1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/windows/utils/minefield.c
Simon Tatham 3396c97da9 New library-style 'utils' subdirectories.
Now that the new CMake build system is encouraging us to lay out the
code like a set of libraries, it seems like a good idea to make them
look more _like_ libraries, by putting things into separate modules as
far as possible.

This fixes several previous annoyances in which you had to link
against some object in order to get a function you needed, but that
object also contained other functions you didn't need which included
link-time symbol references you didn't want to have to deal with. The
usual offender was subsidiary supporting programs including misc.c for
some innocuous function and then finding they had to deal with the
requirements of buildinfo().

This big reorganisation introduces three new subdirectories called
'utils', one at the top level and one in each platform subdir. In each
case, the directory contains basically the same files that were
previously placed in the 'utils' build-time library, except that the
ones that were extremely miscellaneous (misc.c, utils.c, uxmisc.c,
winmisc.c, winmiscs.c, winutils.c) have been split up into much
smaller pieces.
2021-04-18 08:18:27 +01:00

228 lines
6.1 KiB
C

/*
* 'Minefield' - a crude Windows memory debugger, similar in concept
* to the old Unix 'Electric Fence'. The main difference is that
* Electric Fence can be imposed on a program from outside, via
* LD_PRELOAD, whereas this has to be included in the program at
* compile time with its own cooperation.
*
* This module provides the Minefield allocator. Actually enabling it
* is done by a #define in force when the main utils/memory.c is
* compiled.
*/
#include "putty.h"
#define PAGESIZE 4096
/*
* Design:
*
* We start by reserving as much virtual address space as Windows
* will sensibly (or not sensibly) let us have. We flag it all as
* invalid memory.
*
* Any allocation attempt is satisfied by committing one or more
* pages, with an uncommitted page on either side. The returned
* memory region is jammed up against the _end_ of the pages.
*
* Freeing anything causes instantaneous decommitment of the pages
* involved, so stale pointers are caught as soon as possible.
*/
static int minefield_initialised = 0;
static void *minefield_region = NULL;
static long minefield_size = 0;
static long minefield_npages = 0;
static long minefield_curpos = 0;
static unsigned short *minefield_admin = NULL;
static void *minefield_pages = NULL;
static void minefield_admin_hide(int hide)
{
int access = hide ? PAGE_NOACCESS : PAGE_READWRITE;
VirtualProtect(minefield_admin, minefield_npages * 2, access, NULL);
}
static void minefield_init(void)
{
int size;
int admin_size;
int i;
for (size = 0x40000000; size > 0; size = ((size >> 3) * 7) & ~0xFFF) {
minefield_region = VirtualAlloc(NULL, size,
MEM_RESERVE, PAGE_NOACCESS);
if (minefield_region)
break;
}
minefield_size = size;
/*
* Firstly, allocate a section of that to be the admin block.
* We'll need a two-byte field for each page.
*/
minefield_admin = minefield_region;
minefield_npages = minefield_size / PAGESIZE;
admin_size = (minefield_npages * 2 + PAGESIZE - 1) & ~(PAGESIZE - 1);
minefield_npages = (minefield_size - admin_size) / PAGESIZE;
minefield_pages = (char *) minefield_region + admin_size;
/*
* Commit the admin region.
*/
VirtualAlloc(minefield_admin, minefield_npages * 2,
MEM_COMMIT, PAGE_READWRITE);
/*
* Mark all pages as unused (0xFFFF).
*/
for (i = 0; i < minefield_npages; i++)
minefield_admin[i] = 0xFFFF;
/*
* Hide the admin region.
*/
minefield_admin_hide(1);
minefield_initialised = 1;
}
static void minefield_bomb(void)
{
div(1, *(int *) minefield_pages);
}
static void *minefield_alloc(int size)
{
int npages;
int pos, lim, region_end, region_start;
int start;
int i;
npages = (size + PAGESIZE - 1) / PAGESIZE;
minefield_admin_hide(0);
/*
* Search from current position until we find a contiguous
* bunch of npages+2 unused pages.
*/
pos = minefield_curpos;
lim = minefield_npages;
while (1) {
/* Skip over used pages. */
while (pos < lim && minefield_admin[pos] != 0xFFFF)
pos++;
/* Count unused pages. */
start = pos;
while (pos < lim && pos - start < npages + 2 &&
minefield_admin[pos] == 0xFFFF)
pos++;
if (pos - start == npages + 2)
break;
/* If we've reached the limit, reset the limit or stop. */
if (pos >= lim) {
if (lim == minefield_npages) {
/* go round and start again at zero */
lim = minefield_curpos;
pos = 0;
} else {
minefield_admin_hide(1);
return NULL;
}
}
}
minefield_curpos = pos - 1;
/*
* We have npages+2 unused pages starting at start. We leave
* the first and last of these alone and use the rest.
*/
region_end = (start + npages + 1) * PAGESIZE;
region_start = region_end - size;
/* FIXME: could align here if we wanted */
/*
* Update the admin region.
*/
for (i = start + 2; i < start + npages + 1; i++)
minefield_admin[i] = 0xFFFE; /* used but no region starts here */
minefield_admin[start + 1] = region_start % PAGESIZE;
minefield_admin_hide(1);
VirtualAlloc((char *) minefield_pages + region_start, size,
MEM_COMMIT, PAGE_READWRITE);
return (char *) minefield_pages + region_start;
}
static void minefield_free(void *ptr)
{
int region_start, i, j;
minefield_admin_hide(0);
region_start = (char *) ptr - (char *) minefield_pages;
i = region_start / PAGESIZE;
if (i < 0 || i >= minefield_npages ||
minefield_admin[i] != region_start % PAGESIZE)
minefield_bomb();
for (j = i; j < minefield_npages && minefield_admin[j] != 0xFFFF; j++) {
minefield_admin[j] = 0xFFFF;
}
VirtualFree(ptr, j * PAGESIZE - region_start, MEM_DECOMMIT);
minefield_admin_hide(1);
}
static int minefield_get_size(void *ptr)
{
int region_start, i, j;
minefield_admin_hide(0);
region_start = (char *) ptr - (char *) minefield_pages;
i = region_start / PAGESIZE;
if (i < 0 || i >= minefield_npages ||
minefield_admin[i] != region_start % PAGESIZE)
minefield_bomb();
for (j = i; j < minefield_npages && minefield_admin[j] != 0xFFFF; j++);
minefield_admin_hide(1);
return j * PAGESIZE - region_start;
}
void *minefield_c_malloc(size_t size)
{
if (!minefield_initialised)
minefield_init();
return minefield_alloc(size);
}
void minefield_c_free(void *p)
{
if (!minefield_initialised)
minefield_init();
minefield_free(p);
}
/*
* realloc _always_ moves the chunk, for rapid detection of code
* that assumes it won't.
*/
void *minefield_c_realloc(void *p, size_t size)
{
size_t oldsize;
void *q;
if (!minefield_initialised)
minefield_init();
q = minefield_alloc(size);
oldsize = minefield_get_size(p);
memcpy(q, p, (oldsize < size ? oldsize : size));
minefield_free(p);
return q;
}