1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/sshecc.c
Simon Tatham 628e794832 Replace random_byte() with random_read().
This is in preparation for a PRNG revamp which will want to have a
well defined boundary for any given request-for-randomness, so that it
can destroy the evidence afterwards. So no more looping round calling
random_byte() and then stopping when we feel like it: now you say up
front how many random bytes you want, and call random_read() which
gives you that many in one go.

Most of the call sites that had to be fixed are fairly mechanical, and
quite a few ended up more concise afterwards. A few became more
cumbersome, such as mp_random_bits, in which the new API doesn't let
me load the random bytes directly into the target integer without
triggering undefined behaviour, so instead I have to allocate a
separate temporary buffer.

The _most_ interesting call site was in the PKCS#1 v1.5 padding code
in sshrsa.c (used in SSH-1), in which you need a stream of _nonzero_
random bytes. The previous code just looped on random_byte, retrying
if it got a zero. Now I'm doing a much more interesting thing with an
mpint, essentially scaling a binary fraction repeatedly to extract a
number in the range [0,255) and then adding 1 to it.
2019-01-23 22:36:17 +00:00

1510 lines
44 KiB
C

/*
* Elliptic-curve crypto module for PuTTY
* Implements the three required curves, no optional curves
*
* NOTE: Only curves on prime field are handled by the maths functions
* in Weierstrass form using Jacobian co-ordinates.
*
* Montgomery form curves are supported for DH. (Curve25519)
*
* Edwards form curves are supported for DSA. (Ed25519)
*/
/*
* References:
*
* Elliptic curves in SSH are specified in RFC 5656:
* http://tools.ietf.org/html/rfc5656
*
* That specification delegates details of public key formatting and a
* lot of underlying mechanism to SEC 1:
* http://www.secg.org/sec1-v2.pdf
*
* Montgomery maths from:
* Handbook of elliptic and hyperelliptic curve cryptography, Chapter 13
* http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf
*
* Curve25519 spec from libssh (with reference to other things in the
* libssh code):
* https://git.libssh.org/users/aris/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt
*
* Edwards DSA:
* http://ed25519.cr.yp.to/ed25519-20110926.pdf
*/
#include <stdlib.h>
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "ecc.h"
/* ----------------------------------------------------------------------
* Elliptic curve definitions
*/
static void initialise_common(
struct ec_curve *curve, EllipticCurveType type, mp_int *p)
{
curve->type = type;
curve->p = mp_copy(p);
curve->fieldBits = mp_get_nbits(p);
curve->fieldBytes = (curve->fieldBits + 7) / 8;
}
static void initialise_wcurve(
struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b,
mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order)
{
initialise_common(curve, EC_WEIERSTRASS, p);
curve->w.wc = ecc_weierstrass_curve(p, a, b, nonsquare);
curve->w.G = ecc_weierstrass_point_new(curve->w.wc, G_x, G_y);
curve->w.G_order = mp_copy(G_order);
}
static void initialise_mcurve(
struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b,
mp_int *G_x)
{
initialise_common(curve, EC_MONTGOMERY, p);
curve->m.mc = ecc_montgomery_curve(p, a, b);
curve->m.G = ecc_montgomery_point_new(curve->m.mc, G_x);
}
static void initialise_ecurve(
struct ec_curve *curve, mp_int *p, mp_int *d, mp_int *a,
mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order)
{
initialise_common(curve, EC_EDWARDS, p);
curve->e.ec = ecc_edwards_curve(p, d, a, nonsquare);
curve->e.G = ecc_edwards_point_new(curve->e.ec, G_x, G_y);
curve->e.G_order = mp_copy(G_order);
}
static struct ec_curve *ec_p256(void)
{
static struct ec_curve curve = { 0 };
static bool initialised = false;
if (!initialised)
{
mp_int *p = MP_LITERAL(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff);
mp_int *a = MP_LITERAL(0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc);
mp_int *b = MP_LITERAL(0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b);
mp_int *G_x = MP_LITERAL(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296);
mp_int *G_y = MP_LITERAL(0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5);
mp_int *G_order = MP_LITERAL(0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551);
mp_int *nonsquare_mod_p = mp_from_integer(3);
initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order);
mp_free(p);
mp_free(a);
mp_free(b);
mp_free(G_x);
mp_free(G_y);
mp_free(G_order);
mp_free(nonsquare_mod_p);
curve.textname = curve.name = "nistp256";
/* Now initialised, no need to do it again */
initialised = true;
}
return &curve;
}
static struct ec_curve *ec_p384(void)
{
static struct ec_curve curve = { 0 };
static bool initialised = false;
if (!initialised)
{
mp_int *p = MP_LITERAL(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff);
mp_int *a = MP_LITERAL(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc);
mp_int *b = MP_LITERAL(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef);
mp_int *G_x = MP_LITERAL(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7);
mp_int *G_y = MP_LITERAL(0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f);
mp_int *G_order = MP_LITERAL(0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973);
mp_int *nonsquare_mod_p = mp_from_integer(19);
initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order);
mp_free(p);
mp_free(a);
mp_free(b);
mp_free(G_x);
mp_free(G_y);
mp_free(G_order);
mp_free(nonsquare_mod_p);
curve.textname = curve.name = "nistp384";
/* Now initialised, no need to do it again */
initialised = true;
}
return &curve;
}
static struct ec_curve *ec_p521(void)
{
static struct ec_curve curve = { 0 };
static bool initialised = false;
if (!initialised)
{
mp_int *p = MP_LITERAL(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
mp_int *a = MP_LITERAL(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc);
mp_int *b = MP_LITERAL(0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00);
mp_int *G_x = MP_LITERAL(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66);
mp_int *G_y = MP_LITERAL(0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650);
mp_int *G_order = MP_LITERAL(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409);
mp_int *nonsquare_mod_p = mp_from_integer(3);
initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order);
mp_free(p);
mp_free(a);
mp_free(b);
mp_free(G_x);
mp_free(G_y);
mp_free(G_order);
mp_free(nonsquare_mod_p);
curve.textname = curve.name = "nistp521";
/* Now initialised, no need to do it again */
initialised = true;
}
return &curve;
}
static struct ec_curve *ec_curve25519(void)
{
static struct ec_curve curve = { 0 };
static bool initialised = false;
if (!initialised)
{
mp_int *p = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
mp_int *a = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000076d06);
mp_int *b = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000001);
mp_int *G_x = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000009);
initialise_mcurve(&curve, p, a, b, G_x);
mp_free(p);
mp_free(a);
mp_free(b);
mp_free(G_x);
/* This curve doesn't need a name, because it's never used in
* any format that embeds the curve name */
curve.name = NULL;
curve.textname = "Curve25519";
/* Now initialised, no need to do it again */
initialised = true;
}
return &curve;
}
static struct ec_curve *ec_ed25519(void)
{
static struct ec_curve curve = { 0 };
static bool initialised = false;
if (!initialised)
{
mp_int *p = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
mp_int *d = MP_LITERAL(0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3);
mp_int *a = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec); /* == p-1 */
mp_int *G_x = MP_LITERAL(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a);
mp_int *G_y = MP_LITERAL(0x6666666666666666666666666666666666666666666666666666666666666658);
mp_int *G_order = MP_LITERAL(0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
mp_int *nonsquare_mod_p = mp_from_integer(2);
initialise_ecurve(&curve, p, d, a, nonsquare_mod_p, G_x, G_y, G_order);
mp_free(p);
mp_free(d);
mp_free(a);
mp_free(G_x);
mp_free(G_y);
mp_free(G_order);
mp_free(nonsquare_mod_p);
/* This curve doesn't need a name, because it's never used in
* any format that embeds the curve name */
curve.name = NULL;
curve.textname = "Ed25519";
/* Now initialised, no need to do it again */
initialised = true;
}
return &curve;
}
/* ----------------------------------------------------------------------
* Public point from private
*/
struct ecsign_extra {
struct ec_curve *(*curve)(void);
const ssh_hashalg *hash;
/* These fields are used by the OpenSSH PEM format importer/exporter */
const unsigned char *oid;
int oidlen;
};
WeierstrassPoint *ecdsa_public(mp_int *private_key, const ssh_keyalg *alg)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
struct ec_curve *curve = extra->curve();
assert(curve->type == EC_WEIERSTRASS);
mp_int *priv_reduced = mp_mod(private_key, curve->p);
WeierstrassPoint *toret = ecc_weierstrass_multiply(
curve->w.G, priv_reduced);
mp_free(priv_reduced);
return toret;
}
static mp_int *eddsa_exponent_from_hash(
ptrlen hash, const struct ec_curve *curve)
{
/*
* Make an integer out of the hash data, little-endian.
*/
assert(hash.len >= curve->fieldBytes);
mp_int *e = mp_from_bytes_le(make_ptrlen(hash.ptr, curve->fieldBytes));
/*
* Set the highest bit that fits in the modulus, and clear any
* above that.
*/
mp_set_bit(e, curve->fieldBits - 1, 1);
mp_reduce_mod_2to(e, curve->fieldBits);
/*
* Clear exactly three low bits.
*/
for (size_t bit = 0; bit < 3; bit++)
mp_set_bit(e, bit, 0);
return e;
}
EdwardsPoint *eddsa_public(mp_int *private_key, const ssh_keyalg *alg)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
struct ec_curve *curve = extra->curve();
assert(curve->type == EC_EDWARDS);
ssh_hash *h = ssh_hash_new(extra->hash);
for (size_t i = 0; i < curve->fieldBytes; ++i)
put_byte(h, mp_get_byte(private_key, i));
unsigned char hash[MAX_HASH_LEN];
ssh_hash_final(h, hash);
mp_int *exponent = eddsa_exponent_from_hash(
make_ptrlen(hash, extra->hash->hlen), curve);
EdwardsPoint *toret = ecc_edwards_multiply(curve->e.G, exponent);
mp_free(exponent);
return toret;
}
/* ----------------------------------------------------------------------
* Marshalling and unmarshalling functions
*/
static mp_int *BinarySource_get_mp_le(BinarySource *src)
{
return mp_from_bytes_le(get_string(src));
}
#define get_mp_le(src) BinarySource_get_mp_le(BinarySource_UPCAST(src))
static void BinarySink_put_mp_le_unsigned(BinarySink *bs, mp_int *x)
{
size_t bytes = (mp_get_nbits(x) + 7) / 8;
put_uint32(bs, bytes);
for (size_t i = 0; i < bytes; ++i)
put_byte(bs, mp_get_byte(x, i));
}
#define put_mp_le_unsigned(bs, x) \
BinarySink_put_mp_le_unsigned(BinarySink_UPCAST(bs), x)
static WeierstrassPoint *ecdsa_decode(
ptrlen encoded, const struct ec_curve *curve)
{
assert(curve->type == EC_WEIERSTRASS);
BinarySource src[1];
BinarySource_BARE_INIT(src, encoded.ptr, encoded.len);
unsigned char format_type = get_byte(src);
WeierstrassPoint *P;
size_t len = get_avail(src);
mp_int *x;
mp_int *y;
switch (format_type) {
case 0:
/* The identity. */
P = ecc_weierstrass_point_new_identity(curve->w.wc);
break;
case 2:
case 3:
/* A compressed point, in which the x-coordinate is stored in
* full, and y is deduced from that and a single bit
* indicating its parity (stored in the format type byte). */
x = mp_from_bytes_be(get_data(src, len));
P = ecc_weierstrass_point_new_from_x(curve->w.wc, x, format_type & 1);
mp_free(x);
if (!P) /* this can fail if the input is invalid */
return NULL;
break;
case 4:
/* An uncompressed point: the x,y coordinates are stored in
* full. We expect the rest of the string to have even length,
* and be divided half and half between the two values. */
if (len % 2 != 0)
return NULL;
len /= 2;
x = mp_from_bytes_be(get_data(src, len));
y = mp_from_bytes_be(get_data(src, len));
P = ecc_weierstrass_point_new(curve->w.wc, x, y);
mp_free(x);
mp_free(y);
break;
default:
/* An unrecognised type byte. */
return NULL;
}
/* Verify the point is on the curve */
if (!ecc_weierstrass_point_valid(P)) {
ecc_weierstrass_point_free(P);
return NULL;
}
return P;
}
static WeierstrassPoint *BinarySource_get_wpoint(
BinarySource *src, const struct ec_curve *curve)
{
ptrlen str = get_string(src);
if (get_err(src))
return NULL;
return ecdsa_decode(str, curve);
}
#define get_wpoint(src, curve) \
BinarySource_get_wpoint(BinarySource_UPCAST(src), curve)
static void BinarySink_put_wpoint(
BinarySink *bs, WeierstrassPoint *point, const struct ec_curve *curve,
bool bare)
{
strbuf *sb;
BinarySink *bs_inner;
if (!bare) {
/*
* Encapsulate the raw data inside an outermost string layer.
*/
sb = strbuf_new();
bs_inner = BinarySink_UPCAST(sb);
} else {
/*
* Just write the data directly to the output.
*/
bs_inner = bs;
}
if (ecc_weierstrass_is_identity(point)) {
put_byte(bs_inner, 0);
} else {
mp_int *x, *y;
ecc_weierstrass_get_affine(point, &x, &y);
/*
* For ECDSA, we only ever output uncompressed points.
*/
put_byte(bs_inner, 0x04);
for (size_t i = curve->fieldBytes; i--;)
put_byte(bs_inner, mp_get_byte(x, i));
for (size_t i = curve->fieldBytes; i--;)
put_byte(bs_inner, mp_get_byte(y, i));
mp_free(x);
mp_free(y);
}
if (!bare)
put_stringsb(bs, sb);
}
#define put_wpoint(bs, point, curve, bare) \
BinarySink_put_wpoint(BinarySink_UPCAST(bs), point, curve, bare)
static EdwardsPoint *eddsa_decode(ptrlen encoded, const struct ec_curve *curve)
{
assert(curve->type == EC_EDWARDS);
assert(curve->fieldBits % 8 == 7);
mp_int *y = mp_from_bytes_le(encoded);
if (mp_get_nbits(y) > curve->fieldBits+1) {
mp_free(y);
return NULL;
}
/* The topmost bit of the encoding isn't part of y, so it stores
* the bottom bit of x. Extract it, and zero that bit in y. */
unsigned desired_x_parity = mp_get_bit(y, curve->fieldBits);
mp_set_bit(y, curve->fieldBits, 0);
EdwardsPoint *P = ecc_edwards_point_new_from_y(
curve->e.ec, y, desired_x_parity);
mp_free(y);
/* A point constructed in this way will always satisfy the curve
* equation, unless ecc.c wasn't able to construct one at all, in
* which case P is now NULL. Either way, return it. */
return P;
}
static EdwardsPoint *BinarySource_get_epoint(
BinarySource *src, const struct ec_curve *curve)
{
ptrlen str = get_string(src);
if (get_err(src))
return NULL;
return eddsa_decode(str, curve);
}
#define get_epoint(src, curve) \
BinarySource_get_epoint(BinarySource_UPCAST(src), curve)
static void BinarySink_put_epoint(
BinarySink *bs, EdwardsPoint *point, const struct ec_curve *curve,
bool bare)
{
mp_int *x, *y;
ecc_edwards_get_affine(point, &x, &y);
assert(curve->fieldBytes >= 2);
/*
* EdDSA requires point compression. We store a single integer,
* with bytes in little-endian order, which mostly contains y but
* in which the topmost bit is the low bit of x.
*/
if (!bare)
put_uint32(bs, curve->fieldBytes); /* string length field */
for (size_t i = 0; i < curve->fieldBytes - 1; i++)
put_byte(bs, mp_get_byte(y, i));
put_byte(bs, (mp_get_byte(y, curve->fieldBytes - 1) & 0x7F) |
(mp_get_bit(x, 0) << 7));
mp_free(x);
mp_free(y);
}
#define put_epoint(bs, point, curve, bare) \
BinarySink_put_epoint(BinarySink_UPCAST(bs), point, curve, bare)
/* ----------------------------------------------------------------------
* Exposed ECDSA interface
*/
static void ecdsa_freekey(ssh_key *key)
{
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
if (ek->publicKey)
ecc_weierstrass_point_free(ek->publicKey);
if (ek->privateKey)
mp_free(ek->privateKey);
sfree(ek);
}
static void eddsa_freekey(ssh_key *key)
{
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
if (ek->publicKey)
ecc_edwards_point_free(ek->publicKey);
if (ek->privateKey)
mp_free(ek->privateKey);
sfree(ek);
}
static ssh_key *ecdsa_new_pub(const ssh_keyalg *alg, ptrlen data)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
struct ec_curve *curve = extra->curve();
assert(curve->type == EC_WEIERSTRASS);
BinarySource src[1];
BinarySource_BARE_INIT(src, data.ptr, data.len);
get_string(src);
/* Curve name is duplicated for Weierstrass form */
if (!ptrlen_eq_string(get_string(src), curve->name))
return NULL;
struct ecdsa_key *ek = snew(struct ecdsa_key);
ek->sshk.vt = alg;
ek->curve = curve;
ek->publicKey = get_wpoint(src, curve);
if (!ek->publicKey) {
ecdsa_freekey(&ek->sshk);
return NULL;
}
ek->privateKey = NULL;
return &ek->sshk;
}
static ssh_key *eddsa_new_pub(const ssh_keyalg *alg, ptrlen data)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
struct ec_curve *curve = extra->curve();
assert(curve->type == EC_EDWARDS);
BinarySource src[1];
BinarySource_BARE_INIT(src, data.ptr, data.len);
get_string(src);
struct eddsa_key *ek = snew(struct eddsa_key);
ek->sshk.vt = alg;
ek->curve = curve;
ek->privateKey = NULL;
ek->publicKey = get_epoint(src, curve);
if (!ek->publicKey) {
eddsa_freekey(&ek->sshk);
return NULL;
}
return &ek->sshk;
}
static char *ecc_cache_str_shared(
const char *curve_name, mp_int *x, mp_int *y)
{
strbuf *sb = strbuf_new();
if (curve_name)
strbuf_catf(sb, "%s,", curve_name);
char *hx = mp_get_hex(x);
char *hy = mp_get_hex(y);
strbuf_catf(sb, "0x%s,0x%s", hx, hy);
sfree(hx);
sfree(hy);
return strbuf_to_str(sb);
}
static char *ecdsa_cache_str(ssh_key *key)
{
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
mp_int *x, *y;
ecc_weierstrass_get_affine(ek->publicKey, &x, &y);
char *toret = ecc_cache_str_shared(ek->curve->name, x, y);
mp_free(x);
mp_free(y);
return toret;
}
static char *eddsa_cache_str(ssh_key *key)
{
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
mp_int *x, *y;
ecc_edwards_get_affine(ek->publicKey, &x, &y);
char *toret = ecc_cache_str_shared(ek->curve->name, x, y);
mp_free(x);
mp_free(y);
return toret;
}
static void ecdsa_public_blob(ssh_key *key, BinarySink *bs)
{
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
put_stringz(bs, ek->sshk.vt->ssh_id);
put_stringz(bs, ek->curve->name);
put_wpoint(bs, ek->publicKey, ek->curve, false);
}
static void eddsa_public_blob(ssh_key *key, BinarySink *bs)
{
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
put_stringz(bs, ek->sshk.vt->ssh_id);
put_epoint(bs, ek->publicKey, ek->curve, false);
}
static void ecdsa_private_blob(ssh_key *key, BinarySink *bs)
{
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
/* ECDSA uses ordinary SSH-2 mpint format to store the private key */
assert(ek->privateKey);
put_mp_ssh2(bs, ek->privateKey);
}
static void eddsa_private_blob(ssh_key *key, BinarySink *bs)
{
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
/* EdDSA stores the private key integer little-endian and unsigned */
assert(ek->privateKey);
put_mp_le_unsigned(bs, ek->privateKey);
}
static ssh_key *ecdsa_new_priv(const ssh_keyalg *alg, ptrlen pub, ptrlen priv)
{
ssh_key *sshk = ecdsa_new_pub(alg, pub);
if (!sshk)
return NULL;
struct ecdsa_key *ek = container_of(sshk, struct ecdsa_key, sshk);
BinarySource src[1];
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
ek->privateKey = get_mp_ssh2(src);
return &ek->sshk;
}
static ssh_key *eddsa_new_priv(const ssh_keyalg *alg, ptrlen pub, ptrlen priv)
{
ssh_key *sshk = eddsa_new_pub(alg, pub);
if (!sshk)
return NULL;
struct eddsa_key *ek = container_of(sshk, struct eddsa_key, sshk);
BinarySource src[1];
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
ek->privateKey = get_mp_le(src);
return &ek->sshk;
}
static ssh_key *eddsa_new_priv_openssh(
const ssh_keyalg *alg, BinarySource *src)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
struct ec_curve *curve = extra->curve();
assert(curve->type == EC_EDWARDS);
ptrlen pubkey_pl = get_string(src);
ptrlen privkey_extended_pl = get_string(src);
if (get_err(src) || pubkey_pl.len != curve->fieldBytes)
return NULL;
/*
* The OpenSSH format for ed25519 private keys also for some
* reason encodes an extra copy of the public key in the second
* half of the secret-key string. Check that that's present and
* correct as well, otherwise the key we think we've imported
* won't behave identically to the way OpenSSH would have treated
* it.
*/
BinarySource subsrc[1];
BinarySource_BARE_INIT(
subsrc, privkey_extended_pl.ptr, privkey_extended_pl.len);
ptrlen privkey_pl = get_data(subsrc, curve->fieldBytes);
ptrlen pubkey_copy_pl = get_data(subsrc, curve->fieldBytes);
if (get_err(subsrc) || get_avail(subsrc))
return NULL;
if (!ptrlen_eq_ptrlen(pubkey_pl, pubkey_copy_pl))
return NULL;
struct eddsa_key *ek = snew(struct eddsa_key);
ek->sshk.vt = alg;
ek->curve = curve;
ek->publicKey = eddsa_decode(pubkey_pl, curve);
if (!ek->publicKey) {
eddsa_freekey(&ek->sshk);
return NULL;
}
ek->privateKey = mp_from_bytes_le(privkey_pl);
return &ek->sshk;
}
static void eddsa_openssh_blob(ssh_key *key, BinarySink *bs)
{
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
assert(ek->curve->type == EC_EDWARDS);
/* Encode the public and private points as strings */
strbuf *pub_sb = strbuf_new();
put_epoint(pub_sb, ek->publicKey, ek->curve, false);
ptrlen pub = make_ptrlen(pub_sb->s + 4, pub_sb->len - 4);
strbuf *priv_sb = strbuf_new();
put_mp_le_unsigned(priv_sb, ek->privateKey);
ptrlen priv = make_ptrlen(priv_sb->s + 4, priv_sb->len - 4);
put_stringpl(bs, pub);
/* Encode the private key as the concatenation of the
* little-endian key integer and the public key again */
put_uint32(bs, priv.len + pub.len);
put_datapl(bs, priv);
put_datapl(bs, pub);
strbuf_free(pub_sb);
strbuf_free(priv_sb);
}
static ssh_key *ecdsa_new_priv_openssh(
const ssh_keyalg *alg, BinarySource *src)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
struct ec_curve *curve = extra->curve();
assert(curve->type == EC_WEIERSTRASS);
get_string(src);
struct eddsa_key *ek = snew(struct eddsa_key);
ek->sshk.vt = alg;
ek->curve = curve;
ek->publicKey = get_epoint(src, curve);
if (!ek->publicKey) {
eddsa_freekey(&ek->sshk);
return NULL;
}
ek->privateKey = get_mp_ssh2(src);
return &ek->sshk;
}
static void ecdsa_openssh_blob(ssh_key *key, BinarySink *bs)
{
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
put_stringz(bs, ek->curve->name);
put_wpoint(bs, ek->publicKey, ek->curve, false);
put_mp_ssh2(bs, ek->privateKey);
}
static int ec_shared_pubkey_bits(const ssh_keyalg *alg, ptrlen blob)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
struct ec_curve *curve = extra->curve();
return curve->fieldBits;
}
static mp_int *ecdsa_signing_exponent_from_data(
const struct ec_curve *curve, const struct ecsign_extra *extra,
ptrlen data)
{
/* Hash the data being signed. */
unsigned char hash[MAX_HASH_LEN];
ssh_hash *h = ssh_hash_new(extra->hash);
put_datapl(h, data);
ssh_hash_final(h, hash);
/*
* Take the leftmost b bits of the hash of the signed data (where
* b is the number of bits in order(G)), interpreted big-endian.
*/
mp_int *z = mp_from_bytes_be(make_ptrlen(hash, extra->hash->hlen));
size_t zbits = mp_get_nbits(z);
size_t nbits = mp_get_nbits(curve->w.G_order);
size_t shift = zbits - nbits;
/* Bound the shift count below at 0, using bit twiddling to avoid
* a conditional branch */
shift &= ~-(shift >> (CHAR_BIT * sizeof(size_t) - 1));
mp_int *toret = mp_rshift_safe(z, shift);
mp_free(z);
return toret;
}
static bool ecdsa_verify(ssh_key *key, ptrlen sig, ptrlen data)
{
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
const struct ecsign_extra *extra =
(const struct ecsign_extra *)ek->sshk.vt->extra;
BinarySource src[1];
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
/* Check the signature starts with the algorithm name */
if (!ptrlen_eq_string(get_string(src), ek->sshk.vt->ssh_id))
return false;
/* Everything else is nested inside a sub-string. Descend into that. */
ptrlen sigstr = get_string(src);
if (get_err(src))
return false;
BinarySource_BARE_INIT(src, sigstr.ptr, sigstr.len);
/* Extract the signature integers r,s */
mp_int *r = get_mp_ssh2(src);
mp_int *s = get_mp_ssh2(src);
if (get_err(src)) {
mp_free(r);
mp_free(s);
return false;
}
/* Basic sanity checks: 0 < r,s < order(G) */
unsigned invalid = 0;
invalid |= mp_eq_integer(r, 0);
invalid |= mp_eq_integer(s, 0);
invalid |= mp_cmp_hs(r, ek->curve->w.G_order);
invalid |= mp_cmp_hs(s, ek->curve->w.G_order);
/* Get the hash of the signed data, converted to an integer */
mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data);
/* Verify the signature integers against the hash */
mp_int *w = mp_invert(s, ek->curve->w.G_order);
mp_int *u1 = mp_modmul(z, w, ek->curve->w.G_order);
mp_free(z);
mp_int *u2 = mp_modmul(r, w, ek->curve->w.G_order);
mp_free(w);
WeierstrassPoint *u1G = ecc_weierstrass_multiply(ek->curve->w.G, u1);
mp_free(u1);
WeierstrassPoint *u2P = ecc_weierstrass_multiply(ek->publicKey, u2);
mp_free(u2);
WeierstrassPoint *sum = ecc_weierstrass_add_general(u1G, u2P);
ecc_weierstrass_point_free(u1G);
ecc_weierstrass_point_free(u2P);
mp_int *x;
ecc_weierstrass_get_affine(sum, &x, NULL);
ecc_weierstrass_point_free(sum);
mp_divmod_into(x, ek->curve->w.G_order, NULL, x);
invalid |= (1 ^ mp_cmp_eq(r, x));
mp_free(x);
mp_free(r);
mp_free(s);
return !invalid;
}
static mp_int *eddsa_signing_exponent_from_data(
struct eddsa_key *ek, const struct ecsign_extra *extra,
ptrlen r_encoded, ptrlen data)
{
/* Hash (r || public key || message) */
unsigned char hash[MAX_HASH_LEN];
ssh_hash *h = ssh_hash_new(extra->hash);
put_datapl(h, r_encoded);
put_epoint(h, ek->publicKey, ek->curve, true); /* omit string header */
put_datapl(h, data);
ssh_hash_final(h, hash);
/* Convert to an integer */
mp_int *toret = mp_from_bytes_le(make_ptrlen(hash, extra->hash->hlen));
smemclr(hash, extra->hash->hlen);
return toret;
}
static bool eddsa_verify(ssh_key *key, ptrlen sig, ptrlen data)
{
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
const struct ecsign_extra *extra =
(const struct ecsign_extra *)ek->sshk.vt->extra;
BinarySource src[1];
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
/* Check the signature starts with the algorithm name */
if (!ptrlen_eq_string(get_string(src), ek->sshk.vt->ssh_id))
return false;
/* Now expect a single string which is the concatenation of an
* encoded curve point r and an integer s. */
ptrlen sigstr = get_string(src);
if (get_err(src))
return false;
BinarySource_BARE_INIT(src, sigstr.ptr, sigstr.len);
ptrlen rstr = get_data(src, ek->curve->fieldBytes);
ptrlen sstr = get_data(src, ek->curve->fieldBytes);
if (get_err(src) || get_avail(src))
return false;
EdwardsPoint *r = eddsa_decode(rstr, ek->curve);
if (!r)
return false;
mp_int *s = mp_from_bytes_le(sstr);
mp_int *H = eddsa_signing_exponent_from_data(ek, extra, rstr, data);
/* Verify that s*G == r + H*publicKey */
EdwardsPoint *lhs = ecc_edwards_multiply(ek->curve->e.G, s);
mp_free(s);
EdwardsPoint *hpk = ecc_edwards_multiply(ek->publicKey, H);
mp_free(H);
EdwardsPoint *rhs = ecc_edwards_add(r, hpk);
ecc_edwards_point_free(hpk);
unsigned valid = ecc_edwards_eq(lhs, rhs);
ecc_edwards_point_free(lhs);
ecc_edwards_point_free(rhs);
ecc_edwards_point_free(r);
return valid;
}
static void ecdsa_sign(ssh_key *key, ptrlen data,
unsigned flags, BinarySink *bs)
{
struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk);
const struct ecsign_extra *extra =
(const struct ecsign_extra *)ek->sshk.vt->extra;
assert(ek->privateKey);
mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data);
/* Generate k between 1 and curve->n, using the same deterministic
* k generation system we use for conventional DSA. */
mp_int *k;
{
unsigned char digest[20];
hash_simple(&ssh_sha1, data, digest);
k = dss_gen_k(
"ECDSA deterministic k generator", ek->curve->w.G_order,
ek->privateKey, digest, sizeof(digest));
}
WeierstrassPoint *kG = ecc_weierstrass_multiply(ek->curve->w.G, k);
mp_int *x;
ecc_weierstrass_get_affine(kG, &x, NULL);
ecc_weierstrass_point_free(kG);
/* r = kG.x mod order(G) */
mp_int *r = mp_mod(x, ek->curve->w.G_order);
mp_free(x);
/* s = (z + r * priv)/k mod n */
mp_int *rPriv = mp_modmul(r, ek->privateKey, ek->curve->w.G_order);
mp_int *numerator = mp_modadd(z, rPriv, ek->curve->w.G_order);
mp_free(z);
mp_free(rPriv);
mp_int *kInv = mp_invert(k, ek->curve->w.G_order);
mp_free(k);
mp_int *s = mp_modmul(numerator, kInv, ek->curve->w.G_order);
mp_free(numerator);
mp_free(kInv);
/* Format the output */
put_stringz(bs, ek->sshk.vt->ssh_id);
strbuf *substr = strbuf_new();
put_mp_ssh2(substr, r);
put_mp_ssh2(substr, s);
put_stringsb(bs, substr);
mp_free(r);
mp_free(s);
}
static void eddsa_sign(ssh_key *key, ptrlen data,
unsigned flags, BinarySink *bs)
{
struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk);
const struct ecsign_extra *extra =
(const struct ecsign_extra *)ek->sshk.vt->extra;
assert(ek->privateKey);
/*
* EdDSA prescribes a specific method of generating the random
* nonce integer for the signature. (A verifier can't tell
* whether you followed that method, but it's important to
* follow it anyway, because test vectors will want a specific
* signature for a given message, and because this preserves
* determinism of signatures even if the same signature were
* made twice by different software.)
*/
/*
* First, we hash the private key integer (bare, little-endian)
* into a hash generating 2*fieldBytes of output.
*/
unsigned char hash[MAX_HASH_LEN];
ssh_hash *h = ssh_hash_new(extra->hash);
for (size_t i = 0; i < ek->curve->fieldBytes; ++i)
put_byte(h, mp_get_byte(ek->privateKey, i));
ssh_hash_final(h, hash);
/*
* The first half of the output hash is converted into an
* integer a, by the standard EdDSA transformation.
*/
mp_int *a = eddsa_exponent_from_hash(
make_ptrlen(hash, ek->curve->fieldBytes), ek->curve);
/*
* The second half of the hash of the private key is hashed again
* with the message to be signed, and used as an exponent to
* generate the signature point r.
*/
h = ssh_hash_new(extra->hash);
put_data(h, hash + ek->curve->fieldBytes,
extra->hash->hlen - ek->curve->fieldBytes);
put_datapl(h, data);
ssh_hash_final(h, hash);
mp_int *log_r_unreduced = mp_from_bytes_le(
make_ptrlen(hash, extra->hash->hlen));
mp_int *log_r = mp_mod(log_r_unreduced, ek->curve->e.G_order);
mp_free(log_r_unreduced);
EdwardsPoint *r = ecc_edwards_multiply(ek->curve->e.G, log_r);
/*
* Encode r now, because we'll need its encoding for the next
* hashing step as well as to write into the actual signature.
*/
strbuf *r_enc = strbuf_new();
put_epoint(r_enc, r, ek->curve, true); /* omit string header */
ecc_edwards_point_free(r);
/*
* Compute the hash of (r || public key || message) just as
* eddsa_verify does.
*/
mp_int *H = eddsa_signing_exponent_from_data(
ek, extra, ptrlen_from_strbuf(r_enc), data);
/* And then s = (log(r) + H*a) mod order(G). */
mp_int *Ha = mp_modmul(H, a, ek->curve->e.G_order);
mp_int *s = mp_modadd(log_r, Ha, ek->curve->e.G_order);
mp_free(H);
mp_free(a);
mp_free(Ha);
mp_free(log_r);
/* Format the output */
put_stringz(bs, ek->sshk.vt->ssh_id);
put_uint32(bs, r_enc->len + ek->curve->fieldBytes);
put_data(bs, r_enc->u, r_enc->len);
strbuf_free(r_enc);
for (size_t i = 0; i < ek->curve->fieldBytes; ++i)
put_byte(bs, mp_get_byte(s, i));
mp_free(s);
}
const struct ecsign_extra sign_extra_ed25519 = {
ec_ed25519, &ssh_sha512,
NULL, 0,
};
const ssh_keyalg ssh_ecdsa_ed25519 = {
eddsa_new_pub,
eddsa_new_priv,
eddsa_new_priv_openssh,
eddsa_freekey,
eddsa_sign,
eddsa_verify,
eddsa_public_blob,
eddsa_private_blob,
eddsa_openssh_blob,
eddsa_cache_str,
ec_shared_pubkey_bits,
"ssh-ed25519",
"ssh-ed25519",
&sign_extra_ed25519,
0, /* no supported flags */
};
/* OID: 1.2.840.10045.3.1.7 (ansiX9p256r1) */
static const unsigned char nistp256_oid[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
};
const struct ecsign_extra sign_extra_nistp256 = {
ec_p256, &ssh_sha256,
nistp256_oid, lenof(nistp256_oid),
};
const ssh_keyalg ssh_ecdsa_nistp256 = {
ecdsa_new_pub,
ecdsa_new_priv,
ecdsa_new_priv_openssh,
ecdsa_freekey,
ecdsa_sign,
ecdsa_verify,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_openssh_blob,
ecdsa_cache_str,
ec_shared_pubkey_bits,
"ecdsa-sha2-nistp256",
"ecdsa-sha2-nistp256",
&sign_extra_nistp256,
0, /* no supported flags */
};
/* OID: 1.3.132.0.34 (secp384r1) */
static const unsigned char nistp384_oid[] = {
0x2b, 0x81, 0x04, 0x00, 0x22
};
const struct ecsign_extra sign_extra_nistp384 = {
ec_p384, &ssh_sha384,
nistp384_oid, lenof(nistp384_oid),
};
const ssh_keyalg ssh_ecdsa_nistp384 = {
ecdsa_new_pub,
ecdsa_new_priv,
ecdsa_new_priv_openssh,
ecdsa_freekey,
ecdsa_sign,
ecdsa_verify,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_openssh_blob,
ecdsa_cache_str,
ec_shared_pubkey_bits,
"ecdsa-sha2-nistp384",
"ecdsa-sha2-nistp384",
&sign_extra_nistp384,
0, /* no supported flags */
};
/* OID: 1.3.132.0.35 (secp521r1) */
static const unsigned char nistp521_oid[] = {
0x2b, 0x81, 0x04, 0x00, 0x23
};
const struct ecsign_extra sign_extra_nistp521 = {
ec_p521, &ssh_sha512,
nistp521_oid, lenof(nistp521_oid),
};
const ssh_keyalg ssh_ecdsa_nistp521 = {
ecdsa_new_pub,
ecdsa_new_priv,
ecdsa_new_priv_openssh,
ecdsa_freekey,
ecdsa_sign,
ecdsa_verify,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_openssh_blob,
ecdsa_cache_str,
ec_shared_pubkey_bits,
"ecdsa-sha2-nistp521",
"ecdsa-sha2-nistp521",
&sign_extra_nistp521,
0, /* no supported flags */
};
/* ----------------------------------------------------------------------
* Exposed ECDH interface
*/
struct eckex_extra {
struct ec_curve *(*curve)(void);
void (*setup)(ecdh_key *dh);
void (*cleanup)(ecdh_key *dh);
void (*getpublic)(ecdh_key *dh, BinarySink *bs);
mp_int *(*getkey)(ecdh_key *dh, ptrlen remoteKey);
};
struct ecdh_key {
const struct eckex_extra *extra;
const struct ec_curve *curve;
mp_int *private;
union {
WeierstrassPoint *w_public;
MontgomeryPoint *m_public;
};
};
const char *ssh_ecdhkex_curve_textname(const ssh_kex *kex)
{
const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra;
struct ec_curve *curve = extra->curve();
return curve->textname;
}
static void ssh_ecdhkex_w_setup(ecdh_key *dh)
{
mp_int *one = mp_from_integer(1);
dh->private = mp_random_in_range(one, dh->curve->w.G_order);
mp_free(one);
dh->w_public = ecc_weierstrass_multiply(dh->curve->w.G, dh->private);
}
static void ssh_ecdhkex_m_setup(ecdh_key *dh)
{
strbuf *bytes = strbuf_new();
random_read(strbuf_append(bytes, dh->curve->fieldBytes),
dh->curve->fieldBytes);
bytes->u[0] &= 0xF8;
bytes->u[bytes->len-1] &= 0x7F;
bytes->u[bytes->len-1] |= 0x40;
dh->private = mp_from_bytes_le(ptrlen_from_strbuf(bytes));
strbuf_free(bytes);
dh->m_public = ecc_montgomery_multiply(dh->curve->m.G, dh->private);
}
ecdh_key *ssh_ecdhkex_newkey(const ssh_kex *kex)
{
const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra;
const struct ec_curve *curve = extra->curve();
ecdh_key *dh = snew(ecdh_key);
dh->extra = extra;
dh->curve = curve;
dh->extra->setup(dh);
return dh;
}
static void ssh_ecdhkex_w_getpublic(ecdh_key *dh, BinarySink *bs)
{
put_wpoint(bs, dh->w_public, dh->curve, true);
}
static void ssh_ecdhkex_m_getpublic(ecdh_key *dh, BinarySink *bs)
{
mp_int *x;
ecc_montgomery_get_affine(dh->m_public, &x);
for (size_t i = 0; i < dh->curve->fieldBytes; ++i)
put_byte(bs, mp_get_byte(x, i));
mp_free(x);
}
void ssh_ecdhkex_getpublic(ecdh_key *dh, BinarySink *bs)
{
dh->extra->getpublic(dh, bs);
}
static mp_int *ssh_ecdhkex_w_getkey(ecdh_key *dh, ptrlen remoteKey)
{
WeierstrassPoint *remote_p = ecdsa_decode(remoteKey, dh->curve);
if (!remote_p)
return NULL;
WeierstrassPoint *p = ecc_weierstrass_multiply(remote_p, dh->private);
mp_int *x;
ecc_weierstrass_get_affine(p, &x, NULL);
ecc_weierstrass_point_free(remote_p);
ecc_weierstrass_point_free(p);
return x;
}
static mp_int *ssh_ecdhkex_m_getkey(ecdh_key *dh, ptrlen remoteKey)
{
mp_int *remote_x = mp_from_bytes_le(remoteKey);
MontgomeryPoint *remote_p = ecc_montgomery_point_new(
dh->curve->m.mc, remote_x);
mp_free(remote_x);
MontgomeryPoint *p = ecc_montgomery_multiply(remote_p, dh->private);
mp_int *x;
ecc_montgomery_get_affine(p, &x);
ecc_montgomery_point_free(remote_p);
ecc_montgomery_point_free(p);
/*
* Endianness-swap. The Curve25519 algorithm definition assumes
* you were doing your computation in arrays of 32 little-endian
* bytes, and now specifies that you take your final one of those
* and convert it into a bignum in _network_ byte order, i.e.
* big-endian.
*
* In particular, the spec says, you convert the _whole_ 32 bytes
* into a bignum. That is, on the rare occasions that x has come
* out with the most significant 8 bits zero, we have to imagine
* that being represented by a 32-byte string with the last byte
* being zero, so that has to be converted into an SSH-2 bignum
* with the _low_ byte zero, i.e. a multiple of 256.
*/
strbuf *sb = strbuf_new();
for (size_t i = 0; i < dh->curve->fieldBytes; ++i)
put_byte(sb, mp_get_byte(x, i));
mp_free(x);
x = mp_from_bytes_be(ptrlen_from_strbuf(sb));
strbuf_free(sb);
return x;
}
mp_int *ssh_ecdhkex_getkey(ecdh_key *dh, ptrlen remoteKey)
{
return dh->extra->getkey(dh, remoteKey);
}
static void ssh_ecdhkex_w_cleanup(ecdh_key *dh)
{
ecc_weierstrass_point_free(dh->w_public);
}
static void ssh_ecdhkex_m_cleanup(ecdh_key *dh)
{
ecc_montgomery_point_free(dh->m_public);
}
void ssh_ecdhkex_freekey(ecdh_key *dh)
{
mp_free(dh->private);
dh->extra->cleanup(dh);
sfree(dh);
}
static const struct eckex_extra kex_extra_curve25519 = {
ec_curve25519,
ssh_ecdhkex_m_setup,
ssh_ecdhkex_m_cleanup,
ssh_ecdhkex_m_getpublic,
ssh_ecdhkex_m_getkey,
};
const ssh_kex ssh_ec_kex_curve25519 = {
"curve25519-sha256@libssh.org", NULL, KEXTYPE_ECDH,
&ssh_sha256, &kex_extra_curve25519,
};
const struct eckex_extra kex_extra_nistp256 = {
ec_p256,
ssh_ecdhkex_w_setup,
ssh_ecdhkex_w_cleanup,
ssh_ecdhkex_w_getpublic,
ssh_ecdhkex_w_getkey,
};
const ssh_kex ssh_ec_kex_nistp256 = {
"ecdh-sha2-nistp256", NULL, KEXTYPE_ECDH,
&ssh_sha256, &kex_extra_nistp256,
};
const struct eckex_extra kex_extra_nistp384 = {
ec_p384,
ssh_ecdhkex_w_setup,
ssh_ecdhkex_w_cleanup,
ssh_ecdhkex_w_getpublic,
ssh_ecdhkex_w_getkey,
};
const ssh_kex ssh_ec_kex_nistp384 = {
"ecdh-sha2-nistp384", NULL, KEXTYPE_ECDH,
&ssh_sha384, &kex_extra_nistp384,
};
const struct eckex_extra kex_extra_nistp521 = {
ec_p521,
ssh_ecdhkex_w_setup,
ssh_ecdhkex_w_cleanup,
ssh_ecdhkex_w_getpublic,
ssh_ecdhkex_w_getkey,
};
const ssh_kex ssh_ec_kex_nistp521 = {
"ecdh-sha2-nistp521", NULL, KEXTYPE_ECDH,
&ssh_sha512, &kex_extra_nistp521,
};
static const ssh_kex *const ec_kex_list[] = {
&ssh_ec_kex_curve25519,
&ssh_ec_kex_nistp256,
&ssh_ec_kex_nistp384,
&ssh_ec_kex_nistp521,
};
const ssh_kexes ssh_ecdh_kex = { lenof(ec_kex_list), ec_kex_list };
/* ----------------------------------------------------------------------
* Helper functions for finding key algorithms and returning auxiliary
* data.
*/
const ssh_keyalg *ec_alg_by_oid(int len, const void *oid,
const struct ec_curve **curve)
{
static const ssh_keyalg *algs_with_oid[] = {
&ssh_ecdsa_nistp256,
&ssh_ecdsa_nistp384,
&ssh_ecdsa_nistp521,
};
int i;
for (i = 0; i < lenof(algs_with_oid); i++) {
const ssh_keyalg *alg = algs_with_oid[i];
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
if (len == extra->oidlen && !memcmp(oid, extra->oid, len)) {
*curve = extra->curve();
return alg;
}
}
return NULL;
}
const unsigned char *ec_alg_oid(const ssh_keyalg *alg,
int *oidlen)
{
const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra;
*oidlen = extra->oidlen;
return extra->oid;
}
const int ec_nist_curve_lengths[] = { 256, 384, 521 };
const int n_ec_nist_curve_lengths = lenof(ec_nist_curve_lengths);
bool ec_nist_alg_and_curve_by_bits(
int bits, const struct ec_curve **curve, const ssh_keyalg **alg)
{
switch (bits) {
case 256: *alg = &ssh_ecdsa_nistp256; break;
case 384: *alg = &ssh_ecdsa_nistp384; break;
case 521: *alg = &ssh_ecdsa_nistp521; break;
default: return false;
}
*curve = ((struct ecsign_extra *)(*alg)->extra)->curve();
return true;
}
bool ec_ed_alg_and_curve_by_bits(
int bits, const struct ec_curve **curve, const ssh_keyalg **alg)
{
switch (bits) {
case 256: *alg = &ssh_ecdsa_ed25519; break;
default: return false;
}
*curve = ((struct ecsign_extra *)(*alg)->extra)->curve();
return true;
}