mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 09:12:24 +00:00
31e5b621b5
With all the preparation now in place, this is more or less trivial. We add a new curve setup function in sshecc.c, and an ssh_kex linking to it; we add the curve parameters to the reference / test code eccref.py, and use them to generate the list of low-order input values that should be rejected by the sanity check on the kex output; we add the standard test vectors from RFC 7748 in cryptsuite.py, and the low-order values we just generated.
326 lines
13 KiB
Python
326 lines
13 KiB
Python
import numbers
|
|
import itertools
|
|
|
|
from numbertheory import *
|
|
|
|
class AffinePoint(object):
|
|
"""Base class for points on an elliptic curve."""
|
|
|
|
def __init__(self, curve, *args):
|
|
self.curve = curve
|
|
if len(args) == 0:
|
|
self.infinite = True
|
|
self.x = self.y = None
|
|
else:
|
|
assert len(args) == 2
|
|
self.infinite = False
|
|
self.x = ModP(self.curve.p, args[0])
|
|
self.y = ModP(self.curve.p, args[1])
|
|
self.check_equation()
|
|
def __neg__(self):
|
|
if self.infinite:
|
|
return self
|
|
return type(self)(self.curve, self.x, -self.y)
|
|
def __mul__(self, rhs):
|
|
if not isinstance(rhs, numbers.Integral):
|
|
raise ValueError("Elliptic curve points can only be multiplied by integers")
|
|
P = self
|
|
if rhs < 0:
|
|
rhs = -rhs
|
|
P = -P
|
|
toret = self.curve.point()
|
|
n = 1
|
|
nP = P
|
|
while rhs != 0:
|
|
if rhs & n:
|
|
rhs -= n
|
|
toret += nP
|
|
n += n
|
|
nP += nP
|
|
return toret
|
|
def __rmul__(self, rhs):
|
|
return self * rhs
|
|
def __sub__(self, rhs):
|
|
return self + (-rhs)
|
|
def __rsub__(self, rhs):
|
|
return (-self) + rhs
|
|
def __str__(self):
|
|
if self.infinite:
|
|
return "inf"
|
|
else:
|
|
return "({},{})".format(self.x, self.y)
|
|
def __repr__(self):
|
|
if self.infinite:
|
|
args = ""
|
|
else:
|
|
args = ", {}, {}".format(self.x, self.y)
|
|
return "{}.Point({}{})".format(type(self.curve).__name__,
|
|
self.curve, args)
|
|
def __eq__(self, rhs):
|
|
if self.infinite or rhs.infinite:
|
|
return self.infinite and rhs.infinite
|
|
return (self.x, self.y) == (rhs.x, rhs.y)
|
|
def __ne__(self, rhs):
|
|
return not (self == rhs)
|
|
def __lt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __le__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __gt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __ge__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __hash__(self):
|
|
if self.infinite:
|
|
return hash((True,))
|
|
else:
|
|
return hash((False, self.x, self.y))
|
|
|
|
class CurveBase(object):
|
|
def point(self, *args):
|
|
return self.Point(self, *args)
|
|
|
|
class WeierstrassCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x + self.curve.b)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
else:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + self.curve.a) / (2*y1)
|
|
xp = slope*slope - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = RootModP(2, self.p)
|
|
rhs = x**3 + self.a.n * x + self.b.n
|
|
y = self.sqrtmodp.root(rhs)
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class MontgomeryCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.curve.b*self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x*self.x + self.x)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
elif y1 != 0:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
|
|
else:
|
|
# If y1 was 0 as well, then we must have found an
|
|
# order-2 point that doubles to the identity.
|
|
return self.curve.point()
|
|
xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = RootModP(2, self.p)
|
|
rhs = (x**3 + self.a.n * x**2 + x) / self.b
|
|
y = self.sqrtmodp.root(int(rhs))
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class TwistedEdwardsCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
x2, y2 = self.x*self.x, self.y*self.y
|
|
assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
|
|
def __neg__(self):
|
|
return type(self)(self.curve, -self.x, self.y)
|
|
def __add__(self, rhs):
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
|
|
dxxyy = self.curve.d*x1x2*y1y2
|
|
return self.curve.point((x1y2+y1x2)/(1+dxxyy),
|
|
(y1y2-self.curve.a*x1x2)/(1-dxxyy))
|
|
|
|
def __init__(self, p, d, a):
|
|
self.p = p
|
|
self.d = ModP(p, d)
|
|
self.a = ModP(p, a)
|
|
|
|
def point(self, *args):
|
|
# This curve form represents the identity using finite
|
|
# numbers, so it doesn't need the special infinity flag.
|
|
# Detect a no-argument call to point() and substitute the pair
|
|
# of integers that gives the identity.
|
|
if len(args) == 0:
|
|
args = [0, 1]
|
|
return super(TwistedEdwardsCurve, self).point(*args)
|
|
|
|
def cpoint(self, y, xparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = RootModP(self.p)
|
|
y = ModP(self.p, y)
|
|
y2 = y**2
|
|
radicand = (y2 - 1) / (self.d * y2 - self.a)
|
|
x = self.sqrtmodp.root(radicand.n)
|
|
if (x - xparity) % 2:
|
|
x = -x
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.d, self.a)
|
|
|
|
def find_montgomery_power2_order_x_values(p, a):
|
|
# Find points on a Montgomery elliptic curve that have order a
|
|
# power of 2.
|
|
#
|
|
# Motivation: both Curve25519 and Curve448 are abelian groups
|
|
# whose overall order is a large prime times a small factor of 2.
|
|
# The approved base point of each curve generates a cyclic
|
|
# subgroup whose order is the large prime. Outside that cyclic
|
|
# subgroup there are many other points that have large prime
|
|
# order, plus just a handful that have tiny order. If one of the
|
|
# latter is presented to you as a Diffie-Hellman public value,
|
|
# nothing useful is going to happen, and RFC 7748 says we should
|
|
# outlaw those values. And any actual attempt to outlaw them is
|
|
# going to need to know what they are, either to check for each
|
|
# one directly, or to use them as test cases for some other
|
|
# approach.
|
|
#
|
|
# In a group of order p 2^k, an obvious way to search for points
|
|
# with order dividing 2^k is to generate random group elements and
|
|
# raise them to the power p. That guarantees that you end up with
|
|
# _something_ with order dividing 2^k (even if it's boringly the
|
|
# identity). And you also know from theory how many such points
|
|
# you expect to exist, so you can count the distinct ones you've
|
|
# found, and stop once you've got the right number.
|
|
#
|
|
# But that isn't actually good enough to find all the public
|
|
# values that are problematic! The reason why not is that in
|
|
# Montgomery key exchange we don't actually use a full elliptic
|
|
# curve point: we only use its x-coordinate. And the formulae for
|
|
# doubling and differential addition on x-coordinates can accept
|
|
# some values that don't correspond to group elements _at all_
|
|
# without detecting any error - and some of those nonsense x
|
|
# coordinates can also behave like low-order points.
|
|
#
|
|
# (For example, the x-coordinate -1 in Curve25519 is such a value.
|
|
# The reference ECC code in this module will raise an exception if
|
|
# you call curve25519.cpoint(-1): it corresponds to no valid point
|
|
# at all. But if you feed it into the doubling formula _anyway_,
|
|
# it doubles to the valid curve point with x-coord 0, which in
|
|
# turn doubles to the curve identity. Bang.)
|
|
#
|
|
# So we use an alternative approach which discards the group
|
|
# theory of the actual elliptic curve, and focuses purely on the
|
|
# doubling formula as an algebraic transformation on Z_p. Our
|
|
# question is: what values of x have the property that if you
|
|
# iterate the doubling map you eventually end up dividing by zero?
|
|
# To answer that, we must solve cubics and quartics mod p, via the
|
|
# code in numbertheory.py for doing so.
|
|
|
|
E = EquationSolverModP(p)
|
|
|
|
def viableSolutions(it):
|
|
for x in it:
|
|
try:
|
|
yield int(x)
|
|
except ValueError:
|
|
pass # some field-extension element that isn't a real value
|
|
|
|
def valuesDoublingTo(y):
|
|
# The doubling formula for a Montgomery curve point given only
|
|
# by x coordinate is (x+1)^2(x-1)^2 / (4(x^3+ax^2+x)).
|
|
#
|
|
# If we want to find a point that doubles to some particular
|
|
# value, we can set that formula equal to y and expand to get the
|
|
# quartic equation x^4 + (-4y)x^3 + (-4ay-2)x^2 + (-4y)x + 1 = 0.
|
|
return viableSolutions(E.solve_monic_quartic(-4*y, -4*a*y-2, -4*y, 1))
|
|
|
|
queue = []
|
|
qset = set()
|
|
pos = 0
|
|
def insert(x):
|
|
if x not in qset:
|
|
queue.append(x)
|
|
qset.add(x)
|
|
|
|
# Our ultimate aim is to find points that end up going to the
|
|
# curve identity / point at infinity after some number of
|
|
# doublings. So our starting point is: what values of x make the
|
|
# denominator of the doubling formula zero?
|
|
for x in viableSolutions(E.solve_monic_cubic(a, 1, 0)):
|
|
insert(x)
|
|
|
|
while pos < len(queue):
|
|
y = queue[pos]
|
|
pos += 1
|
|
for x in valuesDoublingTo(y):
|
|
insert(x)
|
|
|
|
return queue
|
|
|
|
p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
|
|
p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
|
|
p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
|
|
|
|
p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
|
|
p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
|
|
p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
|
|
|
|
p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
|
|
p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
|
|
p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
|
|
|
|
curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
|
|
curve25519.G = curve25519.cpoint(9)
|
|
|
|
curve448 = MontgomeryCurve(2**448-2**224-1, 0x262a6, 1)
|
|
curve448.G = curve448.cpoint(5)
|
|
|
|
ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
|
|
ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
|
|
ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
|
|
|