sin6_addr = in6addr_any;
|
|
u.sin6.sin6_port = htons(localport);
|
|
retcode = bind(s, &u.sa, sizeof(u.sin6));
|
|
} else
|
|
#endif
|
|
{
|
|
assert(family == AF_INET);
|
|
u.sin.sin_family = AF_INET;
|
|
u.sin.sin_addr.s_addr = htonl(INADDR_ANY);
|
|
u.sin.sin_port = htons(localport);
|
|
retcode = bind(s, &u.sa, sizeof(u.sin));
|
|
}
|
|
if (retcode >= 0) {
|
|
err = 0;
|
|
break; /* done */
|
|
} else {
|
|
err = errno;
|
|
if (err != EADDRINUSE) /* failed, for a bad reason */
|
|
break;
|
|
}
|
|
|
|
if (localport == 0)
|
|
break; /* we're only looping once */
|
|
localport--;
|
|
if (localport == 0)
|
|
break; /* we might have got to the end */
|
|
}
|
|
|
|
if (err)
|
|
goto ret;
|
|
}
|
|
|
|
/*
|
|
* Connect to remote address.
|
|
*/
|
|
switch(family) {
|
|
#ifndef NO_IPV6
|
|
case AF_INET:
|
|
/* XXX would be better to have got getaddrinfo() to fill in the port. */
|
|
((struct sockaddr_in *)sock->step.ai->ai_addr)->sin_port =
|
|
htons(sock->port);
|
|
sa = (const union sockaddr_union *)sock->step.ai->ai_addr;
|
|
salen = sock->step.ai->ai_addrlen;
|
|
break;
|
|
case AF_INET6:
|
|
((struct sockaddr_in *)sock->step.ai->ai_addr)->sin_port =
|
|
htons(sock->port);
|
|
sa = (const union sockaddr_union *)sock->step.ai->ai_addr;
|
|
salen = sock->step.ai->ai_addrlen;
|
|
break;
|
|
#else
|
|
case AF_INET:
|
|
u.sin.sin_family = AF_INET;
|
|
u.sin.sin_addr.s_addr = htonl(sock->addr->addresses[sock->step.curraddr]);
|
|
u.sin.sin_port = htons((short) sock->port);
|
|
sa = &u;
|
|
salen = sizeof u.sin;
|
|
break;
|
|
#endif
|
|
case AF_UNIX:
|
|
assert(sock->port == 0); /* to catch confused people */
|
|
assert(strlen(sock->addr->hostname) < sizeof u.su.sun_path);
|
|
u.su.sun_family = AF_UNIX;
|
|
strcpy(u.su.sun_path, sock->addr->hostname);
|
|
sa = &u;
|
|
salen = sizeof u.su;
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "unknown address family");
|
|
exit(1); /* XXX: GCC doesn't understand assert() on some systems. */
|
|
}
|
|
|
|
nonblock(s);
|
|
|
|
if ((connect(s, &(sa->sa), salen)) < 0) {
|
|
if ( errno != EINPROGRESS ) {
|
|
err = errno;
|
|
goto ret;
|
|
}
|
|
} else {
|
|
/*
|
|
* If we _don't_ get EWOULDBLOCK, the connect has completed
|
|
* and we should set the socket as connected and writable.
|
|
*/
|
|
sock->connected = true;
|
|
sock->writable = true;
|
|
}
|
|
|
|
uxsel_tell(sock);
|
|
|
|
ret:
|
|
|
|
/*
|
|
* No matter what happened, put the socket back in the tree.
|
|
*/
|
|
add234(sktree, sock);
|
|
|
|
if (err) {
|
|
SockAddr thisaddr = sk_extractaddr_tmp(
|
|
sock->addr, &sock->step);
|
|
plug_log(sock->plug, 1, &thisaddr, sock->port, strerror(err), err);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
Socket *sk_new(SockAddr *addr, int port, bool privport, bool oobinline,
|
|
bool nodelay, bool keepalive, Plug *plug)
|
|
{
|
|
NetSocket *ret;
|
|
int err;
|
|
|
|
/*
|
|
* Create NetSocket structure.
|
|
*/
|
|
ret = snew(NetSocket);
|
|
ret->sock.vt = &NetSocket_sockvt;
|
|
ret->error = NULL;
|
|
ret->plug = plug;
|
|
bufchain_init(&ret->output_data);
|
|
ret->connected = false; /* to start with */
|
|
ret->writable = false; /* to start with */
|
|
ret->sending_oob = 0;
|
|
ret->frozen = false;
|
|
ret->localhost_only = false; /* unused, but best init anyway */
|
|
ret->pending_error = 0;
|
|
ret->parent = ret->child = NULL;
|
|
ret->oobpending = false;
|
|
ret->outgoingeof = EOF_NO;
|
|
ret->incomingeof = false;
|
|
ret->listener = false;
|
|
ret->addr = addr;
|
|
START_STEP(ret->addr, ret->step);
|
|
ret->s = -1;
|
|
ret->oobinline = oobinline;
|
|
ret->nodelay = nodelay;
|
|
ret->keepalive = keepalive;
|
|
ret->privport = privport;
|
|
ret->port = port;
|
|
|
|
err = 0;
|
|
do {
|
|
err = try_connect(ret);
|
|
} while (err && sk_nextaddr(ret->addr, &ret->step));
|
|
|
|
if (err)
|
|
ret->error = strerror(err);
|
|
|
|
return &ret->sock;
|
|
}
|
|
|
|
Socket *sk_newlistener(const char *srcaddr, int port, Plug *plug,
|
|
bool local_host_only, int orig_address_family)
|
|
{
|
|
int s;
|
|
#ifndef NO_IPV6
|
|
struct addrinfo hints, *ai = NULL;
|
|
char portstr[6];
|
|
#endif
|
|
union sockaddr_union u;
|
|
union sockaddr_union *addr;
|
|
int addrlen;
|
|
NetSocket *ret;
|
|
int retcode;
|
|
int address_family;
|
|
int on = 1;
|
|
|
|
/*
|
|
* Create NetSocket structure.
|
|
*/
|
|
ret = snew(NetSocket);
|
|
ret->sock.vt = &NetSocket_sockvt;
|
|
ret->error = NULL;
|
|
ret->plug = plug;
|
|
bufchain_init(&ret->output_data);
|
|
ret->writable = false; /* to start with */
|
|
ret->sending_oob = 0;
|
|
ret->frozen = false;
|
|
ret->localhost_only = local_host_only;
|
|
ret->pending_error = 0;
|
|
ret->parent = ret->child = NULL;
|
|
ret->oobpending = false;
|
|
ret->outgoingeof = EOF_NO;
|
|
ret->incomingeof = false;
|
|
ret->listener = true;
|
|
ret->addr = NULL;
|
|
ret->s = -1;
|
|
|
|
/*
|
|
* Translate address_family from platform-independent constants
|
|
* into local reality.
|
|
*/
|
|
address_family = (orig_address_family == ADDRTYPE_IPV4 ? AF_INET :
|
|
#ifndef NO_IPV6
|
|
orig_address_family == ADDRTYPE_IPV6 ? AF_INET6 :
|
|
#endif
|
|
AF_UNSPEC);
|
|
|
|
#ifndef NO_IPV6
|
|
/* Let's default to IPv6.
|
|
* If the stack doesn't support IPv6, we will fall back to IPv4. */
|
|
if (address_family == AF_UNSPEC) address_family = AF_INET6;
|
|
#else
|
|
/* No other choice, default to IPv4 */
|
|
if (address_family == AF_UNSPEC) address_family = AF_INET;
|
|
#endif
|
|
|
|
/*
|
|
* Open socket.
|
|
*/
|
|
s = socket(address_family, SOCK_STREAM, 0);
|
|
|
|
#ifndef NO_IPV6
|
|
/* If the host doesn't support IPv6 try fallback to IPv4. */
|
|
if (s < 0 && address_family == AF_INET6) {
|
|
address_family = AF_INET;
|
|
s = socket(address_family, SOCK_STREAM, 0);
|
|
}
|
|
#endif
|
|
|
|
if (s < 0) {
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
cloexec(s);
|
|
|
|
ret->oobinline = false;
|
|
|
|
if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR,
|
|
(const char *)&on, sizeof(on)) < 0) {
|
|
ret->error = strerror(errno);
|
|
close(s);
|
|
return &ret->sock;
|
|
}
|
|
|
|
retcode = -1;
|
|
addr = NULL; addrlen = -1; /* placate optimiser */
|
|
|
|
if (srcaddr != NULL) {
|
|
#ifndef NO_IPV6
|
|
hints.ai_flags = AI_NUMERICHOST;
|
|
hints.ai_family = address_family;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_protocol = 0;
|
|
hints.ai_addrlen = 0;
|
|
hints.ai_addr = NULL;
|
|
hints.ai_canonname = NULL;
|
|
hints.ai_next = NULL;
|
|
assert(port >= 0 && port <= 99999);
|
|
sprintf(portstr, "%d", port);
|
|
{
|
|
char *trimmed_addr = host_strduptrim(srcaddr);
|
|
retcode = getaddrinfo(trimmed_addr, portstr, &hints, &ai);
|
|
sfree(trimmed_addr);
|
|
}
|
|
if (retcode == 0) {
|
|
addr = (union sockaddr_union *)ai->ai_addr;
|
|
addrlen = ai->ai_addrlen;
|
|
}
|
|
#else
|
|
memset(&u,'\0',sizeof u);
|
|
u.sin.sin_family = AF_INET;
|
|
u.sin.sin_port = htons(port);
|
|
u.sin.sin_addr.s_addr = inet_addr(srcaddr);
|
|
if (u.sin.sin_addr.s_addr != (in_addr_t)(-1)) {
|
|
/* Override localhost_only with specified listen addr. */
|
|
ret->localhost_only = ipv4_is_loopback(u.sin.sin_addr);
|
|
}
|
|
addr = &u;
|
|
addrlen = sizeof(u.sin);
|
|
retcode = 0;
|
|
#endif
|
|
}
|
|
|
|
if (retcode != 0) {
|
|
memset(&u,'\0',sizeof u);
|
|
#ifndef NO_IPV6
|
|
if (address_family == AF_INET6) {
|
|
u.sin6.sin6_family = AF_INET6;
|
|
u.sin6.sin6_port = htons(port);
|
|
if (local_host_only)
|
|
u.sin6.sin6_addr = in6addr_loopback;
|
|
else
|
|
u.sin6.sin6_addr = in6addr_any;
|
|
addr = &u;
|
|
addrlen = sizeof(u.sin6);
|
|
} else
|
|
#endif
|
|
{
|
|
u.sin.sin_family = AF_INET;
|
|
u.sin.sin_port = htons(port);
|
|
if (local_host_only)
|
|
u.sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
else
|
|
u.sin.sin_addr.s_addr = htonl(INADDR_ANY);
|
|
addr = &u;
|
|
addrlen = sizeof(u.sin);
|
|
}
|
|
}
|
|
|
|
retcode = bind(s, &addr->sa, addrlen);
|
|
|
|
#ifndef NO_IPV6
|
|
if (ai)
|
|
freeaddrinfo(ai);
|
|
#endif
|
|
|
|
if (retcode < 0) {
|
|
close(s);
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
if (listen(s, SOMAXCONN) < 0) {
|
|
close(s);
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
#ifndef NO_IPV6
|
|
/*
|
|
* If we were given ADDRTYPE_UNSPEC, we must also create an
|
|
* IPv4 listening socket and link it to this one.
|
|
*/
|
|
if (address_family == AF_INET6 && orig_address_family == ADDRTYPE_UNSPEC) {
|
|
NetSocket *other;
|
|
|
|
other = container_of(
|
|
sk_newlistener(srcaddr, port, plug,
|
|
local_host_only, ADDRTYPE_IPV4),
|
|
NetSocket, sock);
|
|
|
|
if (other) {
|
|
if (!other->error) {
|
|
other->parent = ret;
|
|
ret->child = other;
|
|
} else {
|
|
/* If we couldn't create a listening socket on IPv4 as well
|
|
* as IPv6, we must return an error overall. */
|
|
close(s);
|
|
sfree(ret);
|
|
return &other->sock;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ret->s = s;
|
|
|
|
uxsel_tell(ret);
|
|
add234(sktree, ret);
|
|
|
|
return &ret->sock;
|
|
}
|
|
|
|
static void sk_net_close(Socket *sock)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
|
|
if (s->child)
|
|
sk_net_close(&s->child->sock);
|
|
|
|
del234(sktree, s);
|
|
if (s->s >= 0) {
|
|
uxsel_del(s->s);
|
|
close(s->s);
|
|
}
|
|
if (s->addr)
|
|
sk_addr_free(s->addr);
|
|
sfree(s);
|
|
}
|
|
|
|
void *sk_getxdmdata(Socket *sock, int *lenp)
|
|
{
|
|
NetSocket *s;
|
|
union sockaddr_union u;
|
|
socklen_t addrlen;
|
|
char *buf;
|
|
static unsigned int unix_addr = 0xFFFFFFFF;
|
|
|
|
/*
|
|
* We must check that this socket really _is_ a NetSocket before
|
|
* downcasting it.
|
|
*/
|
|
if (sock->vt != &NetSocket_sockvt)
|
|
return NULL; /* failure */
|
|
s = container_of(sock, NetSocket, sock);
|
|
|
|
addrlen = sizeof(u);
|
|
if (getsockname(s->s, &u.sa, &addrlen) < 0)
|
|
return NULL;
|
|
switch(u.sa.sa_family) {
|
|
case AF_INET:
|
|
*lenp = 6;
|
|
buf = snewn(*lenp, char);
|
|
PUT_32BIT_MSB_FIRST(buf, ntohl(u.sin.sin_addr.s_addr));
|
|
PUT_16BIT_MSB_FIRST(buf+4, ntohs(u.sin.sin_port));
|
|
break;
|
|
#ifndef NO_IPV6
|
|
case AF_INET6:
|
|
*lenp = 6;
|
|
buf = snewn(*lenp, char);
|
|
if (IN6_IS_ADDR_V4MAPPED(&u.sin6.sin6_addr)) {
|
|
memcpy(buf, u.sin6.sin6_addr.s6_addr + 12, 4);
|
|
PUT_16BIT_MSB_FIRST(buf+4, ntohs(u.sin6.sin6_port));
|
|
} else
|
|
/* This is stupid, but it's what XLib does. */
|
|
memset(buf, 0, 6);
|
|
break;
|
|
#endif
|
|
case AF_UNIX:
|
|
*lenp = 6;
|
|
buf = snewn(*lenp, char);
|
|
PUT_32BIT_MSB_FIRST(buf, unix_addr--);
|
|
PUT_16BIT_MSB_FIRST(buf+4, getpid());
|
|
break;
|
|
|
|
/* XXX IPV6 */
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Deal with socket errors detected in try_send().
|
|
*/
|
|
static void socket_error_callback(void *vs)
|
|
{
|
|
NetSocket *s = (NetSocket *)vs;
|
|
|
|
/*
|
|
* Just in case other socket work has caused this socket to vanish
|
|
* or become somehow non-erroneous before this callback arrived...
|
|
*/
|
|
if (!find234(sktree, s, NULL) || !s->pending_error)
|
|
return;
|
|
|
|
/*
|
|
* An error has occurred on this socket. Pass it to the plug.
|
|
*/
|
|
plug_closing(s->plug, strerror(s->pending_error), s->pending_error, 0);
|
|
}
|
|
|
|
/*
|
|
* The function which tries to send on a socket once it's deemed
|
|
* writable.
|
|
*/
|
|
void try_send(NetSocket *s)
|
|
{
|
|
while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
|
|
int nsent;
|
|
int err;
|
|
void *data;
|
|
int len, urgentflag;
|
|
|
|
if (s->sending_oob) {
|
|
urgentflag = MSG_OOB;
|
|
len = s->sending_oob;
|
|
data = &s->oobdata;
|
|
} else {
|
|
urgentflag = 0;
|
|
bufchain_prefix(&s->output_data, &data, &len);
|
|
}
|
|
nsent = send(s->s, data, len, urgentflag);
|
|
noise_ultralight(nsent);
|
|
if (nsent <= 0) {
|
|
err = (nsent < 0 ? errno : 0);
|
|
if (err == EWOULDBLOCK) {
|
|
/*
|
|
* Perfectly normal: we've sent all we can for the moment.
|
|
*/
|
|
s->writable = false;
|
|
return;
|
|
} else {
|
|
/*
|
|
* We unfortunately can't just call plug_closing(),
|
|
* because it's quite likely that we're currently
|
|
* _in_ a call from the code we'd be calling back
|
|
* to, so we'd have to make half the SSH code
|
|
* reentrant. Instead we flag a pending error on
|
|
* the socket, to be dealt with (by calling
|
|
* plug_closing()) at some suitable future moment.
|
|
*/
|
|
s->pending_error = err;
|
|
/*
|
|
* Immediately cease selecting on this socket, so that
|
|
* we don't tight-loop repeatedly trying to do
|
|
* whatever it was that went wrong.
|
|
*/
|
|
uxsel_tell(s);
|
|
/*
|
|
* Arrange to be called back from the top level to
|
|
* deal with the error condition on this socket.
|
|
*/
|
|
queue_toplevel_callback(socket_error_callback, s);
|
|
return;
|
|
}
|
|
} else {
|
|
if (s->sending_oob) {
|
|
if (nsent < len) {
|
|
memmove(s->oobdata, s->oobdata+nsent, len-nsent);
|
|
s->sending_oob = len - nsent;
|
|
} else {
|
|
s->sending_oob = 0;
|
|
}
|
|
} else {
|
|
bufchain_consume(&s->output_data, nsent);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we reach here, we've finished sending everything we might
|
|
* have needed to send. Send EOF, if we need to.
|
|
*/
|
|
if (s->outgoingeof == EOF_PENDING) {
|
|
shutdown(s->s, SHUT_WR);
|
|
s->outgoingeof = EOF_SENT;
|
|
}
|
|
|
|
/*
|
|
* Also update the select status, because we don't need to select
|
|
* for writing any more.
|
|
*/
|
|
uxsel_tell(s);
|
|
}
|
|
|
|
static int sk_net_write(Socket *sock, const void *buf, int len)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
|
|
assert(s->outgoingeof == EOF_NO);
|
|
|
|
/*
|
|
* Add the data to the buffer list on the socket.
|
|
*/
|
|
bufchain_add(&s->output_data, buf, len);
|
|
|
|
/*
|
|
* Now try sending from the start of the buffer list.
|
|
*/
|
|
if (s->writable)
|
|
try_send(s);
|
|
|
|
/*
|
|
* Update the select() status to correctly reflect whether or
|
|
* not we should be selecting for write.
|
|
*/
|
|
uxsel_tell(s);
|
|
|
|
return bufchain_size(&s->output_data);
|
|
}
|
|
|
|
static int sk_net_write_oob(Socket *sock, const void *buf, int len)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
|
|
assert(s->outgoingeof == EOF_NO);
|
|
|
|
/*
|
|
* Replace the buffer list on the socket with the data.
|
|
*/
|
|
bufchain_clear(&s->output_data);
|
|
assert(len <= sizeof(s->oobdata));
|
|
memcpy(s->oobdata, buf, len);
|
|
s->sending_oob = len;
|
|
|
|
/*
|
|
* Now try sending from the start of the buffer list.
|
|
*/
|
|
if (s->writable)
|
|
try_send(s);
|
|
|
|
/*
|
|
* Update the select() status to correctly reflect whether or
|
|
* not we should be selecting for write.
|
|
*/
|
|
uxsel_tell(s);
|
|
|
|
return s->sending_oob;
|
|
}
|
|
|
|
static void sk_net_write_eof(Socket *sock)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
|
|
assert(s->outgoingeof == EOF_NO);
|
|
|
|
/*
|
|
* Mark the socket as pending outgoing EOF.
|
|
*/
|
|
s->outgoingeof = EOF_PENDING;
|
|
|
|
/*
|
|
* Now try sending from the start of the buffer list.
|
|
*/
|
|
if (s->writable)
|
|
try_send(s);
|
|
|
|
/*
|
|
* Update the select() status to correctly reflect whether or
|
|
* not we should be selecting for write.
|
|
*/
|
|
uxsel_tell(s);
|
|
}
|
|
|
|
static void net_select_result(int fd, int event)
|
|
{
|
|
int ret;
|
|
char buf[20480]; /* nice big buffer for plenty of speed */
|
|
NetSocket *s;
|
|
bool atmark = true;
|
|
|
|
/* Find the Socket structure */
|
|
s = find234(sktree, &fd, cmpforsearch);
|
|
if (!s)
|
|
return; /* boggle */
|
|
|
|
noise_ultralight(event);
|
|
|
|
switch (event) {
|
|
case 4: /* exceptional */
|
|
if (!s->oobinline) {
|
|
/*
|
|
* On a non-oobinline socket, this indicates that we
|
|
* can immediately perform an OOB read and get back OOB
|
|
* data, which we will send to the back end with
|
|
* type==2 (urgent data).
|
|
*/
|
|
ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
|
|
noise_ultralight(ret);
|
|
if (ret <= 0) {
|
|
plug_closing(s->plug,
|
|
ret == 0 ? "Internal networking trouble" :
|
|
strerror(errno), errno, 0);
|
|
} else {
|
|
/*
|
|
* Receiving actual data on a socket means we can
|
|
* stop falling back through the candidate
|
|
* addresses to connect to.
|
|
*/
|
|
if (s->addr) {
|
|
sk_addr_free(s->addr);
|
|
s->addr = NULL;
|
|
}
|
|
plug_receive(s->plug, 2, buf, ret);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we reach here, this is an oobinline socket, which
|
|
* means we should set s->oobpending and then deal with it
|
|
* when we get called for the readability event (which
|
|
* should also occur).
|
|
*/
|
|
s->oobpending = true;
|
|
break;
|
|
case 1: /* readable; also acceptance */
|
|
if (s->listener) {
|
|
/*
|
|
* On a listening socket, the readability event means a
|
|
* connection is ready to be accepted.
|
|
*/
|
|
union sockaddr_union su;
|
|
socklen_t addrlen = sizeof(su);
|
|
accept_ctx_t actx;
|
|
int t; /* socket of connection */
|
|
|
|
memset(&su, 0, addrlen);
|
|
t = accept(s->s, &su.sa, &addrlen);
|
|
if (t < 0) {
|
|
break;
|
|
}
|
|
|
|
nonblock(t);
|
|
actx.i = t;
|
|
|
|
if ((!s->addr || s->addr->superfamily != UNIX) &&
|
|
s->localhost_only && !sockaddr_is_loopback(&su.sa)) {
|
|
close(t); /* someone let nonlocal through?! */
|
|
} else if (plug_accepting(s->plug, sk_net_accept, actx)) {
|
|
close(t); /* denied or error */
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we reach here, this is not a listening socket, so
|
|
* readability really means readability.
|
|
*/
|
|
|
|
/* In the case the socket is still frozen, we don't even bother */
|
|
if (s->frozen)
|
|
break;
|
|
|
|
/*
|
|
* We have received data on the socket. For an oobinline
|
|
* socket, this might be data _before_ an urgent pointer,
|
|
* in which case we send it to the back end with type==1
|
|
* (data prior to urgent).
|
|
*/
|
|
if (s->oobinline && s->oobpending) {
|
|
int atmark_from_ioctl;
|
|
if (ioctl(s->s, SIOCATMARK, &atmark_from_ioctl) == 0) {
|
|
atmark = atmark_from_ioctl;
|
|
if (atmark)
|
|
s->oobpending = false; /* clear this indicator */
|
|
}
|
|
} else
|
|
atmark = true;
|
|
|
|
ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
|
|
noise_ultralight(ret);
|
|
if (ret < 0) {
|
|
if (errno == EWOULDBLOCK) {
|
|
break;
|
|
}
|
|
}
|
|
if (ret < 0) {
|
|
plug_closing(s->plug, strerror(errno), errno, 0);
|
|
} else if (0 == ret) {
|
|
s->incomingeof = true; /* stop trying to read now */
|
|
uxsel_tell(s);
|
|
plug_closing(s->plug, NULL, 0, 0);
|
|
} else {
|
|
/*
|
|
* Receiving actual data on a socket means we can
|
|
* stop falling back through the candidate
|
|
* addresses to connect to.
|
|
*/
|
|
if (s->addr) {
|
|
sk_addr_free(s->addr);
|
|
s->addr = NULL;
|
|
}
|
|
plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
|
|
}
|
|
break;
|
|
case 2: /* writable */
|
|
if (!s->connected) {
|
|
/*
|
|
* select() reports a socket as _writable_ when an
|
|
* asynchronous connect() attempt either completes or
|
|
* fails. So first we must find out which.
|
|
*/
|
|
{
|
|
int err;
|
|
socklen_t errlen = sizeof(err);
|
|
char *errmsg = NULL;
|
|
if (getsockopt(s->s, SOL_SOCKET, SO_ERROR, &err, &errlen)<0) {
|
|
errmsg = dupprintf("getsockopt(SO_ERROR): %s",
|
|
strerror(errno));
|
|
err = errno; /* got to put something in here */
|
|
} else if (err != 0) {
|
|
errmsg = dupstr(strerror(err));
|
|
}
|
|
if (errmsg) {
|
|
/*
|
|
* The asynchronous connection attempt failed.
|
|
* Report the problem via plug_log, and try again
|
|
* with the next candidate address, if we have
|
|
* more than one.
|
|
*/
|
|
SockAddr thisaddr;
|
|
assert(s->addr);
|
|
|
|
thisaddr = sk_extractaddr_tmp(s->addr, &s->step);
|
|
plug_log(s->plug, 1, &thisaddr, s->port, errmsg, err);
|
|
|
|
while (err && s->addr && sk_nextaddr(s->addr, &s->step)) {
|
|
err = try_connect(s);
|
|
}
|
|
if (err) {
|
|
plug_closing(s->plug, strerror(err), err, 0);
|
|
return; /* socket is now presumably defunct */
|
|
}
|
|
if (!s->connected)
|
|
return; /* another async attempt in progress */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we get here, we've managed to make a connection.
|
|
*/
|
|
if (s->addr) {
|
|
sk_addr_free(s->addr);
|
|
s->addr = NULL;
|
|
}
|
|
s->connected = true;
|
|
s->writable = true;
|
|
uxsel_tell(s);
|
|
} else {
|
|
int bufsize_before, bufsize_after;
|
|
s->writable = true;
|
|
bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
|
|
try_send(s);
|
|
bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
|
|
if (bufsize_after < bufsize_before)
|
|
plug_sent(s->plug, bufsize_after);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Special error values are returned from sk_namelookup and sk_new
|
|
* if there's a problem. These functions extract an error message,
|
|
* or return NULL if there's no problem.
|
|
*/
|
|
const char *sk_addr_error(SockAddr *addr)
|
|
{
|
|
return addr->error;
|
|
}
|
|
static const char *sk_net_socket_error(Socket *sock)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
return s->error;
|
|
}
|
|
|
|
static void sk_net_set_frozen(Socket *sock, bool is_frozen)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
if (s->frozen == is_frozen)
|
|
return;
|
|
s->frozen = is_frozen;
|
|
uxsel_tell(s);
|
|
}
|
|
|
|
static SocketPeerInfo *sk_net_peer_info(Socket *sock)
|
|
{
|
|
NetSocket *s = container_of(sock, NetSocket, sock);
|
|
union sockaddr_union addr;
|
|
socklen_t addrlen = sizeof(addr);
|
|
#ifndef NO_IPV6
|
|
char buf[INET6_ADDRSTRLEN];
|
|
#endif
|
|
SocketPeerInfo *pi;
|
|
|
|
if (getpeername(s->s, &addr.sa, &addrlen) < 0)
|
|
return NULL;
|
|
|
|
pi = snew(SocketPeerInfo);
|
|
pi->addressfamily = ADDRTYPE_UNSPEC;
|
|
pi->addr_text = NULL;
|
|
pi->port = -1;
|
|
pi->log_text = NULL;
|
|
|
|
if (addr.storage.ss_family == AF_INET) {
|
|
pi->addressfamily = ADDRTYPE_IPV4;
|
|
memcpy(pi->addr_bin.ipv4, &addr.sin.sin_addr, 4);
|
|
pi->port = ntohs(addr.sin.sin_port);
|
|
pi->addr_text = dupstr(inet_ntoa(addr.sin.sin_addr));
|
|
pi->log_text = dupprintf("%s:%d", pi->addr_text, pi->port);
|
|
|
|
#ifndef NO_IPV6
|
|
} else if (addr.storage.ss_family == AF_INET6) {
|
|
pi->addressfamily = ADDRTYPE_IPV6;
|
|
memcpy(pi->addr_bin.ipv6, &addr.sin6.sin6_addr, 16);
|
|
pi->port = ntohs(addr.sin6.sin6_port);
|
|
pi->addr_text = dupstr(
|
|
inet_ntop(AF_INET6, &addr.sin6.sin6_addr, buf, sizeof(buf)));
|
|
pi->log_text = dupprintf("[%s]:%d", pi->addr_text, pi->port);
|
|
#endif
|
|
|
|
} else if (addr.storage.ss_family == AF_UNIX) {
|
|
pi->addressfamily = ADDRTYPE_LOCAL;
|
|
|
|
/*
|
|
* For Unix sockets, the source address is unlikely to be
|
|
* helpful, so we leave addr_txt NULL (and we certainly can't
|
|
* fill in port, obviously). Instead, we try SO_PEERCRED and
|
|
* try to get the source pid, and put that in the log text.
|
|
*/
|
|
int pid, uid, gid;
|
|
if (so_peercred(s->s, &pid, &uid, &gid)) {
|
|
char uidbuf[64], gidbuf[64];
|
|
sprintf(uidbuf, "%d", uid);
|
|
sprintf(gidbuf, "%d", gid);
|
|
struct passwd *pw = getpwuid(uid);
|
|
struct group *gr = getgrgid(gid);
|
|
pi->log_text = dupprintf("pid %d (%s:%s)", pid,
|
|
pw ? pw->pw_name : uidbuf,
|
|
gr ? gr->gr_name : gidbuf);
|
|
}
|
|
} else {
|
|
sfree(pi);
|
|
return NULL;
|
|
}
|
|
|
|
return pi;
|
|
}
|
|
|
|
static void uxsel_tell(NetSocket *s)
|
|
{
|
|
int rwx = 0;
|
|
if (!s->pending_error) {
|
|
if (s->listener) {
|
|
rwx |= 1; /* read == accept */
|
|
} else {
|
|
if (!s->connected)
|
|
rwx |= 2; /* write == connect */
|
|
if (s->connected && !s->frozen && !s->incomingeof)
|
|
rwx |= 1 | 4; /* read, except */
|
|
if (bufchain_size(&s->output_data))
|
|
rwx |= 2; /* write */
|
|
}
|
|
}
|
|
uxsel_set(s->s, rwx, net_select_result);
|
|
}
|
|
|
|
int net_service_lookup(char *service)
|
|
{
|
|
struct servent *se;
|
|
se = getservbyname(service, NULL);
|
|
if (se != NULL)
|
|
return ntohs(se->s_port);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
char *get_hostname(void)
|
|
{
|
|
int len = 128;
|
|
char *hostname = NULL;
|
|
do {
|
|
len *= 2;
|
|
hostname = sresize(hostname, len, char);
|
|
if ((gethostname(hostname, len) < 0) &&
|
|
(errno != ENAMETOOLONG)) {
|
|
sfree(hostname);
|
|
hostname = NULL;
|
|
break;
|
|
}
|
|
} while (strlen(hostname) >= len-1);
|
|
return hostname;
|
|
}
|
|
|
|
SockAddr *platform_get_x11_unix_address(const char *sockpath, int displaynum)
|
|
{
|
|
SockAddr *ret = snew(SockAddr);
|
|
int n;
|
|
|
|
memset(ret, 0, sizeof *ret);
|
|
ret->superfamily = UNIX;
|
|
/*
|
|
* In special circumstances (notably Mac OS X Leopard), we'll
|
|
* have been passed an explicit Unix socket path.
|
|
*/
|
|
if (sockpath) {
|
|
n = snprintf(ret->hostname, sizeof ret->hostname,
|
|
"%s", sockpath);
|
|
} else {
|
|
n = snprintf(ret->hostname, sizeof ret->hostname,
|
|
"%s%d", X11_UNIX_PATH, displaynum);
|
|
}
|
|
|
|
if (n < 0)
|
|
ret->error = "snprintf failed";
|
|
else if (n >= sizeof ret->hostname)
|
|
ret->error = "X11 UNIX name too long";
|
|
|
|
#ifndef NO_IPV6
|
|
ret->ais = NULL;
|
|
#else
|
|
ret->addresses = NULL;
|
|
ret->naddresses = 0;
|
|
#endif
|
|
ret->refcount = 1;
|
|
return ret;
|
|
}
|
|
|
|
SockAddr *unix_sock_addr(const char *path)
|
|
{
|
|
SockAddr *ret = snew(SockAddr);
|
|
int n;
|
|
|
|
memset(ret, 0, sizeof *ret);
|
|
ret->superfamily = UNIX;
|
|
n = snprintf(ret->hostname, sizeof ret->hostname, "%s", path);
|
|
|
|
if (n < 0)
|
|
ret->error = "snprintf failed";
|
|
else if (n >= sizeof ret->hostname ||
|
|
n >= sizeof(((struct sockaddr_un *)0)->sun_path))
|
|
ret->error = "socket pathname too long";
|
|
|
|
#ifndef NO_IPV6
|
|
ret->ais = NULL;
|
|
#else
|
|
ret->addresses = NULL;
|
|
ret->naddresses = 0;
|
|
#endif
|
|
ret->refcount = 1;
|
|
return ret;
|
|
}
|
|
|
|
Socket *new_unix_listener(SockAddr *listenaddr, Plug *plug)
|
|
{
|
|
int s;
|
|
union sockaddr_union u;
|
|
union sockaddr_union *addr;
|
|
int addrlen;
|
|
NetSocket *ret;
|
|
int retcode;
|
|
|
|
/*
|
|
* Create NetSocket structure.
|
|
*/
|
|
ret = snew(NetSocket);
|
|
ret->sock.vt = &NetSocket_sockvt;
|
|
ret->error = NULL;
|
|
ret->plug = plug;
|
|
bufchain_init(&ret->output_data);
|
|
ret->writable = false; /* to start with */
|
|
ret->sending_oob = 0;
|
|
ret->frozen = false;
|
|
ret->localhost_only = true;
|
|
ret->pending_error = 0;
|
|
ret->parent = ret->child = NULL;
|
|
ret->oobpending = false;
|
|
ret->outgoingeof = EOF_NO;
|
|
ret->incomingeof = false;
|
|
ret->listener = true;
|
|
ret->addr = listenaddr;
|
|
ret->s = -1;
|
|
|
|
assert(listenaddr->superfamily == UNIX);
|
|
|
|
/*
|
|
* Open socket.
|
|
*/
|
|
s = socket(AF_UNIX, SOCK_STREAM, 0);
|
|
if (s < 0) {
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
cloexec(s);
|
|
|
|
ret->oobinline = false;
|
|
|
|
memset(&u, '\0', sizeof(u));
|
|
u.su.sun_family = AF_UNIX;
|
|
#if __GNUC__ >= 8
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wstringop-truncation"
|
|
#endif // __GNUC__ >= 8
|
|
strncpy(u.su.sun_path, listenaddr->hostname, sizeof(u.su.sun_path)-1);
|
|
#if __GNUC__ >= 8
|
|
# pragma GCC diagnostic pop
|
|
#endif // __GNUC__ >= 8
|
|
addr = &u;
|
|
addrlen = sizeof(u.su);
|
|
|
|
if (unlink(u.su.sun_path) < 0 && errno != ENOENT) {
|
|
close(s);
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
retcode = bind(s, &addr->sa, addrlen);
|
|
if (retcode < 0) {
|
|
close(s);
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
if (listen(s, SOMAXCONN) < 0) {
|
|
close(s);
|
|
ret->error = strerror(errno);
|
|
return &ret->sock;
|
|
}
|
|
|
|
ret->s = s;
|
|
|
|
uxsel_tell(ret);
|
|
add234(sktree, ret);
|
|
|
|
return &ret->sock;
|
|
}
|