mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
d345ebc2a5
on how to get round the problem of generating a good k. [originally from svn r1284]
302 lines
6.8 KiB
C
302 lines
6.8 KiB
C
/*
|
|
* SHA1 hash algorithm. Used in SSH2 as a MAC, and the transform is
|
|
* also used as a `stirring' function for the PuTTY random number
|
|
* pool. Implemented directly from the specification by Simon
|
|
* Tatham.
|
|
*/
|
|
|
|
#include "ssh.h"
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Core SHA algorithm: processes 16-word blocks into a message digest.
|
|
*/
|
|
|
|
#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
|
|
|
|
void SHA_Core_Init(uint32 h[5])
|
|
{
|
|
h[0] = 0x67452301;
|
|
h[1] = 0xefcdab89;
|
|
h[2] = 0x98badcfe;
|
|
h[3] = 0x10325476;
|
|
h[4] = 0xc3d2e1f0;
|
|
}
|
|
|
|
void SHATransform(word32 * digest, word32 * block)
|
|
{
|
|
word32 w[80];
|
|
word32 a, b, c, d, e;
|
|
int t;
|
|
|
|
for (t = 0; t < 16; t++)
|
|
w[t] = block[t];
|
|
|
|
for (t = 16; t < 80; t++) {
|
|
word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
|
|
w[t] = rol(tmp, 1);
|
|
}
|
|
|
|
a = digest[0];
|
|
b = digest[1];
|
|
c = digest[2];
|
|
d = digest[3];
|
|
e = digest[4];
|
|
|
|
for (t = 0; t < 20; t++) {
|
|
word32 tmp =
|
|
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 20; t < 40; t++) {
|
|
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 40; t < 60; t++) {
|
|
word32 tmp = rol(a,
|
|
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
|
|
0x8f1bbcdc;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 60; t < 80; t++) {
|
|
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
|
|
digest[0] += a;
|
|
digest[1] += b;
|
|
digest[2] += c;
|
|
digest[3] += d;
|
|
digest[4] += e;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Outer SHA algorithm: take an arbitrary length byte string,
|
|
* convert it into 16-word blocks with the prescribed padding at
|
|
* the end, and pass those blocks to the core SHA algorithm.
|
|
*/
|
|
|
|
void SHA_Init(SHA_State * s)
|
|
{
|
|
SHA_Core_Init(s->h);
|
|
s->blkused = 0;
|
|
s->lenhi = s->lenlo = 0;
|
|
}
|
|
|
|
void SHA_Bytes(SHA_State * s, void *p, int len)
|
|
{
|
|
unsigned char *q = (unsigned char *) p;
|
|
uint32 wordblock[16];
|
|
uint32 lenw = len;
|
|
int i;
|
|
|
|
/*
|
|
* Update the length field.
|
|
*/
|
|
s->lenlo += lenw;
|
|
s->lenhi += (s->lenlo < lenw);
|
|
|
|
if (s->blkused && s->blkused + len < 64) {
|
|
/*
|
|
* Trivial case: just add to the block.
|
|
*/
|
|
memcpy(s->block + s->blkused, q, len);
|
|
s->blkused += len;
|
|
} else {
|
|
/*
|
|
* We must complete and process at least one block.
|
|
*/
|
|
while (s->blkused + len >= 64) {
|
|
memcpy(s->block + s->blkused, q, 64 - s->blkused);
|
|
q += 64 - s->blkused;
|
|
len -= 64 - s->blkused;
|
|
/* Now process the block. Gather bytes big-endian into words */
|
|
for (i = 0; i < 16; i++) {
|
|
wordblock[i] =
|
|
(((uint32) s->block[i * 4 + 0]) << 24) |
|
|
(((uint32) s->block[i * 4 + 1]) << 16) |
|
|
(((uint32) s->block[i * 4 + 2]) << 8) |
|
|
(((uint32) s->block[i * 4 + 3]) << 0);
|
|
}
|
|
SHATransform(s->h, wordblock);
|
|
s->blkused = 0;
|
|
}
|
|
memcpy(s->block, q, len);
|
|
s->blkused = len;
|
|
}
|
|
}
|
|
|
|
void SHA_Final(SHA_State * s, unsigned char *output)
|
|
{
|
|
int i;
|
|
int pad;
|
|
unsigned char c[64];
|
|
uint32 lenhi, lenlo;
|
|
|
|
if (s->blkused >= 56)
|
|
pad = 56 + 64 - s->blkused;
|
|
else
|
|
pad = 56 - s->blkused;
|
|
|
|
lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
|
|
lenlo = (s->lenlo << 3);
|
|
|
|
memset(c, 0, pad);
|
|
c[0] = 0x80;
|
|
SHA_Bytes(s, &c, pad);
|
|
|
|
c[0] = (lenhi >> 24) & 0xFF;
|
|
c[1] = (lenhi >> 16) & 0xFF;
|
|
c[2] = (lenhi >> 8) & 0xFF;
|
|
c[3] = (lenhi >> 0) & 0xFF;
|
|
c[4] = (lenlo >> 24) & 0xFF;
|
|
c[5] = (lenlo >> 16) & 0xFF;
|
|
c[6] = (lenlo >> 8) & 0xFF;
|
|
c[7] = (lenlo >> 0) & 0xFF;
|
|
|
|
SHA_Bytes(s, &c, 8);
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
output[i * 4] = (s->h[i] >> 24) & 0xFF;
|
|
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
|
|
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
|
|
output[i * 4 + 3] = (s->h[i]) & 0xFF;
|
|
}
|
|
}
|
|
|
|
void SHA_Simple(void *p, int len, unsigned char *output)
|
|
{
|
|
SHA_State s;
|
|
|
|
SHA_Init(&s);
|
|
SHA_Bytes(&s, p, len);
|
|
SHA_Final(&s, output);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* The above is the SHA-1 algorithm itself. Now we implement the
|
|
* HMAC wrapper on it.
|
|
*/
|
|
|
|
static SHA_State sha1_cs_mac_s1, sha1_cs_mac_s2;
|
|
static SHA_State sha1_sc_mac_s1, sha1_sc_mac_s2;
|
|
|
|
static void sha1_key(SHA_State * s1, SHA_State * s2,
|
|
unsigned char *key, int len)
|
|
{
|
|
unsigned char foo[64];
|
|
int i;
|
|
|
|
memset(foo, 0x36, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA_Init(s1);
|
|
SHA_Bytes(s1, foo, 64);
|
|
|
|
memset(foo, 0x5C, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA_Init(s2);
|
|
SHA_Bytes(s2, foo, 64);
|
|
|
|
memset(foo, 0, 64); /* burn the evidence */
|
|
}
|
|
|
|
static void sha1_cskey(unsigned char *key)
|
|
{
|
|
sha1_key(&sha1_cs_mac_s1, &sha1_cs_mac_s2, key, 20);
|
|
}
|
|
|
|
static void sha1_sckey(unsigned char *key)
|
|
{
|
|
sha1_key(&sha1_sc_mac_s1, &sha1_sc_mac_s2, key, 20);
|
|
}
|
|
|
|
static void sha1_cskey_buggy(unsigned char *key)
|
|
{
|
|
sha1_key(&sha1_cs_mac_s1, &sha1_cs_mac_s2, key, 16);
|
|
}
|
|
|
|
static void sha1_sckey_buggy(unsigned char *key)
|
|
{
|
|
sha1_key(&sha1_sc_mac_s1, &sha1_sc_mac_s2, key, 16);
|
|
}
|
|
|
|
static void sha1_do_hmac(SHA_State * s1, SHA_State * s2,
|
|
unsigned char *blk, int len, unsigned long seq,
|
|
unsigned char *hmac)
|
|
{
|
|
SHA_State s;
|
|
unsigned char intermediate[20];
|
|
|
|
intermediate[0] = (unsigned char) ((seq >> 24) & 0xFF);
|
|
intermediate[1] = (unsigned char) ((seq >> 16) & 0xFF);
|
|
intermediate[2] = (unsigned char) ((seq >> 8) & 0xFF);
|
|
intermediate[3] = (unsigned char) ((seq) & 0xFF);
|
|
|
|
s = *s1; /* structure copy */
|
|
SHA_Bytes(&s, intermediate, 4);
|
|
SHA_Bytes(&s, blk, len);
|
|
SHA_Final(&s, intermediate);
|
|
s = *s2; /* structure copy */
|
|
SHA_Bytes(&s, intermediate, 20);
|
|
SHA_Final(&s, hmac);
|
|
}
|
|
|
|
static void sha1_generate(unsigned char *blk, int len, unsigned long seq)
|
|
{
|
|
sha1_do_hmac(&sha1_cs_mac_s1, &sha1_cs_mac_s2, blk, len, seq,
|
|
blk + len);
|
|
}
|
|
|
|
static int sha1_verify(unsigned char *blk, int len, unsigned long seq)
|
|
{
|
|
unsigned char correct[20];
|
|
sha1_do_hmac(&sha1_sc_mac_s1, &sha1_sc_mac_s2, blk, len, seq, correct);
|
|
return !memcmp(correct, blk + len, 20);
|
|
}
|
|
|
|
void hmac_sha1_simple(void *key, int keylen, void *data, int datalen,
|
|
unsigned char *output) {
|
|
SHA_State s1, s2;
|
|
unsigned char intermediate[20];
|
|
|
|
sha1_key(&s1, &s2, key, keylen);
|
|
SHA_Bytes(&s1, data, datalen);
|
|
SHA_Final(&s1, intermediate);
|
|
|
|
SHA_Bytes(&s2, intermediate, 20);
|
|
SHA_Final(&s2, output);
|
|
}
|
|
|
|
const struct ssh_mac ssh_sha1 = {
|
|
sha1_cskey, sha1_sckey,
|
|
sha1_generate,
|
|
sha1_verify,
|
|
"hmac-sha1",
|
|
20
|
|
};
|
|
|
|
const struct ssh_mac ssh_sha1_buggy = {
|
|
sha1_cskey_buggy, sha1_sckey_buggy,
|
|
sha1_generate,
|
|
sha1_verify,
|
|
"hmac-sha1",
|
|
20
|
|
};
|