mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
8d747d8029
A trawl through the code with -Wmissing-prototypes and -Wmissing-variable-declarations turned up a lot of things that should have been internal to a particular source file, but were accidentally global. Keep the namespace clean by making them all static. (Also, while I'm here, a couple of them were missing a 'const': the ONE and ZERO arrays in sshcrcda.c, and EMPTY_WINDOW_TITLE in terminal.c.)
1884 lines
76 KiB
C
1884 lines
76 KiB
C
/*
|
|
* sshaes.c - implementation of AES
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "ssh.h"
|
|
#include "mpint_i.h" /* we reuse the BignumInt system */
|
|
|
|
/*
|
|
* Start by deciding whether we can support hardware AES at all.
|
|
*/
|
|
#define HW_AES_NONE 0
|
|
#define HW_AES_NI 1
|
|
#define HW_AES_NEON 2
|
|
|
|
#ifdef _FORCE_AES_NI
|
|
# define HW_AES HW_AES_NI
|
|
#elif defined(__clang__)
|
|
# if __has_attribute(target) && __has_include(<wmmintrin.h>) && \
|
|
(defined(__x86_64__) || defined(__i386))
|
|
# define HW_AES HW_AES_NI
|
|
# endif
|
|
#elif defined(__GNUC__)
|
|
# if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \
|
|
(defined(__x86_64__) || defined(__i386))
|
|
# define HW_AES HW_AES_NI
|
|
# endif
|
|
#elif defined (_MSC_VER)
|
|
# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
|
|
# define HW_AES HW_AES_NI
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef _FORCE_AES_NEON
|
|
# define HW_AES HW_AES_NEON
|
|
#elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
/* Arm can potentially support both endiannesses, but this code
|
|
* hasn't been tested on anything but little. If anyone wants to
|
|
* run big-endian, they'll need to fix it first. */
|
|
#elif defined __ARM_FEATURE_CRYPTO
|
|
/* If the Arm crypto extension is available already, we can
|
|
* support NEON AES without having to enable anything by hand */
|
|
# define HW_AES HW_AES_NEON
|
|
#elif defined(__clang__)
|
|
# if __has_attribute(target) && __has_include(<arm_neon.h>) && \
|
|
(defined(__aarch64__))
|
|
/* clang can enable the crypto extension in AArch64 using
|
|
* __attribute__((target)) */
|
|
# define HW_AES HW_AES_NEON
|
|
# define USE_CLANG_ATTR_TARGET_AARCH64
|
|
# endif
|
|
#elif defined _MSC_VER
|
|
# if defined _M_ARM64
|
|
# define HW_AES HW_AES_NEON
|
|
/* 64-bit Visual Studio uses the header <arm64_neon.h> in place
|
|
* of the standard <arm_neon.h> */
|
|
# define USE_ARM64_NEON_H
|
|
# elif defined _M_ARM
|
|
# define HW_AES HW_AES_NEON
|
|
/* 32-bit Visual Studio uses the right header name, but requires
|
|
* this #define to enable a set of intrinsic definitions that
|
|
* do not omit one of the parameters for vaes[ed]q_u8 */
|
|
# define _ARM_USE_NEW_NEON_INTRINSICS
|
|
# endif
|
|
#endif
|
|
|
|
#if defined _FORCE_SOFTWARE_AES || !defined HW_AES
|
|
# undef HW_AES
|
|
# define HW_AES HW_AES_NONE
|
|
#endif
|
|
|
|
#if HW_AES == HW_AES_NI
|
|
#define HW_NAME_SUFFIX " (AES-NI accelerated)"
|
|
#elif HW_AES == HW_AES_NEON
|
|
#define HW_NAME_SUFFIX " (NEON accelerated)"
|
|
#else
|
|
#define HW_NAME_SUFFIX " (!NONEXISTENT ACCELERATED VERSION!)"
|
|
#endif
|
|
|
|
/*
|
|
* Vtable collection for AES. For each SSH-level cipher id (i.e.
|
|
* combination of key length and cipher mode), we provide three
|
|
* vtables: one for the pure software implementation, one using
|
|
* hardware acceleration (if available), and a top-level one which is
|
|
* never actually instantiated, and only contains a new() method whose
|
|
* job is to decide whihc of the other two to return an actual
|
|
* instance of.
|
|
*/
|
|
|
|
static ssh_cipher *aes_select(const ssh_cipheralg *alg);
|
|
static ssh_cipher *aes_sw_new(const ssh_cipheralg *alg);
|
|
static void aes_sw_free(ssh_cipher *);
|
|
static void aes_sw_setiv_cbc(ssh_cipher *, const void *iv);
|
|
static void aes_sw_setiv_sdctr(ssh_cipher *, const void *iv);
|
|
static void aes_sw_setkey(ssh_cipher *, const void *key);
|
|
static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg);
|
|
static void aes_hw_free(ssh_cipher *);
|
|
static void aes_hw_setiv_cbc(ssh_cipher *, const void *iv);
|
|
static void aes_hw_setiv_sdctr(ssh_cipher *, const void *iv);
|
|
static void aes_hw_setkey(ssh_cipher *, const void *key);
|
|
|
|
struct aes_extra {
|
|
const ssh_cipheralg *sw, *hw;
|
|
};
|
|
|
|
#define VTABLES_INNER(cid, pid, bits, name, encsuffix, \
|
|
decsuffix, setiv, flags) \
|
|
static void cid##_sw##encsuffix(ssh_cipher *, void *blk, int len); \
|
|
static void cid##_sw##decsuffix(ssh_cipher *, void *blk, int len); \
|
|
const ssh_cipheralg ssh_##cid##_sw = { \
|
|
aes_sw_new, aes_sw_free, aes_sw_##setiv, aes_sw_setkey, \
|
|
cid##_sw##encsuffix, cid##_sw##decsuffix, NULL, NULL, \
|
|
pid, 16, bits, bits/8, flags, name " (unaccelerated)", \
|
|
NULL, NULL }; \
|
|
\
|
|
static void cid##_hw##encsuffix(ssh_cipher *, void *blk, int len); \
|
|
static void cid##_hw##decsuffix(ssh_cipher *, void *blk, int len); \
|
|
const ssh_cipheralg ssh_##cid##_hw = { \
|
|
aes_hw_new, aes_hw_free, aes_hw_##setiv, aes_hw_setkey, \
|
|
cid##_hw##encsuffix, cid##_hw##decsuffix, NULL, NULL, \
|
|
pid, 16, bits, bits/8, flags, name HW_NAME_SUFFIX, \
|
|
NULL, NULL }; \
|
|
\
|
|
static const struct aes_extra extra_##cid = { \
|
|
&ssh_##cid##_sw, &ssh_##cid##_hw }; \
|
|
\
|
|
const ssh_cipheralg ssh_##cid = { \
|
|
aes_select, NULL, NULL, NULL, NULL, NULL, NULL, NULL, \
|
|
pid, 16, bits, bits/8, flags, name " (dummy selector vtable)", \
|
|
NULL, &extra_##cid }; \
|
|
|
|
#define VTABLES(keylen) \
|
|
VTABLES_INNER(aes ## keylen ## _cbc, "aes" #keylen "-cbc", \
|
|
keylen, "AES-" #keylen " CBC", _encrypt, _decrypt, \
|
|
setiv_cbc, SSH_CIPHER_IS_CBC) \
|
|
VTABLES_INNER(aes ## keylen ## _sdctr, "aes" #keylen "-ctr", \
|
|
keylen, "AES-" #keylen " SDCTR",,, setiv_sdctr, 0)
|
|
|
|
VTABLES(128)
|
|
VTABLES(192)
|
|
VTABLES(256)
|
|
|
|
static const ssh_cipheralg ssh_rijndael_lysator = {
|
|
/* Same as aes256_cbc, but with a different protocol ID */
|
|
aes_select, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
"rijndael-cbc@lysator.liu.se", 16, 256, 256/8, 0,
|
|
"AES-256 CBC (dummy selector vtable)", NULL, &extra_aes256_cbc
|
|
};
|
|
|
|
static const ssh_cipheralg *const aes_list[] = {
|
|
&ssh_aes256_sdctr,
|
|
&ssh_aes256_cbc,
|
|
&ssh_rijndael_lysator,
|
|
&ssh_aes192_sdctr,
|
|
&ssh_aes192_cbc,
|
|
&ssh_aes128_sdctr,
|
|
&ssh_aes128_cbc,
|
|
};
|
|
|
|
const ssh2_ciphers ssh2_aes = { lenof(aes_list), aes_list };
|
|
|
|
/*
|
|
* The actual query function that asks if hardware acceleration is
|
|
* available.
|
|
*/
|
|
static bool aes_hw_available(void);
|
|
|
|
/*
|
|
* The top-level selection function, caching the results of
|
|
* aes_hw_available() so it only has to run once.
|
|
*/
|
|
static bool aes_hw_available_cached(void)
|
|
{
|
|
static bool initialised = false;
|
|
static bool hw_available;
|
|
if (!initialised) {
|
|
hw_available = aes_hw_available();
|
|
initialised = true;
|
|
}
|
|
return hw_available;
|
|
}
|
|
|
|
static ssh_cipher *aes_select(const ssh_cipheralg *alg)
|
|
{
|
|
const struct aes_extra *extra = (const struct aes_extra *)alg->extra;
|
|
const ssh_cipheralg *real_alg =
|
|
aes_hw_available_cached() ? extra->hw : extra->sw;
|
|
|
|
return ssh_cipher_new(real_alg);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Definitions likely to be helpful to multiple implementations.
|
|
*/
|
|
|
|
#define REP2(x) x x
|
|
#define REP4(x) REP2(REP2(x))
|
|
#define REP8(x) REP2(REP4(x))
|
|
#define REP9(x) REP8(x) x
|
|
#define REP11(x) REP8(x) REP2(x) x
|
|
#define REP13(x) REP8(x) REP4(x) x
|
|
|
|
static const uint8_t key_setup_round_constants[] = {
|
|
/* The first few powers of X in GF(2^8), used during key setup.
|
|
* This can safely be a lookup table without side channel risks,
|
|
* because key setup iterates through it once in a standard way
|
|
* regardless of the key. */
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
|
|
};
|
|
|
|
#define MAXROUNDKEYS 15
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Software implementation of AES.
|
|
*
|
|
* This implementation uses a bit-sliced representation. Instead of
|
|
* the obvious approach of storing the cipher state so that each byte
|
|
* (or field element, or entry in the cipher matrix) occupies 8
|
|
* contiguous bits in a machine integer somewhere, we organise the
|
|
* cipher state as an array of 8 integers, in such a way that each
|
|
* logical byte of the cipher state occupies one bit in each integer,
|
|
* all at the same position. This allows us to do parallel logic on
|
|
* all bytes of the state by doing bitwise operations between the 8
|
|
* integers; in particular, the S-box (SubBytes) lookup is done this
|
|
* way, which takes about 110 operations - but for those 110 bitwise
|
|
* ops you get 64 S-box lookups, not just one.
|
|
*/
|
|
|
|
#define SLICE_PARALLELISM (BIGNUM_INT_BYTES / 2)
|
|
|
|
#ifdef BITSLICED_DEBUG
|
|
/* Dump function that undoes the bitslicing transform, so you can see
|
|
* the logical data represented by a set of slice words. */
|
|
static inline void dumpslices_uint16_t(
|
|
const char *prefix, const uint16_t slices[8])
|
|
{
|
|
printf("%-30s", prefix);
|
|
for (unsigned byte = 0; byte < 16; byte++) {
|
|
unsigned byteval = 0;
|
|
for (unsigned bit = 0; bit < 8; bit++)
|
|
byteval |= (1 & (slices[bit] >> byte)) << bit;
|
|
printf("%02x", byteval);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static inline void dumpslices_BignumInt(
|
|
const char *prefix, const BignumInt slices[8])
|
|
{
|
|
printf("%-30s", prefix);
|
|
for (unsigned iter = 0; iter < SLICE_PARALLELISM; iter++) {
|
|
for (unsigned byte = 0; byte < 16; byte++) {
|
|
unsigned byteval = 0;
|
|
for (unsigned bit = 0; bit < 8; bit++)
|
|
byteval |= (1 & (slices[bit] >> (iter*16+byte))) << bit;
|
|
printf("%02x", byteval);
|
|
}
|
|
if (iter+1 < SLICE_PARALLELISM)
|
|
printf(" ");
|
|
}
|
|
printf("\n");
|
|
}
|
|
#else
|
|
#define dumpslices_uintN_t(prefix, slices) ((void)0)
|
|
#define dumpslices_BignumInt(prefix, slices) ((void)0)
|
|
#endif
|
|
|
|
/* -----
|
|
* Bit-slicing transformation: convert between an array of 16 uint8_t
|
|
* and an array of 8 uint16_t, so as to interchange the bit index
|
|
* within each element and the element index within the array. (That
|
|
* is, bit j of input[i] == bit i of output[j].
|
|
*/
|
|
|
|
#define SWAPWORDS(shift) do \
|
|
{ \
|
|
uint64_t mask = ~(uint64_t)0 / ((1ULL << shift) + 1); \
|
|
uint64_t diff = ((i0 >> shift) ^ i1) & mask; \
|
|
i0 ^= diff << shift; \
|
|
i1 ^= diff; \
|
|
} while (0)
|
|
|
|
#define SWAPINWORD(i, bigshift, smallshift) do \
|
|
{ \
|
|
uint64_t mask = ~(uint64_t)0; \
|
|
mask /= ((1ULL << bigshift) + 1); \
|
|
mask /= ((1ULL << smallshift) + 1); \
|
|
mask <<= smallshift; \
|
|
unsigned shift = bigshift - smallshift; \
|
|
uint64_t diff = ((i >> shift) ^ i) & mask; \
|
|
i ^= diff ^ (diff << shift); \
|
|
} while (0)
|
|
|
|
#define TO_BITSLICES(slices, bytes, uintN_t, assign_op, shift) do \
|
|
{ \
|
|
uint64_t i0 = GET_64BIT_LSB_FIRST(bytes); \
|
|
uint64_t i1 = GET_64BIT_LSB_FIRST(bytes + 8); \
|
|
SWAPINWORD(i0, 8, 1); \
|
|
SWAPINWORD(i1, 8, 1); \
|
|
SWAPINWORD(i0, 16, 2); \
|
|
SWAPINWORD(i1, 16, 2); \
|
|
SWAPINWORD(i0, 32, 4); \
|
|
SWAPINWORD(i1, 32, 4); \
|
|
SWAPWORDS(8); \
|
|
slices[0] assign_op (uintN_t)((i0 >> 0) & 0xFFFF) << (shift); \
|
|
slices[2] assign_op (uintN_t)((i0 >> 16) & 0xFFFF) << (shift); \
|
|
slices[4] assign_op (uintN_t)((i0 >> 32) & 0xFFFF) << (shift); \
|
|
slices[6] assign_op (uintN_t)((i0 >> 48) & 0xFFFF) << (shift); \
|
|
slices[1] assign_op (uintN_t)((i1 >> 0) & 0xFFFF) << (shift); \
|
|
slices[3] assign_op (uintN_t)((i1 >> 16) & 0xFFFF) << (shift); \
|
|
slices[5] assign_op (uintN_t)((i1 >> 32) & 0xFFFF) << (shift); \
|
|
slices[7] assign_op (uintN_t)((i1 >> 48) & 0xFFFF) << (shift); \
|
|
} while (0)
|
|
|
|
#define FROM_BITSLICES(bytes, slices, shift) do \
|
|
{ \
|
|
uint64_t i1 = ((slices[7] >> (shift)) & 0xFFFF); \
|
|
i1 = (i1 << 16) | ((slices[5] >> (shift)) & 0xFFFF); \
|
|
i1 = (i1 << 16) | ((slices[3] >> (shift)) & 0xFFFF); \
|
|
i1 = (i1 << 16) | ((slices[1] >> (shift)) & 0xFFFF); \
|
|
uint64_t i0 = ((slices[6] >> (shift)) & 0xFFFF); \
|
|
i0 = (i0 << 16) | ((slices[4] >> (shift)) & 0xFFFF); \
|
|
i0 = (i0 << 16) | ((slices[2] >> (shift)) & 0xFFFF); \
|
|
i0 = (i0 << 16) | ((slices[0] >> (shift)) & 0xFFFF); \
|
|
SWAPWORDS(8); \
|
|
SWAPINWORD(i0, 32, 4); \
|
|
SWAPINWORD(i1, 32, 4); \
|
|
SWAPINWORD(i0, 16, 2); \
|
|
SWAPINWORD(i1, 16, 2); \
|
|
SWAPINWORD(i0, 8, 1); \
|
|
SWAPINWORD(i1, 8, 1); \
|
|
PUT_64BIT_LSB_FIRST(bytes, i0); \
|
|
PUT_64BIT_LSB_FIRST((bytes) + 8, i1); \
|
|
} while (0)
|
|
|
|
/* -----
|
|
* Some macros that will be useful repeatedly.
|
|
*/
|
|
|
|
/* Iterate a unary transformation over all 8 slices. */
|
|
#define ITERATE(MACRO, output, input, uintN_t) do \
|
|
{ \
|
|
MACRO(output[0], input[0], uintN_t); \
|
|
MACRO(output[1], input[1], uintN_t); \
|
|
MACRO(output[2], input[2], uintN_t); \
|
|
MACRO(output[3], input[3], uintN_t); \
|
|
MACRO(output[4], input[4], uintN_t); \
|
|
MACRO(output[5], input[5], uintN_t); \
|
|
MACRO(output[6], input[6], uintN_t); \
|
|
MACRO(output[7], input[7], uintN_t); \
|
|
} while (0)
|
|
|
|
/* Simply add (i.e. XOR) two whole sets of slices together. */
|
|
#define BITSLICED_ADD(output, lhs, rhs) do \
|
|
{ \
|
|
output[0] = lhs[0] ^ rhs[0]; \
|
|
output[1] = lhs[1] ^ rhs[1]; \
|
|
output[2] = lhs[2] ^ rhs[2]; \
|
|
output[3] = lhs[3] ^ rhs[3]; \
|
|
output[4] = lhs[4] ^ rhs[4]; \
|
|
output[5] = lhs[5] ^ rhs[5]; \
|
|
output[6] = lhs[6] ^ rhs[6]; \
|
|
output[7] = lhs[7] ^ rhs[7]; \
|
|
} while (0)
|
|
|
|
/* -----
|
|
* The AES S-box, in pure bitwise logic so that it can be run in
|
|
* parallel on whole words full of bit-sliced field elements.
|
|
*
|
|
* Source: 'A new combinational logic minimization technique with
|
|
* applications to cryptology', https://eprint.iacr.org/2009/191
|
|
*
|
|
* As a minor speed optimisation, I use a modified version of the
|
|
* S-box which omits the additive constant 0x63, i.e. this S-box
|
|
* consists of only the field inversion and linear map components.
|
|
* Instead, the addition of the constant is deferred until after the
|
|
* subsequent ShiftRows and MixColumns stages, so that it happens at
|
|
* the same time as adding the next round key - and then we just make
|
|
* it _part_ of the round key, so it doesn't cost any extra
|
|
* instructions to add.
|
|
*
|
|
* (Obviously adding a constant to each byte commutes with ShiftRows,
|
|
* which only permutes the bytes. It also commutes with MixColumns:
|
|
* that's not quite so obvious, but since the effect of MixColumns is
|
|
* to multiply a constant polynomial M into each column, it is obvious
|
|
* that adding some polynomial K and then multiplying by M is
|
|
* equivalent to multiplying by M and then adding the product KM. And
|
|
* in fact, since the coefficients of M happen to sum to 1, it turns
|
|
* out that KM = K, so we don't even have to change the constant when
|
|
* we move it to the far side of MixColumns.)
|
|
*
|
|
* Of course, one knock-on effect of this is that the use of the S-box
|
|
* *during* key setup has to be corrected by manually adding on the
|
|
* constant afterwards!
|
|
*/
|
|
|
|
/* Initial linear transformation for the forward S-box, from Fig 2 of
|
|
* the paper. */
|
|
#define SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t) \
|
|
uintN_t y14 = input[4] ^ input[2]; \
|
|
uintN_t y13 = input[7] ^ input[1]; \
|
|
uintN_t y9 = input[7] ^ input[4]; \
|
|
uintN_t y8 = input[7] ^ input[2]; \
|
|
uintN_t t0 = input[6] ^ input[5]; \
|
|
uintN_t y1 = t0 ^ input[0]; \
|
|
uintN_t y4 = y1 ^ input[4]; \
|
|
uintN_t y12 = y13 ^ y14; \
|
|
uintN_t y2 = y1 ^ input[7]; \
|
|
uintN_t y5 = y1 ^ input[1]; \
|
|
uintN_t y3 = y5 ^ y8; \
|
|
uintN_t t1 = input[3] ^ y12; \
|
|
uintN_t y15 = t1 ^ input[2]; \
|
|
uintN_t y20 = t1 ^ input[6]; \
|
|
uintN_t y6 = y15 ^ input[0]; \
|
|
uintN_t y10 = y15 ^ t0; \
|
|
uintN_t y11 = y20 ^ y9; \
|
|
uintN_t y7 = input[0] ^ y11; \
|
|
uintN_t y17 = y10 ^ y11; \
|
|
uintN_t y19 = y10 ^ y8; \
|
|
uintN_t y16 = t0 ^ y11; \
|
|
uintN_t y21 = y13 ^ y16; \
|
|
uintN_t y18 = input[7] ^ y16; \
|
|
/* Make a copy of input[0] under a new name, because the core
|
|
* will refer to it, and in the inverse version of the S-box
|
|
* the corresponding value will be one of the calculated ones
|
|
* and not in input[0] itself. */ \
|
|
uintN_t i0 = input[0]; \
|
|
/* end */
|
|
|
|
/* Core nonlinear component, from Fig 3 of the paper. */
|
|
#define SBOX_CORE(uintN_t) \
|
|
uintN_t t2 = y12 & y15; \
|
|
uintN_t t3 = y3 & y6; \
|
|
uintN_t t4 = t3 ^ t2; \
|
|
uintN_t t5 = y4 & i0; \
|
|
uintN_t t6 = t5 ^ t2; \
|
|
uintN_t t7 = y13 & y16; \
|
|
uintN_t t8 = y5 & y1; \
|
|
uintN_t t9 = t8 ^ t7; \
|
|
uintN_t t10 = y2 & y7; \
|
|
uintN_t t11 = t10 ^ t7; \
|
|
uintN_t t12 = y9 & y11; \
|
|
uintN_t t13 = y14 & y17; \
|
|
uintN_t t14 = t13 ^ t12; \
|
|
uintN_t t15 = y8 & y10; \
|
|
uintN_t t16 = t15 ^ t12; \
|
|
uintN_t t17 = t4 ^ t14; \
|
|
uintN_t t18 = t6 ^ t16; \
|
|
uintN_t t19 = t9 ^ t14; \
|
|
uintN_t t20 = t11 ^ t16; \
|
|
uintN_t t21 = t17 ^ y20; \
|
|
uintN_t t22 = t18 ^ y19; \
|
|
uintN_t t23 = t19 ^ y21; \
|
|
uintN_t t24 = t20 ^ y18; \
|
|
uintN_t t25 = t21 ^ t22; \
|
|
uintN_t t26 = t21 & t23; \
|
|
uintN_t t27 = t24 ^ t26; \
|
|
uintN_t t28 = t25 & t27; \
|
|
uintN_t t29 = t28 ^ t22; \
|
|
uintN_t t30 = t23 ^ t24; \
|
|
uintN_t t31 = t22 ^ t26; \
|
|
uintN_t t32 = t31 & t30; \
|
|
uintN_t t33 = t32 ^ t24; \
|
|
uintN_t t34 = t23 ^ t33; \
|
|
uintN_t t35 = t27 ^ t33; \
|
|
uintN_t t36 = t24 & t35; \
|
|
uintN_t t37 = t36 ^ t34; \
|
|
uintN_t t38 = t27 ^ t36; \
|
|
uintN_t t39 = t29 & t38; \
|
|
uintN_t t40 = t25 ^ t39; \
|
|
uintN_t t41 = t40 ^ t37; \
|
|
uintN_t t42 = t29 ^ t33; \
|
|
uintN_t t43 = t29 ^ t40; \
|
|
uintN_t t44 = t33 ^ t37; \
|
|
uintN_t t45 = t42 ^ t41; \
|
|
uintN_t z0 = t44 & y15; \
|
|
uintN_t z1 = t37 & y6; \
|
|
uintN_t z2 = t33 & i0; \
|
|
uintN_t z3 = t43 & y16; \
|
|
uintN_t z4 = t40 & y1; \
|
|
uintN_t z5 = t29 & y7; \
|
|
uintN_t z6 = t42 & y11; \
|
|
uintN_t z7 = t45 & y17; \
|
|
uintN_t z8 = t41 & y10; \
|
|
uintN_t z9 = t44 & y12; \
|
|
uintN_t z10 = t37 & y3; \
|
|
uintN_t z11 = t33 & y4; \
|
|
uintN_t z12 = t43 & y13; \
|
|
uintN_t z13 = t40 & y5; \
|
|
uintN_t z14 = t29 & y2; \
|
|
uintN_t z15 = t42 & y9; \
|
|
uintN_t z16 = t45 & y14; \
|
|
uintN_t z17 = t41 & y8; \
|
|
/* end */
|
|
|
|
/* Final linear transformation for the forward S-box, from Fig 4 of
|
|
* the paper. */
|
|
#define SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t) \
|
|
uintN_t t46 = z15 ^ z16; \
|
|
uintN_t t47 = z10 ^ z11; \
|
|
uintN_t t48 = z5 ^ z13; \
|
|
uintN_t t49 = z9 ^ z10; \
|
|
uintN_t t50 = z2 ^ z12; \
|
|
uintN_t t51 = z2 ^ z5; \
|
|
uintN_t t52 = z7 ^ z8; \
|
|
uintN_t t53 = z0 ^ z3; \
|
|
uintN_t t54 = z6 ^ z7; \
|
|
uintN_t t55 = z16 ^ z17; \
|
|
uintN_t t56 = z12 ^ t48; \
|
|
uintN_t t57 = t50 ^ t53; \
|
|
uintN_t t58 = z4 ^ t46; \
|
|
uintN_t t59 = z3 ^ t54; \
|
|
uintN_t t60 = t46 ^ t57; \
|
|
uintN_t t61 = z14 ^ t57; \
|
|
uintN_t t62 = t52 ^ t58; \
|
|
uintN_t t63 = t49 ^ t58; \
|
|
uintN_t t64 = z4 ^ t59; \
|
|
uintN_t t65 = t61 ^ t62; \
|
|
uintN_t t66 = z1 ^ t63; \
|
|
output[7] = t59 ^ t63; \
|
|
output[1] = t56 ^ t62; \
|
|
output[0] = t48 ^ t60; \
|
|
uintN_t t67 = t64 ^ t65; \
|
|
output[4] = t53 ^ t66; \
|
|
output[3] = t51 ^ t66; \
|
|
output[2] = t47 ^ t65; \
|
|
output[6] = t64 ^ output[4]; \
|
|
output[5] = t55 ^ t67; \
|
|
/* end */
|
|
|
|
#define BITSLICED_SUBBYTES(output, input, uintN_t) do { \
|
|
SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t); \
|
|
SBOX_CORE(uintN_t); \
|
|
SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Initial and final linear transformations for the backward S-box. I
|
|
* generated these myself, by implementing the linear-transform
|
|
* optimisation algorithm in the paper, and applying it to the
|
|
* matrices calculated by _their_ top and bottom transformations, pre-
|
|
* and post-multiplied as appropriate by the linear map in the inverse
|
|
* S_box.
|
|
*/
|
|
#define SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t) \
|
|
uintN_t y5 = input[4] ^ input[6]; \
|
|
uintN_t y19 = input[3] ^ input[0]; \
|
|
uintN_t itmp8 = y5 ^ input[0]; \
|
|
uintN_t y4 = itmp8 ^ input[1]; \
|
|
uintN_t y9 = input[4] ^ input[3]; \
|
|
uintN_t y2 = y9 ^ y4; \
|
|
uintN_t itmp9 = y2 ^ input[7]; \
|
|
uintN_t y1 = y9 ^ input[0]; \
|
|
uintN_t y6 = y5 ^ input[7]; \
|
|
uintN_t y18 = y9 ^ input[5]; \
|
|
uintN_t y7 = y18 ^ y2; \
|
|
uintN_t y16 = y7 ^ y1; \
|
|
uintN_t y21 = y7 ^ input[1]; \
|
|
uintN_t y3 = input[4] ^ input[7]; \
|
|
uintN_t y13 = y16 ^ y21; \
|
|
uintN_t y8 = input[4] ^ y6; \
|
|
uintN_t y10 = y8 ^ y19; \
|
|
uintN_t y14 = y8 ^ y9; \
|
|
uintN_t y20 = itmp9 ^ input[2]; \
|
|
uintN_t y11 = y9 ^ y20; \
|
|
uintN_t i0 = y11 ^ y7; \
|
|
uintN_t y15 = i0 ^ y6; \
|
|
uintN_t y17 = y16 ^ y15; \
|
|
uintN_t y12 = itmp9 ^ input[3]; \
|
|
/* end */
|
|
#define SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t) \
|
|
uintN_t otmp18 = z15 ^ z6; \
|
|
uintN_t otmp19 = z13 ^ otmp18; \
|
|
uintN_t otmp20 = z12 ^ otmp19; \
|
|
uintN_t otmp21 = z16 ^ otmp20; \
|
|
uintN_t otmp22 = z8 ^ otmp21; \
|
|
uintN_t otmp23 = z0 ^ otmp22; \
|
|
uintN_t otmp24 = otmp22 ^ z3; \
|
|
uintN_t otmp25 = otmp24 ^ z4; \
|
|
uintN_t otmp26 = otmp25 ^ z2; \
|
|
uintN_t otmp27 = z1 ^ otmp26; \
|
|
uintN_t otmp28 = z14 ^ otmp27; \
|
|
uintN_t otmp29 = otmp28 ^ z10; \
|
|
output[4] = z2 ^ otmp23; \
|
|
output[7] = z5 ^ otmp24; \
|
|
uintN_t otmp30 = z11 ^ otmp29; \
|
|
output[5] = z13 ^ otmp30; \
|
|
uintN_t otmp31 = otmp25 ^ z8; \
|
|
output[1] = z7 ^ otmp31; \
|
|
uintN_t otmp32 = z11 ^ z9; \
|
|
uintN_t otmp33 = z17 ^ otmp32; \
|
|
uintN_t otmp34 = otmp30 ^ otmp33; \
|
|
output[0] = z15 ^ otmp33; \
|
|
uintN_t otmp35 = z12 ^ otmp34; \
|
|
output[6] = otmp35 ^ z16; \
|
|
uintN_t otmp36 = z1 ^ otmp23; \
|
|
uintN_t otmp37 = z5 ^ otmp36; \
|
|
output[2] = z4 ^ otmp37; \
|
|
uintN_t otmp38 = z11 ^ output[1]; \
|
|
uintN_t otmp39 = z2 ^ otmp38; \
|
|
uintN_t otmp40 = z17 ^ otmp39; \
|
|
uintN_t otmp41 = z0 ^ otmp40; \
|
|
uintN_t otmp42 = z5 ^ otmp41; \
|
|
uintN_t otmp43 = otmp42 ^ z10; \
|
|
uintN_t otmp44 = otmp43 ^ z3; \
|
|
output[3] = otmp44 ^ z16; \
|
|
/* end */
|
|
|
|
#define BITSLICED_INVSUBBYTES(output, input, uintN_t) do { \
|
|
SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t); \
|
|
SBOX_CORE(uintN_t); \
|
|
SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t); \
|
|
} while (0)
|
|
|
|
|
|
/* -----
|
|
* The ShiftRows transformation. This operates independently on each
|
|
* bit slice.
|
|
*/
|
|
|
|
#define SINGLE_BITSLICE_SHIFTROWS(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t mask, mask2, mask3, diff, x = (input); \
|
|
/* Rotate rows 2 and 3 by 16 bits */ \
|
|
mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
diff = ((x >> 8) ^ x) & mask; \
|
|
x ^= diff ^ (diff << 8); \
|
|
/* Rotate rows 1 and 3 by 8 bits */ \
|
|
mask = 0x0AAA * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
mask2 = 0xA000 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
x = ((x >> 4) & mask) | ((x << 12) & mask2) | (x & mask3); \
|
|
/* Write output */ \
|
|
(output) = x; \
|
|
} while (0)
|
|
|
|
#define SINGLE_BITSLICE_INVSHIFTROWS(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t mask, mask2, mask3, diff, x = (input); \
|
|
/* Rotate rows 2 and 3 by 16 bits */ \
|
|
mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
diff = ((x >> 8) ^ x) & mask; \
|
|
x ^= diff ^ (diff << 8); \
|
|
/* Rotate rows 1 and 3 by 8 bits, the opposite way to ShiftRows */ \
|
|
mask = 0x000A * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
mask2 = 0xAAA0 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
|
|
x = ((x >> 12) & mask) | ((x << 4) & mask2) | (x & mask3); \
|
|
/* Write output */ \
|
|
(output) = x; \
|
|
} while (0)
|
|
|
|
#define BITSLICED_SHIFTROWS(output, input, uintN_t) do \
|
|
{ \
|
|
ITERATE(SINGLE_BITSLICE_SHIFTROWS, output, input, uintN_t); \
|
|
} while (0)
|
|
|
|
#define BITSLICED_INVSHIFTROWS(output, input, uintN_t) do \
|
|
{ \
|
|
ITERATE(SINGLE_BITSLICE_INVSHIFTROWS, output, input, uintN_t); \
|
|
} while (0)
|
|
|
|
/* -----
|
|
* The MixColumns transformation. This has to operate on all eight bit
|
|
* slices at once, and also passes data back and forth between the
|
|
* bits in an adjacent group of 4 within each slice.
|
|
*
|
|
* Notation: let F = GF(2)[X]/<X^8+X^4+X^3+X+1> be the finite field
|
|
* used in AES, and let R = F[Y]/<Y^4+1> be the ring whose elements
|
|
* represent the possible contents of a column of the matrix. I use X
|
|
* and Y below in those senses, i.e. X is the value in F that
|
|
* represents the byte 0x02, and Y is the value in R that cycles the
|
|
* four bytes around by one if you multiply by it.
|
|
*/
|
|
|
|
/* Multiply every column by Y^3, i.e. cycle it round one place to the
|
|
* right. Operates on one bit slice at a time; you have to wrap it in
|
|
* ITERATE to affect all the data at once. */
|
|
#define BITSLICED_MUL_BY_Y3(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t mask, mask2, x; \
|
|
mask = 0x8 * (((uintN_t)~(uintN_t)0) / 0xF); \
|
|
mask2 = 0x7 * (((uintN_t)~(uintN_t)0) / 0xF); \
|
|
x = input; \
|
|
output = ((x << 3) & mask) ^ ((x >> 1) & mask2); \
|
|
} while (0)
|
|
|
|
/* Multiply every column by Y^2. */
|
|
#define BITSLICED_MUL_BY_Y2(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t mask, mask2, x; \
|
|
mask = 0xC * (((uintN_t)~(uintN_t)0) / 0xF); \
|
|
mask2 = 0x3 * (((uintN_t)~(uintN_t)0) / 0xF); \
|
|
x = input; \
|
|
output = ((x << 2) & mask) ^ ((x >> 2) & mask2); \
|
|
} while (0)
|
|
|
|
#define BITSLICED_MUL_BY_1_Y3(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t tmp = input; \
|
|
BITSLICED_MUL_BY_Y3(tmp, input, uintN_t); \
|
|
output = input ^ tmp; \
|
|
} while (0)
|
|
|
|
/* Multiply every column by 1+Y^2. */
|
|
#define BITSLICED_MUL_BY_1_Y2(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t tmp = input; \
|
|
BITSLICED_MUL_BY_Y2(tmp, input, uintN_t); \
|
|
output = input ^ tmp; \
|
|
} while (0)
|
|
|
|
/* Multiply every field element by X. This has to feed data between
|
|
* slices, so it does the whole job in one go without needing ITERATE. */
|
|
#define BITSLICED_MUL_BY_X(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t bit7 = input[7]; \
|
|
output[7] = input[6]; \
|
|
output[6] = input[5]; \
|
|
output[5] = input[4]; \
|
|
output[4] = input[3] ^ bit7; \
|
|
output[3] = input[2] ^ bit7; \
|
|
output[2] = input[1]; \
|
|
output[1] = input[0] ^ bit7; \
|
|
output[0] = bit7; \
|
|
} while (0)
|
|
|
|
/*
|
|
* The MixColumns constant is
|
|
* M = X + Y + Y^2 + (X+1)Y^3
|
|
* which we construct by rearranging it into
|
|
* M = 1 + (1+Y^3) [ X + (1+Y^2) ]
|
|
*/
|
|
#define BITSLICED_MIXCOLUMNS(output, input, uintN_t) do \
|
|
{ \
|
|
uintN_t a[8], aX[8], b[8]; \
|
|
/* a = input * (1+Y^3) */ \
|
|
ITERATE(BITSLICED_MUL_BY_1_Y3, a, input, uintN_t); \
|
|
/* aX = a * X */ \
|
|
BITSLICED_MUL_BY_X(aX, a, uintN_t); \
|
|
/* b = a * (1+Y^2) = input * (1+Y+Y^2+Y^3) */ \
|
|
ITERATE(BITSLICED_MUL_BY_1_Y2, b, a, uintN_t); \
|
|
/* output = input + aX + b (reusing a as a temp */ \
|
|
BITSLICED_ADD(a, aX, b); \
|
|
BITSLICED_ADD(output, input, a); \
|
|
} while (0)
|
|
|
|
/*
|
|
* The InvMixColumns constant, written out longhand, is
|
|
* I = (X^3+X^2+X) + (X^3+1)Y + (X^3+X^2+1)Y^2 + (X^3+X+1)Y^3
|
|
* We represent this as
|
|
* I = (X^3+X^2+X+1)(Y^3+Y^2+Y+1) + 1 + X(Y+Y^2) + X^2(Y+Y^3)
|
|
*/
|
|
#define BITSLICED_INVMIXCOLUMNS(output, input, uintN_t) do \
|
|
{ \
|
|
/* We need input * X^i for i=1,...,3 */ \
|
|
uintN_t X[8], X2[8], X3[8]; \
|
|
BITSLICED_MUL_BY_X(X, input, uintN_t); \
|
|
BITSLICED_MUL_BY_X(X2, X, uintN_t); \
|
|
BITSLICED_MUL_BY_X(X3, X2, uintN_t); \
|
|
/* Sum them all and multiply by 1+Y+Y^2+Y^3. */ \
|
|
uintN_t S[8]; \
|
|
BITSLICED_ADD(S, input, X); \
|
|
BITSLICED_ADD(S, S, X2); \
|
|
BITSLICED_ADD(S, S, X3); \
|
|
ITERATE(BITSLICED_MUL_BY_1_Y3, S, S, uintN_t); \
|
|
ITERATE(BITSLICED_MUL_BY_1_Y2, S, S, uintN_t); \
|
|
/* Compute the X(Y+Y^2) term. */ \
|
|
uintN_t A[8]; \
|
|
ITERATE(BITSLICED_MUL_BY_1_Y3, A, X, uintN_t); \
|
|
ITERATE(BITSLICED_MUL_BY_Y2, A, A, uintN_t); \
|
|
/* Compute the X^2(Y+Y^3) term. */ \
|
|
uintN_t B[8]; \
|
|
ITERATE(BITSLICED_MUL_BY_1_Y2, B, X2, uintN_t); \
|
|
ITERATE(BITSLICED_MUL_BY_Y3, B, B, uintN_t); \
|
|
/* And add all the pieces together. */ \
|
|
BITSLICED_ADD(S, S, input); \
|
|
BITSLICED_ADD(S, S, A); \
|
|
BITSLICED_ADD(output, S, B); \
|
|
} while (0)
|
|
|
|
/* -----
|
|
* Put it all together into a cipher round.
|
|
*/
|
|
|
|
/* Dummy macro to get rid of the MixColumns in the final round. */
|
|
#define NO_MIXCOLUMNS(out, in, uintN_t) do {} while (0)
|
|
|
|
#define ENCRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \
|
|
static void aes_sliced_round_e_##suffix( \
|
|
uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
|
|
{ \
|
|
BITSLICED_SUBBYTES(output, input, uintN_t); \
|
|
BITSLICED_SHIFTROWS(output, output, uintN_t); \
|
|
mixcol_macro(output, output, uintN_t); \
|
|
BITSLICED_ADD(output, output, roundkey); \
|
|
}
|
|
|
|
ENCRYPT_ROUND_FN(serial, uint16_t, BITSLICED_MIXCOLUMNS)
|
|
ENCRYPT_ROUND_FN(serial_last, uint16_t, NO_MIXCOLUMNS)
|
|
ENCRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_MIXCOLUMNS)
|
|
ENCRYPT_ROUND_FN(parallel_last, BignumInt, NO_MIXCOLUMNS)
|
|
|
|
#define DECRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \
|
|
static void aes_sliced_round_d_##suffix( \
|
|
uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
|
|
{ \
|
|
BITSLICED_ADD(output, input, roundkey); \
|
|
mixcol_macro(output, output, uintN_t); \
|
|
BITSLICED_INVSUBBYTES(output, output, uintN_t); \
|
|
BITSLICED_INVSHIFTROWS(output, output, uintN_t); \
|
|
}
|
|
|
|
#if 0 /* no cipher mode we support requires serial decryption */
|
|
DECRYPT_ROUND_FN(serial, uint16_t, BITSLICED_INVMIXCOLUMNS)
|
|
DECRYPT_ROUND_FN(serial_first, uint16_t, NO_MIXCOLUMNS)
|
|
#endif
|
|
DECRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_INVMIXCOLUMNS)
|
|
DECRYPT_ROUND_FN(parallel_first, BignumInt, NO_MIXCOLUMNS)
|
|
|
|
/* -----
|
|
* Key setup function.
|
|
*/
|
|
|
|
typedef struct aes_sliced_key aes_sliced_key;
|
|
struct aes_sliced_key {
|
|
BignumInt roundkeys_parallel[MAXROUNDKEYS * 8];
|
|
uint16_t roundkeys_serial[MAXROUNDKEYS * 8];
|
|
unsigned rounds;
|
|
};
|
|
|
|
static void aes_sliced_key_setup(
|
|
aes_sliced_key *sk, const void *vkey, size_t keybits)
|
|
{
|
|
const unsigned char *key = (const unsigned char *)vkey;
|
|
|
|
size_t key_words = keybits / 32;
|
|
sk->rounds = key_words + 6;
|
|
size_t sched_words = (sk->rounds + 1) * 4;
|
|
|
|
unsigned rconpos = 0;
|
|
|
|
uint16_t *outslices = sk->roundkeys_serial;
|
|
unsigned outshift = 0;
|
|
|
|
memset(sk->roundkeys_serial, 0, sizeof(sk->roundkeys_serial));
|
|
|
|
uint8_t inblk[16];
|
|
memset(inblk, 0, 16);
|
|
uint16_t slices[8];
|
|
|
|
for (size_t i = 0; i < sched_words; i++) {
|
|
/*
|
|
* Prepare a word of round key in the low 4 bits of each
|
|
* integer in slices[].
|
|
*/
|
|
if (i < key_words) {
|
|
memcpy(inblk, key + 4*i, 4);
|
|
TO_BITSLICES(slices, inblk, uint16_t, =, 0);
|
|
} else {
|
|
unsigned wordindex, bitshift;
|
|
uint16_t *prevslices;
|
|
|
|
/* Fetch the (i-1)th key word */
|
|
wordindex = i-1;
|
|
bitshift = 4 * (wordindex & 3);
|
|
prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
|
|
for (size_t i = 0; i < 8; i++)
|
|
slices[i] = prevslices[i] >> bitshift;
|
|
|
|
/* Decide what we're doing in this expansion stage */
|
|
bool rotate_and_round_constant = (i % key_words == 0);
|
|
bool sub = rotate_and_round_constant ||
|
|
(key_words == 8 && i % 8 == 4);
|
|
|
|
if (rotate_and_round_constant) {
|
|
for (size_t i = 0; i < 8; i++)
|
|
slices[i] = ((slices[i] << 3) | (slices[i] >> 1)) & 0xF;
|
|
}
|
|
|
|
if (sub) {
|
|
/* Apply the SubBytes transform to the key word. But
|
|
* here we need to apply the _full_ SubBytes from the
|
|
* spec, including the constant which our S-box leaves
|
|
* out. */
|
|
BITSLICED_SUBBYTES(slices, slices, uint16_t);
|
|
slices[0] ^= 0xFFFF;
|
|
slices[1] ^= 0xFFFF;
|
|
slices[5] ^= 0xFFFF;
|
|
slices[6] ^= 0xFFFF;
|
|
}
|
|
|
|
if (rotate_and_round_constant) {
|
|
assert(rconpos < lenof(key_setup_round_constants));
|
|
uint8_t rcon = key_setup_round_constants[rconpos++];
|
|
for (size_t i = 0; i < 8; i++)
|
|
slices[i] ^= 1 & (rcon >> i);
|
|
}
|
|
|
|
/* Combine with the (i-Nk)th key word */
|
|
wordindex = i - key_words;
|
|
bitshift = 4 * (wordindex & 3);
|
|
prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
|
|
for (size_t i = 0; i < 8; i++)
|
|
slices[i] ^= prevslices[i] >> bitshift;
|
|
}
|
|
|
|
/*
|
|
* Now copy it into sk.
|
|
*/
|
|
for (unsigned b = 0; b < 8; b++)
|
|
outslices[b] |= (slices[b] & 0xF) << outshift;
|
|
outshift += 4;
|
|
if (outshift == 16) {
|
|
outshift = 0;
|
|
outslices += 8;
|
|
}
|
|
}
|
|
|
|
smemclr(inblk, sizeof(inblk));
|
|
smemclr(slices, sizeof(slices));
|
|
|
|
/*
|
|
* Add the S-box constant to every round key after the first one,
|
|
* compensating for it being left out in the main cipher.
|
|
*/
|
|
for (size_t i = 8; i < 8 * (sched_words/4); i += 8) {
|
|
sk->roundkeys_serial[i+0] ^= 0xFFFF;
|
|
sk->roundkeys_serial[i+1] ^= 0xFFFF;
|
|
sk->roundkeys_serial[i+5] ^= 0xFFFF;
|
|
sk->roundkeys_serial[i+6] ^= 0xFFFF;
|
|
}
|
|
|
|
/*
|
|
* Replicate that set of round keys into larger integers for the
|
|
* parallel versions of the cipher.
|
|
*/
|
|
for (size_t i = 0; i < 8 * (sched_words / 4); i++) {
|
|
sk->roundkeys_parallel[i] = sk->roundkeys_serial[i] *
|
|
((BignumInt)~(BignumInt)0 / 0xFFFF);
|
|
}
|
|
}
|
|
|
|
/* -----
|
|
* The full cipher primitive, including transforming the input and
|
|
* output to/from bit-sliced form.
|
|
*/
|
|
|
|
#define ENCRYPT_FN(suffix, uintN_t, nblocks) \
|
|
static void aes_sliced_e_##suffix( \
|
|
uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
|
|
{ \
|
|
uintN_t state[8]; \
|
|
TO_BITSLICES(state, input, uintN_t, =, 0); \
|
|
for (unsigned i = 1; i < nblocks; i++) { \
|
|
input += 16; \
|
|
TO_BITSLICES(state, input, uintN_t, |=, i*16); \
|
|
} \
|
|
const uintN_t *keys = sk->roundkeys_##suffix; \
|
|
BITSLICED_ADD(state, state, keys); \
|
|
keys += 8; \
|
|
for (unsigned i = 0; i < sk->rounds-1; i++) { \
|
|
aes_sliced_round_e_##suffix(state, state, keys); \
|
|
keys += 8; \
|
|
} \
|
|
aes_sliced_round_e_##suffix##_last(state, state, keys); \
|
|
for (unsigned i = 0; i < nblocks; i++) { \
|
|
FROM_BITSLICES(output, state, i*16); \
|
|
output += 16; \
|
|
} \
|
|
}
|
|
|
|
#define DECRYPT_FN(suffix, uintN_t, nblocks) \
|
|
static void aes_sliced_d_##suffix( \
|
|
uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
|
|
{ \
|
|
uintN_t state[8]; \
|
|
TO_BITSLICES(state, input, uintN_t, =, 0); \
|
|
for (unsigned i = 1; i < nblocks; i++) { \
|
|
input += 16; \
|
|
TO_BITSLICES(state, input, uintN_t, |=, i*16); \
|
|
} \
|
|
const uintN_t *keys = sk->roundkeys_##suffix + 8*sk->rounds; \
|
|
aes_sliced_round_d_##suffix##_first(state, state, keys); \
|
|
keys -= 8; \
|
|
for (unsigned i = 0; i < sk->rounds-1; i++) { \
|
|
aes_sliced_round_d_##suffix(state, state, keys); \
|
|
keys -= 8; \
|
|
} \
|
|
BITSLICED_ADD(state, state, keys); \
|
|
for (unsigned i = 0; i < nblocks; i++) { \
|
|
FROM_BITSLICES(output, state, i*16); \
|
|
output += 16; \
|
|
} \
|
|
}
|
|
|
|
ENCRYPT_FN(serial, uint16_t, 1)
|
|
#if 0 /* no cipher mode we support requires serial decryption */
|
|
DECRYPT_FN(serial, uint16_t, 1)
|
|
#endif
|
|
ENCRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
|
|
DECRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
|
|
|
|
/* -----
|
|
* The SSH interface and the cipher modes.
|
|
*/
|
|
|
|
#define SDCTR_WORDS (16 / BIGNUM_INT_BYTES)
|
|
|
|
typedef struct aes_sw_context aes_sw_context;
|
|
struct aes_sw_context {
|
|
aes_sliced_key sk;
|
|
union {
|
|
struct {
|
|
/* In CBC mode, the IV is just a copy of the last seen
|
|
* cipher block. */
|
|
uint8_t prevblk[16];
|
|
} cbc;
|
|
struct {
|
|
/* In SDCTR mode, we keep the counter itself in a form
|
|
* that's easy to increment. We also use the parallel
|
|
* version of the core AES function, so we'll encrypt
|
|
* multiple counter values in one go. That won't align
|
|
* nicely with the sizes of data we're asked to encrypt,
|
|
* so we must also store a cache of the last set of
|
|
* keystream blocks we generated, and our current position
|
|
* within that cache. */
|
|
BignumInt counter[SDCTR_WORDS];
|
|
uint8_t keystream[SLICE_PARALLELISM * 16];
|
|
uint8_t *keystream_pos;
|
|
} sdctr;
|
|
} iv;
|
|
ssh_cipher ciph;
|
|
};
|
|
|
|
static ssh_cipher *aes_sw_new(const ssh_cipheralg *alg)
|
|
{
|
|
aes_sw_context *ctx = snew(aes_sw_context);
|
|
ctx->ciph.vt = alg;
|
|
return &ctx->ciph;
|
|
}
|
|
|
|
static void aes_sw_free(ssh_cipher *ciph)
|
|
{
|
|
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
|
|
smemclr(ctx, sizeof(*ctx));
|
|
sfree(ctx);
|
|
}
|
|
|
|
static void aes_sw_setkey(ssh_cipher *ciph, const void *vkey)
|
|
{
|
|
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
|
|
aes_sliced_key_setup(&ctx->sk, vkey, ctx->ciph.vt->real_keybits);
|
|
}
|
|
|
|
static void aes_sw_setiv_cbc(ssh_cipher *ciph, const void *iv)
|
|
{
|
|
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
|
|
memcpy(ctx->iv.cbc.prevblk, iv, 16);
|
|
}
|
|
|
|
static void aes_sw_setiv_sdctr(ssh_cipher *ciph, const void *viv)
|
|
{
|
|
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
|
|
const uint8_t *iv = (const uint8_t *)viv;
|
|
|
|
/* Import the initial counter value into the internal representation */
|
|
for (unsigned i = 0; i < SDCTR_WORDS; i++)
|
|
ctx->iv.sdctr.counter[i] =
|
|
GET_BIGNUMINT_MSB_FIRST(
|
|
iv + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES);
|
|
|
|
/* Set keystream_pos to indicate that the keystream cache is
|
|
* currently empty */
|
|
ctx->iv.sdctr.keystream_pos =
|
|
ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
|
|
}
|
|
|
|
typedef void (*aes_sw_fn)(uint32_t v[4], const uint32_t *keysched);
|
|
|
|
static inline void memxor16(void *vout, const void *vlhs, const void *vrhs)
|
|
{
|
|
uint8_t *out = (uint8_t *)vout;
|
|
const uint8_t *lhs = (const uint8_t *)vlhs, *rhs = (const uint8_t *)vrhs;
|
|
uint64_t w;
|
|
|
|
w = GET_64BIT_LSB_FIRST(lhs);
|
|
w ^= GET_64BIT_LSB_FIRST(rhs);
|
|
PUT_64BIT_LSB_FIRST(out, w);
|
|
w = GET_64BIT_LSB_FIRST(lhs + 8);
|
|
w ^= GET_64BIT_LSB_FIRST(rhs + 8);
|
|
PUT_64BIT_LSB_FIRST(out + 8, w);
|
|
}
|
|
|
|
static inline void aes_cbc_sw_encrypt(
|
|
ssh_cipher *ciph, void *vblk, int blklen)
|
|
{
|
|
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
|
|
|
|
/*
|
|
* CBC encryption has to be done serially, because the input to
|
|
* each run of the cipher includes the output from the previous
|
|
* run.
|
|
*/
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
/*
|
|
* We use the IV array itself as the location for the
|
|
* encryption, because there's no reason not to.
|
|
*/
|
|
|
|
/* XOR the new plaintext block into the previous cipher block */
|
|
memxor16(ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, blk);
|
|
|
|
/* Run the cipher over the result, which leaves it
|
|
* conveniently already stored in ctx->iv */
|
|
aes_sliced_e_serial(
|
|
ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, &ctx->sk);
|
|
|
|
/* Copy it to the output location */
|
|
memcpy(blk, ctx->iv.cbc.prevblk, 16);
|
|
}
|
|
}
|
|
|
|
static inline void aes_cbc_sw_decrypt(
|
|
ssh_cipher *ciph, void *vblk, int blklen)
|
|
{
|
|
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
|
|
uint8_t *blk = (uint8_t *)vblk;
|
|
|
|
/*
|
|
* CBC decryption can run in parallel, because all the
|
|
* _ciphertext_ blocks are already available.
|
|
*/
|
|
|
|
size_t blocks_remaining = blklen / 16;
|
|
|
|
uint8_t data[SLICE_PARALLELISM * 16];
|
|
/* Zeroing the data array is probably overcautious, but it avoids
|
|
* technically undefined behaviour from leaving it uninitialised
|
|
* if our very first iteration doesn't include enough cipher
|
|
* blocks to populate it fully */
|
|
memset(data, 0, sizeof(data));
|
|
|
|
while (blocks_remaining > 0) {
|
|
/* Number of blocks we'll handle in this iteration. If we're
|
|
* dealing with fewer than the maximum, it doesn't matter -
|
|
* it's harmless to run the full parallel cipher function
|
|
* anyway. */
|
|
size_t blocks = (blocks_remaining < SLICE_PARALLELISM ?
|
|
blocks_remaining : SLICE_PARALLELISM);
|
|
|
|
/* Parallel-decrypt the input, in a separate array so we still
|
|
* have the cipher stream available for XORing. */
|
|
memcpy(data, blk, 16 * blocks);
|
|
aes_sliced_d_parallel(data, data, &ctx->sk);
|
|
|
|
/* Write the output and update the IV */
|
|
for (size_t i = 0; i < blocks; i++) {
|
|
uint8_t *decrypted = data + 16*i;
|
|
uint8_t *output = blk + 16*i;
|
|
|
|
memxor16(decrypted, decrypted, ctx->iv.cbc.prevblk);
|
|
memcpy(ctx->iv.cbc.prevblk, output, 16);
|
|
memcpy(output, decrypted, 16);
|
|
}
|
|
|
|
/* Advance the input pointer. */
|
|
blk += 16 * blocks;
|
|
blocks_remaining -= blocks;
|
|
}
|
|
|
|
smemclr(data, sizeof(data));
|
|
}
|
|
|
|
static inline void aes_sdctr_sw(
|
|
ssh_cipher *ciph, void *vblk, int blklen)
|
|
{
|
|
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
|
|
|
|
/*
|
|
* SDCTR encrypt/decrypt loops round one block at a time XORing
|
|
* the keystream into the user's data, and periodically has to run
|
|
* a parallel encryption operation to get more keystream.
|
|
*/
|
|
|
|
uint8_t *keystream_end =
|
|
ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
|
|
if (ctx->iv.sdctr.keystream_pos == keystream_end) {
|
|
/*
|
|
* Generate some keystream.
|
|
*/
|
|
for (uint8_t *block = ctx->iv.sdctr.keystream;
|
|
block < keystream_end; block += 16) {
|
|
/* Format the counter value into the buffer. */
|
|
for (unsigned i = 0; i < SDCTR_WORDS; i++)
|
|
PUT_BIGNUMINT_MSB_FIRST(
|
|
block + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES,
|
|
ctx->iv.sdctr.counter[i]);
|
|
|
|
/* Increment the counter. */
|
|
BignumCarry carry = 1;
|
|
for (unsigned i = 0; i < SDCTR_WORDS; i++)
|
|
BignumADC(ctx->iv.sdctr.counter[i], carry,
|
|
ctx->iv.sdctr.counter[i], 0, carry);
|
|
}
|
|
|
|
/* Encrypt all those counter blocks. */
|
|
aes_sliced_e_parallel(ctx->iv.sdctr.keystream,
|
|
ctx->iv.sdctr.keystream, &ctx->sk);
|
|
|
|
/* Reset keystream_pos to the start of the buffer. */
|
|
ctx->iv.sdctr.keystream_pos = ctx->iv.sdctr.keystream;
|
|
}
|
|
|
|
memxor16(blk, blk, ctx->iv.sdctr.keystream_pos);
|
|
ctx->iv.sdctr.keystream_pos += 16;
|
|
}
|
|
}
|
|
|
|
#define SW_ENC_DEC(len) \
|
|
static void aes##len##_cbc_sw_encrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_cbc_sw_encrypt(ciph, vblk, blklen); } \
|
|
static void aes##len##_cbc_sw_decrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_cbc_sw_decrypt(ciph, vblk, blklen); } \
|
|
static void aes##len##_sdctr_sw( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_sdctr_sw(ciph, vblk, blklen); }
|
|
|
|
SW_ENC_DEC(128)
|
|
SW_ENC_DEC(192)
|
|
SW_ENC_DEC(256)
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Hardware-accelerated implementation of AES using x86 AES-NI.
|
|
*/
|
|
|
|
#if HW_AES == HW_AES_NI
|
|
|
|
/*
|
|
* Set target architecture for Clang and GCC
|
|
*/
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
# pragma GCC target("aes")
|
|
# pragma GCC target("sse4.1")
|
|
#endif
|
|
|
|
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
|
|
# define FUNC_ISA __attribute__ ((target("sse4.1,aes")))
|
|
#else
|
|
# define FUNC_ISA
|
|
#endif
|
|
|
|
#include <wmmintrin.h>
|
|
#include <smmintrin.h>
|
|
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
#include <cpuid.h>
|
|
#define GET_CPU_ID(out) __cpuid(1, (out)[0], (out)[1], (out)[2], (out)[3])
|
|
#else
|
|
#define GET_CPU_ID(out) __cpuid(out, 1)
|
|
#endif
|
|
|
|
bool aes_hw_available(void)
|
|
{
|
|
/*
|
|
* Determine if AES is available on this CPU, by checking that
|
|
* both AES itself and SSE4.1 are supported.
|
|
*/
|
|
unsigned int CPUInfo[4];
|
|
GET_CPU_ID(CPUInfo);
|
|
return (CPUInfo[2] & (1 << 25)) && (CPUInfo[2] & (1 << 19));
|
|
}
|
|
|
|
/*
|
|
* Core AES-NI encrypt/decrypt functions, one per length and direction.
|
|
*/
|
|
|
|
#define NI_CIPHER(len, dir, dirlong, repmacro) \
|
|
static FUNC_ISA inline __m128i aes_ni_##len##_##dir( \
|
|
__m128i v, const __m128i *keysched) \
|
|
{ \
|
|
v = _mm_xor_si128(v, *keysched++); \
|
|
repmacro(v = _mm_aes##dirlong##_si128(v, *keysched++);); \
|
|
return _mm_aes##dirlong##last_si128(v, *keysched); \
|
|
}
|
|
|
|
NI_CIPHER(128, e, enc, REP9)
|
|
NI_CIPHER(128, d, dec, REP9)
|
|
NI_CIPHER(192, e, enc, REP11)
|
|
NI_CIPHER(192, d, dec, REP11)
|
|
NI_CIPHER(256, e, enc, REP13)
|
|
NI_CIPHER(256, d, dec, REP13)
|
|
|
|
/*
|
|
* The main key expansion.
|
|
*/
|
|
static FUNC_ISA void aes_ni_key_expand(
|
|
const unsigned char *key, size_t key_words,
|
|
__m128i *keysched_e, __m128i *keysched_d)
|
|
{
|
|
size_t rounds = key_words + 6;
|
|
size_t sched_words = (rounds + 1) * 4;
|
|
|
|
/*
|
|
* Store the key schedule as 32-bit integers during expansion, so
|
|
* that it's easy to refer back to individual previous words. We
|
|
* collect them into the final __m128i form at the end.
|
|
*/
|
|
uint32_t sched[MAXROUNDKEYS * 4];
|
|
|
|
unsigned rconpos = 0;
|
|
|
|
for (size_t i = 0; i < sched_words; i++) {
|
|
if (i < key_words) {
|
|
sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);
|
|
} else {
|
|
uint32_t temp = sched[i - 1];
|
|
|
|
bool rotate_and_round_constant = (i % key_words == 0);
|
|
bool only_sub = (key_words == 8 && i % 8 == 4);
|
|
|
|
if (rotate_and_round_constant) {
|
|
__m128i v = _mm_setr_epi32(0,temp,0,0);
|
|
v = _mm_aeskeygenassist_si128(v, 0);
|
|
temp = _mm_extract_epi32(v, 1);
|
|
|
|
assert(rconpos < lenof(key_setup_round_constants));
|
|
temp ^= key_setup_round_constants[rconpos++];
|
|
} else if (only_sub) {
|
|
__m128i v = _mm_setr_epi32(0,temp,0,0);
|
|
v = _mm_aeskeygenassist_si128(v, 0);
|
|
temp = _mm_extract_epi32(v, 0);
|
|
}
|
|
|
|
sched[i] = sched[i - key_words] ^ temp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Combine the key schedule words into __m128i vectors and store
|
|
* them in the output context.
|
|
*/
|
|
for (size_t round = 0; round <= rounds; round++)
|
|
keysched_e[round] = _mm_setr_epi32(
|
|
sched[4*round ], sched[4*round+1],
|
|
sched[4*round+2], sched[4*round+3]);
|
|
|
|
smemclr(sched, sizeof(sched));
|
|
|
|
/*
|
|
* Now prepare the modified keys for the inverse cipher.
|
|
*/
|
|
for (size_t eround = 0; eround <= rounds; eround++) {
|
|
size_t dround = rounds - eround;
|
|
__m128i rkey = keysched_e[eround];
|
|
if (eround && dround) /* neither first nor last */
|
|
rkey = _mm_aesimc_si128(rkey);
|
|
keysched_d[dround] = rkey;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Auxiliary routine to increment the 128-bit counter used in SDCTR
|
|
* mode.
|
|
*/
|
|
static FUNC_ISA inline __m128i aes_ni_sdctr_increment(__m128i v)
|
|
{
|
|
const __m128i ONE = _mm_setr_epi32(1,0,0,0);
|
|
const __m128i ZERO = _mm_setzero_si128();
|
|
|
|
/* Increment the low-order 64 bits of v */
|
|
v = _mm_add_epi64(v, ONE);
|
|
/* Check if they've become zero */
|
|
__m128i cmp = _mm_cmpeq_epi64(v, ZERO);
|
|
/* If so, the low half of cmp is all 1s. Pack that into the high
|
|
* half of addend with zero in the low half. */
|
|
__m128i addend = _mm_unpacklo_epi64(ZERO, cmp);
|
|
/* And subtract that from v, which increments the high 64 bits iff
|
|
* the low 64 wrapped round. */
|
|
v = _mm_sub_epi64(v, addend);
|
|
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* Auxiliary routine to reverse the byte order of a vector, so that
|
|
* the SDCTR IV can be made big-endian for feeding to the cipher.
|
|
*/
|
|
static FUNC_ISA inline __m128i aes_ni_sdctr_reverse(__m128i v)
|
|
{
|
|
v = _mm_shuffle_epi8(
|
|
v, _mm_setr_epi8(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0));
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* The SSH interface and the cipher modes.
|
|
*/
|
|
|
|
typedef struct aes_ni_context aes_ni_context;
|
|
struct aes_ni_context {
|
|
__m128i keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;
|
|
|
|
void *pointer_to_free;
|
|
ssh_cipher ciph;
|
|
};
|
|
|
|
static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg)
|
|
{
|
|
if (!aes_hw_available_cached())
|
|
return NULL;
|
|
|
|
/*
|
|
* The __m128i variables in the context structure need to be
|
|
* 16-byte aligned, but not all malloc implementations that this
|
|
* code has to work with will guarantee to return a 16-byte
|
|
* aligned pointer. So we over-allocate, manually realign the
|
|
* pointer ourselves, and store the original one inside the
|
|
* context so we know how to free it later.
|
|
*/
|
|
void *allocation = smalloc(sizeof(aes_ni_context) + 15);
|
|
uintptr_t alloc_address = (uintptr_t)allocation;
|
|
uintptr_t aligned_address = (alloc_address + 15) & ~15;
|
|
aes_ni_context *ctx = (aes_ni_context *)aligned_address;
|
|
|
|
ctx->ciph.vt = alg;
|
|
ctx->pointer_to_free = allocation;
|
|
return &ctx->ciph;
|
|
}
|
|
|
|
static void aes_hw_free(ssh_cipher *ciph)
|
|
{
|
|
aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
|
|
void *allocation = ctx->pointer_to_free;
|
|
smemclr(ctx, sizeof(*ctx));
|
|
sfree(allocation);
|
|
}
|
|
|
|
static void aes_hw_setkey(ssh_cipher *ciph, const void *vkey)
|
|
{
|
|
aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
|
|
const unsigned char *key = (const unsigned char *)vkey;
|
|
|
|
aes_ni_key_expand(key, ctx->ciph.vt->real_keybits / 32,
|
|
ctx->keysched_e, ctx->keysched_d);
|
|
}
|
|
|
|
static FUNC_ISA void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv)
|
|
{
|
|
aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
|
|
ctx->iv = _mm_loadu_si128(iv);
|
|
}
|
|
|
|
static FUNC_ISA void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv)
|
|
{
|
|
aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
|
|
__m128i counter = _mm_loadu_si128(iv);
|
|
ctx->iv = aes_ni_sdctr_reverse(counter);
|
|
}
|
|
|
|
typedef __m128i (*aes_ni_fn)(__m128i v, const __m128i *keysched);
|
|
|
|
static FUNC_ISA inline void aes_cbc_ni_encrypt(
|
|
ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt)
|
|
{
|
|
aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
__m128i plaintext = _mm_loadu_si128((const __m128i *)blk);
|
|
__m128i cipher_input = _mm_xor_si128(plaintext, ctx->iv);
|
|
__m128i ciphertext = encrypt(cipher_input, ctx->keysched_e);
|
|
_mm_storeu_si128((__m128i *)blk, ciphertext);
|
|
ctx->iv = ciphertext;
|
|
}
|
|
}
|
|
|
|
static FUNC_ISA inline void aes_cbc_ni_decrypt(
|
|
ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn decrypt)
|
|
{
|
|
aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
__m128i ciphertext = _mm_loadu_si128((const __m128i *)blk);
|
|
__m128i decrypted = decrypt(ciphertext, ctx->keysched_d);
|
|
__m128i plaintext = _mm_xor_si128(decrypted, ctx->iv);
|
|
_mm_storeu_si128((__m128i *)blk, plaintext);
|
|
ctx->iv = ciphertext;
|
|
}
|
|
}
|
|
|
|
static FUNC_ISA inline void aes_sdctr_ni(
|
|
ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt)
|
|
{
|
|
aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
__m128i counter = aes_ni_sdctr_reverse(ctx->iv);
|
|
__m128i keystream = encrypt(counter, ctx->keysched_e);
|
|
__m128i input = _mm_loadu_si128((const __m128i *)blk);
|
|
__m128i output = _mm_xor_si128(input, keystream);
|
|
_mm_storeu_si128((__m128i *)blk, output);
|
|
ctx->iv = aes_ni_sdctr_increment(ctx->iv);
|
|
}
|
|
}
|
|
|
|
#define NI_ENC_DEC(len) \
|
|
static FUNC_ISA void aes##len##_cbc_hw_encrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_cbc_ni_encrypt(ciph, vblk, blklen, aes_ni_##len##_e); } \
|
|
static FUNC_ISA void aes##len##_cbc_hw_decrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_cbc_ni_decrypt(ciph, vblk, blklen, aes_ni_##len##_d); } \
|
|
static FUNC_ISA void aes##len##_sdctr_hw( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_sdctr_ni(ciph, vblk, blklen, aes_ni_##len##_e); } \
|
|
|
|
NI_ENC_DEC(128)
|
|
NI_ENC_DEC(192)
|
|
NI_ENC_DEC(256)
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Hardware-accelerated implementation of AES using Arm NEON.
|
|
*/
|
|
|
|
#elif HW_AES == HW_AES_NEON
|
|
|
|
/*
|
|
* Manually set the target architecture, if we decided above that we
|
|
* need to.
|
|
*/
|
|
#ifdef USE_CLANG_ATTR_TARGET_AARCH64
|
|
/*
|
|
* A spot of cheating: redefine some ACLE feature macros before
|
|
* including arm_neon.h. Otherwise we won't get the AES intrinsics
|
|
* defined by that header, because it will be looking at the settings
|
|
* for the whole translation unit rather than the ones we're going to
|
|
* put on some particular functions using __attribute__((target)).
|
|
*/
|
|
#define __ARM_NEON 1
|
|
#define __ARM_FEATURE_CRYPTO 1
|
|
#define FUNC_ISA __attribute__ ((target("neon,crypto")))
|
|
#endif /* USE_CLANG_ATTR_TARGET_AARCH64 */
|
|
|
|
#ifndef FUNC_ISA
|
|
#define FUNC_ISA
|
|
#endif
|
|
|
|
#ifdef USE_ARM64_NEON_H
|
|
#include <arm64_neon.h>
|
|
#else
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
static bool aes_hw_available(void)
|
|
{
|
|
/*
|
|
* For Arm, we delegate to a per-platform AES detection function,
|
|
* because it has to be implemented by asking the operating system
|
|
* rather than directly querying the CPU.
|
|
*
|
|
* That's because Arm systems commonly have multiple cores that
|
|
* are not all alike, so any method of querying whether NEON
|
|
* crypto instructions work on the _current_ CPU - even one as
|
|
* crude as just trying one and catching the SIGILL - wouldn't
|
|
* give an answer that you could still rely on the first time the
|
|
* OS migrated your process to another CPU.
|
|
*/
|
|
return platform_aes_hw_available();
|
|
}
|
|
|
|
/*
|
|
* Core NEON encrypt/decrypt functions, one per length and direction.
|
|
*/
|
|
|
|
#define NEON_CIPHER(len, repmacro) \
|
|
static FUNC_ISA inline uint8x16_t aes_neon_##len##_e( \
|
|
uint8x16_t v, const uint8x16_t *keysched) \
|
|
{ \
|
|
repmacro(v = vaesmcq_u8(vaeseq_u8(v, *keysched++));); \
|
|
v = vaeseq_u8(v, *keysched++); \
|
|
return veorq_u8(v, *keysched); \
|
|
} \
|
|
static FUNC_ISA inline uint8x16_t aes_neon_##len##_d( \
|
|
uint8x16_t v, const uint8x16_t *keysched) \
|
|
{ \
|
|
repmacro(v = vaesimcq_u8(vaesdq_u8(v, *keysched++));); \
|
|
v = vaesdq_u8(v, *keysched++); \
|
|
return veorq_u8(v, *keysched); \
|
|
}
|
|
|
|
NEON_CIPHER(128, REP9)
|
|
NEON_CIPHER(192, REP11)
|
|
NEON_CIPHER(256, REP13)
|
|
|
|
/*
|
|
* The main key expansion.
|
|
*/
|
|
static FUNC_ISA void aes_neon_key_expand(
|
|
const unsigned char *key, size_t key_words,
|
|
uint8x16_t *keysched_e, uint8x16_t *keysched_d)
|
|
{
|
|
size_t rounds = key_words + 6;
|
|
size_t sched_words = (rounds + 1) * 4;
|
|
|
|
/*
|
|
* Store the key schedule as 32-bit integers during expansion, so
|
|
* that it's easy to refer back to individual previous words. We
|
|
* collect them into the final uint8x16_t form at the end.
|
|
*/
|
|
uint32_t sched[MAXROUNDKEYS * 4];
|
|
|
|
unsigned rconpos = 0;
|
|
|
|
for (size_t i = 0; i < sched_words; i++) {
|
|
if (i < key_words) {
|
|
sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);
|
|
} else {
|
|
uint32_t temp = sched[i - 1];
|
|
|
|
bool rotate_and_round_constant = (i % key_words == 0);
|
|
bool sub = rotate_and_round_constant ||
|
|
(key_words == 8 && i % 8 == 4);
|
|
|
|
if (rotate_and_round_constant)
|
|
temp = (temp << 24) | (temp >> 8);
|
|
|
|
if (sub) {
|
|
uint32x4_t v32 = vdupq_n_u32(temp);
|
|
uint8x16_t v8 = vreinterpretq_u8_u32(v32);
|
|
v8 = vaeseq_u8(v8, vdupq_n_u8(0));
|
|
v32 = vreinterpretq_u32_u8(v8);
|
|
temp = vget_lane_u32(vget_low_u32(v32), 0);
|
|
}
|
|
|
|
if (rotate_and_round_constant) {
|
|
assert(rconpos < lenof(key_setup_round_constants));
|
|
temp ^= key_setup_round_constants[rconpos++];
|
|
}
|
|
|
|
sched[i] = sched[i - key_words] ^ temp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Combine the key schedule words into uint8x16_t vectors and
|
|
* store them in the output context.
|
|
*/
|
|
for (size_t round = 0; round <= rounds; round++)
|
|
keysched_e[round] = vreinterpretq_u8_u32(vld1q_u32(sched + 4*round));
|
|
|
|
smemclr(sched, sizeof(sched));
|
|
|
|
/*
|
|
* Now prepare the modified keys for the inverse cipher.
|
|
*/
|
|
for (size_t eround = 0; eround <= rounds; eround++) {
|
|
size_t dround = rounds - eround;
|
|
uint8x16_t rkey = keysched_e[eround];
|
|
if (eround && dround) /* neither first nor last */
|
|
rkey = vaesimcq_u8(rkey);
|
|
keysched_d[dround] = rkey;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Auxiliary routine to reverse the byte order of a vector, so that
|
|
* the SDCTR IV can be made big-endian for feeding to the cipher.
|
|
*
|
|
* In fact we don't need to reverse the vector _all_ the way; we leave
|
|
* the two lanes in MSW,LSW order, because that makes no difference to
|
|
* the efficiency of the increment. That way we only have to reverse
|
|
* bytes within each lane in this function.
|
|
*/
|
|
static FUNC_ISA inline uint8x16_t aes_neon_sdctr_reverse(uint8x16_t v)
|
|
{
|
|
return vrev64q_u8(v);
|
|
}
|
|
|
|
/*
|
|
* Auxiliary routine to increment the 128-bit counter used in SDCTR
|
|
* mode. There's no instruction to treat a 128-bit vector as a single
|
|
* long integer, so instead we have to increment the bottom half
|
|
* unconditionally, and the top half if the bottom half started off as
|
|
* all 1s (in which case there was about to be a carry).
|
|
*/
|
|
static FUNC_ISA inline uint8x16_t aes_neon_sdctr_increment(uint8x16_t in)
|
|
{
|
|
#ifdef __aarch64__
|
|
/* There will be a carry if the low 64 bits are all 1s. */
|
|
uint64x1_t all1 = vcreate_u64(0xFFFFFFFFFFFFFFFF);
|
|
uint64x1_t carry = vceq_u64(vget_high_u64(vreinterpretq_u64_u8(in)), all1);
|
|
|
|
/* Make a word whose bottom half is unconditionally all 1s, and
|
|
* the top half is 'carry', i.e. all 0s most of the time but all
|
|
* 1s if we need to increment the top half. Then that word is what
|
|
* we need to _subtract_ from the input counter. */
|
|
uint64x2_t subtrahend = vcombine_u64(carry, all1);
|
|
#else
|
|
/* AArch32 doesn't have comparisons that operate on a 64-bit lane,
|
|
* so we start by comparing each 32-bit half of the low 64 bits
|
|
* _separately_ to all-1s. */
|
|
uint32x2_t all1 = vdup_n_u32(0xFFFFFFFF);
|
|
uint32x2_t carry = vceq_u32(
|
|
vget_high_u32(vreinterpretq_u32_u8(in)), all1);
|
|
|
|
/* Swap the 32-bit words of the compare output, and AND with the
|
|
* unswapped version. Now carry is all 1s iff the bottom half of
|
|
* the input counter was all 1s, and all 0s otherwise. */
|
|
carry = vand_u32(carry, vrev64_u32(carry));
|
|
|
|
/* Now make the vector to subtract in the same way as above. */
|
|
uint64x2_t subtrahend = vreinterpretq_u64_u32(vcombine_u32(carry, all1));
|
|
#endif
|
|
|
|
return vreinterpretq_u8_u64(
|
|
vsubq_u64(vreinterpretq_u64_u8(in), subtrahend));
|
|
}
|
|
|
|
/*
|
|
* The SSH interface and the cipher modes.
|
|
*/
|
|
|
|
typedef struct aes_neon_context aes_neon_context;
|
|
struct aes_neon_context {
|
|
uint8x16_t keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;
|
|
|
|
ssh_cipher ciph;
|
|
};
|
|
|
|
static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg)
|
|
{
|
|
if (!aes_hw_available_cached())
|
|
return NULL;
|
|
|
|
aes_neon_context *ctx = snew(aes_neon_context);
|
|
ctx->ciph.vt = alg;
|
|
return &ctx->ciph;
|
|
}
|
|
|
|
static void aes_hw_free(ssh_cipher *ciph)
|
|
{
|
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
|
smemclr(ctx, sizeof(*ctx));
|
|
sfree(ctx);
|
|
}
|
|
|
|
static void aes_hw_setkey(ssh_cipher *ciph, const void *vkey)
|
|
{
|
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
|
const unsigned char *key = (const unsigned char *)vkey;
|
|
|
|
aes_neon_key_expand(key, ctx->ciph.vt->real_keybits / 32,
|
|
ctx->keysched_e, ctx->keysched_d);
|
|
}
|
|
|
|
static FUNC_ISA void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv)
|
|
{
|
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
|
ctx->iv = vld1q_u8(iv);
|
|
}
|
|
|
|
static FUNC_ISA void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv)
|
|
{
|
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
|
uint8x16_t counter = vld1q_u8(iv);
|
|
ctx->iv = aes_neon_sdctr_reverse(counter);
|
|
}
|
|
|
|
typedef uint8x16_t (*aes_neon_fn)(uint8x16_t v, const uint8x16_t *keysched);
|
|
|
|
static FUNC_ISA inline void aes_cbc_neon_encrypt(
|
|
ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
|
|
{
|
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
uint8x16_t plaintext = vld1q_u8(blk);
|
|
uint8x16_t cipher_input = veorq_u8(plaintext, ctx->iv);
|
|
uint8x16_t ciphertext = encrypt(cipher_input, ctx->keysched_e);
|
|
vst1q_u8(blk, ciphertext);
|
|
ctx->iv = ciphertext;
|
|
}
|
|
}
|
|
|
|
static FUNC_ISA inline void aes_cbc_neon_decrypt(
|
|
ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn decrypt)
|
|
{
|
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
uint8x16_t ciphertext = vld1q_u8(blk);
|
|
uint8x16_t decrypted = decrypt(ciphertext, ctx->keysched_d);
|
|
uint8x16_t plaintext = veorq_u8(decrypted, ctx->iv);
|
|
vst1q_u8(blk, plaintext);
|
|
ctx->iv = ciphertext;
|
|
}
|
|
}
|
|
|
|
static FUNC_ISA inline void aes_sdctr_neon(
|
|
ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
|
|
{
|
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
|
|
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
|
blk < finish; blk += 16) {
|
|
uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv);
|
|
uint8x16_t keystream = encrypt(counter, ctx->keysched_e);
|
|
uint8x16_t input = vld1q_u8(blk);
|
|
uint8x16_t output = veorq_u8(input, keystream);
|
|
vst1q_u8(blk, output);
|
|
ctx->iv = aes_neon_sdctr_increment(ctx->iv);
|
|
}
|
|
}
|
|
|
|
#define NEON_ENC_DEC(len) \
|
|
static FUNC_ISA void aes##len##_cbc_hw_encrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_cbc_neon_encrypt(ciph, vblk, blklen, aes_neon_##len##_e); } \
|
|
static FUNC_ISA void aes##len##_cbc_hw_decrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_cbc_neon_decrypt(ciph, vblk, blklen, aes_neon_##len##_d); } \
|
|
static FUNC_ISA void aes##len##_sdctr_hw( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
|
{ aes_sdctr_neon(ciph, vblk, blklen, aes_neon_##len##_e); } \
|
|
|
|
NEON_ENC_DEC(128)
|
|
NEON_ENC_DEC(192)
|
|
NEON_ENC_DEC(256)
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Stub functions if we have no hardware-accelerated AES. In this
|
|
* case, aes_hw_new returns NULL (though it should also never be
|
|
* selected by aes_select, so the only thing that should even be
|
|
* _able_ to call it is testcrypt). As a result, the remaining vtable
|
|
* functions should never be called at all.
|
|
*/
|
|
|
|
#elif HW_AES == HW_AES_NONE
|
|
|
|
bool aes_hw_available(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#define STUB_BODY { unreachable("Should never be called"); }
|
|
|
|
static void aes_hw_free(ssh_cipher *ciph) STUB_BODY
|
|
static void aes_hw_setkey(ssh_cipher *ciph, const void *key) STUB_BODY
|
|
static void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv) STUB_BODY
|
|
static void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv) STUB_BODY
|
|
#define STUB_ENC_DEC(len) \
|
|
static void aes##len##_cbc_hw_encrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY \
|
|
static void aes##len##_cbc_hw_decrypt( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY \
|
|
static void aes##len##_sdctr_hw( \
|
|
ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY
|
|
|
|
STUB_ENC_DEC(128)
|
|
STUB_ENC_DEC(192)
|
|
STUB_ENC_DEC(256)
|
|
|
|
#endif /* HW_AES */
|