mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
aa5bae8916
zero but does it in such a way that over-clever compilers hopefully won't helpfully optimise the call away if you do it just before freeing something or letting it go out of scope. Use this for (hopefully) every memset whose job is to destroy sensitive data that might otherwise be left lying around in the process's memory. [originally from svn r9586]
1087 lines
28 KiB
C
1087 lines
28 KiB
C
/*
|
|
* RSA implementation for PuTTY.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "misc.h"
|
|
|
|
int makekey(unsigned char *data, int len, struct RSAKey *result,
|
|
unsigned char **keystr, int order)
|
|
{
|
|
unsigned char *p = data;
|
|
int i, n;
|
|
|
|
if (len < 4)
|
|
return -1;
|
|
|
|
if (result) {
|
|
result->bits = 0;
|
|
for (i = 0; i < 4; i++)
|
|
result->bits = (result->bits << 8) + *p++;
|
|
} else
|
|
p += 4;
|
|
|
|
len -= 4;
|
|
|
|
/*
|
|
* order=0 means exponent then modulus (the keys sent by the
|
|
* server). order=1 means modulus then exponent (the keys
|
|
* stored in a keyfile).
|
|
*/
|
|
|
|
if (order == 0) {
|
|
n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
|
|
if (n < 0) return -1;
|
|
p += n;
|
|
len -= n;
|
|
}
|
|
|
|
n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
|
|
if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;
|
|
if (result)
|
|
result->bytes = n - 2;
|
|
if (keystr)
|
|
*keystr = p + 2;
|
|
p += n;
|
|
len -= n;
|
|
|
|
if (order == 1) {
|
|
n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
|
|
if (n < 0) return -1;
|
|
p += n;
|
|
len -= n;
|
|
}
|
|
return p - data;
|
|
}
|
|
|
|
int makeprivate(unsigned char *data, int len, struct RSAKey *result)
|
|
{
|
|
return ssh1_read_bignum(data, len, &result->private_exponent);
|
|
}
|
|
|
|
int rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
|
|
{
|
|
Bignum b1, b2;
|
|
int i;
|
|
unsigned char *p;
|
|
|
|
if (key->bytes < length + 4)
|
|
return 0; /* RSA key too short! */
|
|
|
|
memmove(data + key->bytes - length, data, length);
|
|
data[0] = 0;
|
|
data[1] = 2;
|
|
|
|
for (i = 2; i < key->bytes - length - 1; i++) {
|
|
do {
|
|
data[i] = random_byte();
|
|
} while (data[i] == 0);
|
|
}
|
|
data[key->bytes - length - 1] = 0;
|
|
|
|
b1 = bignum_from_bytes(data, key->bytes);
|
|
|
|
b2 = modpow(b1, key->exponent, key->modulus);
|
|
|
|
p = data;
|
|
for (i = key->bytes; i--;) {
|
|
*p++ = bignum_byte(b2, i);
|
|
}
|
|
|
|
freebn(b1);
|
|
freebn(b2);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void sha512_mpint(SHA512_State * s, Bignum b)
|
|
{
|
|
unsigned char lenbuf[4];
|
|
int len;
|
|
len = (bignum_bitcount(b) + 8) / 8;
|
|
PUT_32BIT(lenbuf, len);
|
|
SHA512_Bytes(s, lenbuf, 4);
|
|
while (len-- > 0) {
|
|
lenbuf[0] = bignum_byte(b, len);
|
|
SHA512_Bytes(s, lenbuf, 1);
|
|
}
|
|
smemclr(lenbuf, sizeof(lenbuf));
|
|
}
|
|
|
|
/*
|
|
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
|
|
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
|
|
* Uses Chinese Remainder Theorem to speed computation up over the
|
|
* obvious implementation of a single big modpow.
|
|
*/
|
|
Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
|
|
Bignum p, Bignum q, Bignum iqmp)
|
|
{
|
|
Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;
|
|
|
|
/*
|
|
* Reduce the exponent mod phi(p) and phi(q), to save time when
|
|
* exponentiating mod p and mod q respectively. Of course, since p
|
|
* and q are prime, phi(p) == p-1 and similarly for q.
|
|
*/
|
|
pm1 = copybn(p);
|
|
decbn(pm1);
|
|
qm1 = copybn(q);
|
|
decbn(qm1);
|
|
pexp = bigmod(exp, pm1);
|
|
qexp = bigmod(exp, qm1);
|
|
|
|
/*
|
|
* Do the two modpows.
|
|
*/
|
|
presult = modpow(base, pexp, p);
|
|
qresult = modpow(base, qexp, q);
|
|
|
|
/*
|
|
* Recombine the results. We want a value which is congruent to
|
|
* qresult mod q, and to presult mod p.
|
|
*
|
|
* We know that iqmp * q is congruent to 1 * mod p (by definition
|
|
* of iqmp) and to 0 mod q (obviously). So we start with qresult
|
|
* (which is congruent to qresult mod both primes), and add on
|
|
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
|
|
* to presult mod p without affecting its value mod q.
|
|
*/
|
|
if (bignum_cmp(presult, qresult) < 0) {
|
|
/*
|
|
* Can't subtract presult from qresult without first adding on
|
|
* p.
|
|
*/
|
|
Bignum tmp = presult;
|
|
presult = bigadd(presult, p);
|
|
freebn(tmp);
|
|
}
|
|
diff = bigsub(presult, qresult);
|
|
multiplier = bigmul(iqmp, q);
|
|
ret0 = bigmuladd(multiplier, diff, qresult);
|
|
|
|
/*
|
|
* Finally, reduce the result mod n.
|
|
*/
|
|
ret = bigmod(ret0, mod);
|
|
|
|
/*
|
|
* Free all the intermediate results before returning.
|
|
*/
|
|
freebn(pm1);
|
|
freebn(qm1);
|
|
freebn(pexp);
|
|
freebn(qexp);
|
|
freebn(presult);
|
|
freebn(qresult);
|
|
freebn(diff);
|
|
freebn(multiplier);
|
|
freebn(ret0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function is a wrapper on modpow(). It has the same effect as
|
|
* modpow(), but employs RSA blinding to protect against timing
|
|
* attacks and also uses the Chinese Remainder Theorem (implemented
|
|
* above, in crt_modpow()) to speed up the main operation.
|
|
*/
|
|
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
|
|
{
|
|
Bignum random, random_encrypted, random_inverse;
|
|
Bignum input_blinded, ret_blinded;
|
|
Bignum ret;
|
|
|
|
SHA512_State ss;
|
|
unsigned char digest512[64];
|
|
int digestused = lenof(digest512);
|
|
int hashseq = 0;
|
|
|
|
/*
|
|
* Start by inventing a random number chosen uniformly from the
|
|
* range 2..modulus-1. (We do this by preparing a random number
|
|
* of the right length and retrying if it's greater than the
|
|
* modulus, to prevent any potential Bleichenbacher-like
|
|
* attacks making use of the uneven distribution within the
|
|
* range that would arise from just reducing our number mod n.
|
|
* There are timing implications to the potential retries, of
|
|
* course, but all they tell you is the modulus, which you
|
|
* already knew.)
|
|
*
|
|
* To preserve determinism and avoid Pageant needing to share
|
|
* the random number pool, we actually generate this `random'
|
|
* number by hashing stuff with the private key.
|
|
*/
|
|
while (1) {
|
|
int bits, byte, bitsleft, v;
|
|
random = copybn(key->modulus);
|
|
/*
|
|
* Find the topmost set bit. (This function will return its
|
|
* index plus one.) Then we'll set all bits from that one
|
|
* downwards randomly.
|
|
*/
|
|
bits = bignum_bitcount(random);
|
|
byte = 0;
|
|
bitsleft = 0;
|
|
while (bits--) {
|
|
if (bitsleft <= 0) {
|
|
bitsleft = 8;
|
|
/*
|
|
* Conceptually the following few lines are equivalent to
|
|
* byte = random_byte();
|
|
*/
|
|
if (digestused >= lenof(digest512)) {
|
|
unsigned char seqbuf[4];
|
|
PUT_32BIT(seqbuf, hashseq);
|
|
SHA512_Init(&ss);
|
|
SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
|
|
SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
|
|
sha512_mpint(&ss, key->private_exponent);
|
|
SHA512_Final(&ss, digest512);
|
|
hashseq++;
|
|
|
|
/*
|
|
* Now hash that digest plus the signature
|
|
* input.
|
|
*/
|
|
SHA512_Init(&ss);
|
|
SHA512_Bytes(&ss, digest512, sizeof(digest512));
|
|
sha512_mpint(&ss, input);
|
|
SHA512_Final(&ss, digest512);
|
|
|
|
digestused = 0;
|
|
}
|
|
byte = digest512[digestused++];
|
|
}
|
|
v = byte & 1;
|
|
byte >>= 1;
|
|
bitsleft--;
|
|
bignum_set_bit(random, bits, v);
|
|
}
|
|
|
|
/*
|
|
* Now check that this number is strictly greater than
|
|
* zero, and strictly less than modulus.
|
|
*/
|
|
if (bignum_cmp(random, Zero) <= 0 ||
|
|
bignum_cmp(random, key->modulus) >= 0) {
|
|
freebn(random);
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* RSA blinding relies on the fact that (xy)^d mod n is equal
|
|
* to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
|
|
* y and y^d; then we multiply x by y, raise to the power d mod
|
|
* n as usual, and divide by y^d to recover x^d. Thus an
|
|
* attacker can't correlate the timing of the modpow with the
|
|
* input, because they don't know anything about the number
|
|
* that was input to the actual modpow.
|
|
*
|
|
* The clever bit is that we don't have to do a huge modpow to
|
|
* get y and y^d; we will use the number we just invented as
|
|
* _y^d_, and use the _public_ exponent to compute (y^d)^e = y
|
|
* from it, which is much faster to do.
|
|
*/
|
|
random_encrypted = crt_modpow(random, key->exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
random_inverse = modinv(random, key->modulus);
|
|
input_blinded = modmul(input, random_encrypted, key->modulus);
|
|
ret_blinded = crt_modpow(input_blinded, key->private_exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
ret = modmul(ret_blinded, random_inverse, key->modulus);
|
|
|
|
freebn(ret_blinded);
|
|
freebn(input_blinded);
|
|
freebn(random_inverse);
|
|
freebn(random_encrypted);
|
|
freebn(random);
|
|
|
|
return ret;
|
|
}
|
|
|
|
Bignum rsadecrypt(Bignum input, struct RSAKey *key)
|
|
{
|
|
return rsa_privkey_op(input, key);
|
|
}
|
|
|
|
int rsastr_len(struct RSAKey *key)
|
|
{
|
|
Bignum md, ex;
|
|
int mdlen, exlen;
|
|
|
|
md = key->modulus;
|
|
ex = key->exponent;
|
|
mdlen = (bignum_bitcount(md) + 15) / 16;
|
|
exlen = (bignum_bitcount(ex) + 15) / 16;
|
|
return 4 * (mdlen + exlen) + 20;
|
|
}
|
|
|
|
void rsastr_fmt(char *str, struct RSAKey *key)
|
|
{
|
|
Bignum md, ex;
|
|
int len = 0, i, nibbles;
|
|
static const char hex[] = "0123456789abcdef";
|
|
|
|
md = key->modulus;
|
|
ex = key->exponent;
|
|
|
|
len += sprintf(str + len, "0x");
|
|
|
|
nibbles = (3 + bignum_bitcount(ex)) / 4;
|
|
if (nibbles < 1)
|
|
nibbles = 1;
|
|
for (i = nibbles; i--;)
|
|
str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
|
|
|
|
len += sprintf(str + len, ",0x");
|
|
|
|
nibbles = (3 + bignum_bitcount(md)) / 4;
|
|
if (nibbles < 1)
|
|
nibbles = 1;
|
|
for (i = nibbles; i--;)
|
|
str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
|
|
|
|
str[len] = '\0';
|
|
}
|
|
|
|
/*
|
|
* Generate a fingerprint string for the key. Compatible with the
|
|
* OpenSSH fingerprint code.
|
|
*/
|
|
void rsa_fingerprint(char *str, int len, struct RSAKey *key)
|
|
{
|
|
struct MD5Context md5c;
|
|
unsigned char digest[16];
|
|
char buffer[16 * 3 + 40];
|
|
int numlen, slen, i;
|
|
|
|
MD5Init(&md5c);
|
|
numlen = ssh1_bignum_length(key->modulus) - 2;
|
|
for (i = numlen; i--;) {
|
|
unsigned char c = bignum_byte(key->modulus, i);
|
|
MD5Update(&md5c, &c, 1);
|
|
}
|
|
numlen = ssh1_bignum_length(key->exponent) - 2;
|
|
for (i = numlen; i--;) {
|
|
unsigned char c = bignum_byte(key->exponent, i);
|
|
MD5Update(&md5c, &c, 1);
|
|
}
|
|
MD5Final(digest, &md5c);
|
|
|
|
sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
|
|
for (i = 0; i < 16; i++)
|
|
sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
|
|
digest[i]);
|
|
strncpy(str, buffer, len);
|
|
str[len - 1] = '\0';
|
|
slen = strlen(str);
|
|
if (key->comment && slen < len - 1) {
|
|
str[slen] = ' ';
|
|
strncpy(str + slen + 1, key->comment, len - slen - 1);
|
|
str[len - 1] = '\0';
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify that the public data in an RSA key matches the private
|
|
* data. We also check the private data itself: we ensure that p >
|
|
* q and that iqmp really is the inverse of q mod p.
|
|
*/
|
|
int rsa_verify(struct RSAKey *key)
|
|
{
|
|
Bignum n, ed, pm1, qm1;
|
|
int cmp;
|
|
|
|
/* n must equal pq. */
|
|
n = bigmul(key->p, key->q);
|
|
cmp = bignum_cmp(n, key->modulus);
|
|
freebn(n);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
|
|
pm1 = copybn(key->p);
|
|
decbn(pm1);
|
|
ed = modmul(key->exponent, key->private_exponent, pm1);
|
|
cmp = bignum_cmp(ed, One);
|
|
sfree(ed);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
qm1 = copybn(key->q);
|
|
decbn(qm1);
|
|
ed = modmul(key->exponent, key->private_exponent, qm1);
|
|
cmp = bignum_cmp(ed, One);
|
|
sfree(ed);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Ensure p > q.
|
|
*
|
|
* I have seen key blobs in the wild which were generated with
|
|
* p < q, so instead of rejecting the key in this case we
|
|
* should instead flip them round into the canonical order of
|
|
* p > q. This also involves regenerating iqmp.
|
|
*/
|
|
if (bignum_cmp(key->p, key->q) <= 0) {
|
|
Bignum tmp = key->p;
|
|
key->p = key->q;
|
|
key->q = tmp;
|
|
|
|
freebn(key->iqmp);
|
|
key->iqmp = modinv(key->q, key->p);
|
|
}
|
|
|
|
/*
|
|
* Ensure iqmp * q is congruent to 1, modulo p.
|
|
*/
|
|
n = modmul(key->iqmp, key->q, key->p);
|
|
cmp = bignum_cmp(n, One);
|
|
sfree(n);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Public key blob as used by Pageant: exponent before modulus. */
|
|
unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
|
|
{
|
|
int length, pos;
|
|
unsigned char *ret;
|
|
|
|
length = (ssh1_bignum_length(key->modulus) +
|
|
ssh1_bignum_length(key->exponent) + 4);
|
|
ret = snewn(length, unsigned char);
|
|
|
|
PUT_32BIT(ret, bignum_bitcount(key->modulus));
|
|
pos = 4;
|
|
pos += ssh1_write_bignum(ret + pos, key->exponent);
|
|
pos += ssh1_write_bignum(ret + pos, key->modulus);
|
|
|
|
*len = length;
|
|
return ret;
|
|
}
|
|
|
|
/* Given a public blob, determine its length. */
|
|
int rsa_public_blob_len(void *data, int maxlen)
|
|
{
|
|
unsigned char *p = (unsigned char *)data;
|
|
int n;
|
|
|
|
if (maxlen < 4)
|
|
return -1;
|
|
p += 4; /* length word */
|
|
maxlen -= 4;
|
|
|
|
n = ssh1_read_bignum(p, maxlen, NULL); /* exponent */
|
|
if (n < 0)
|
|
return -1;
|
|
p += n;
|
|
|
|
n = ssh1_read_bignum(p, maxlen, NULL); /* modulus */
|
|
if (n < 0)
|
|
return -1;
|
|
p += n;
|
|
|
|
return p - (unsigned char *)data;
|
|
}
|
|
|
|
void freersakey(struct RSAKey *key)
|
|
{
|
|
if (key->modulus)
|
|
freebn(key->modulus);
|
|
if (key->exponent)
|
|
freebn(key->exponent);
|
|
if (key->private_exponent)
|
|
freebn(key->private_exponent);
|
|
if (key->p)
|
|
freebn(key->p);
|
|
if (key->q)
|
|
freebn(key->q);
|
|
if (key->iqmp)
|
|
freebn(key->iqmp);
|
|
if (key->comment)
|
|
sfree(key->comment);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Implementation of the ssh-rsa signing key type.
|
|
*/
|
|
|
|
static void getstring(char **data, int *datalen, char **p, int *length)
|
|
{
|
|
*p = NULL;
|
|
if (*datalen < 4)
|
|
return;
|
|
*length = GET_32BIT(*data);
|
|
*datalen -= 4;
|
|
*data += 4;
|
|
if (*datalen < *length)
|
|
return;
|
|
*p = *data;
|
|
*data += *length;
|
|
*datalen -= *length;
|
|
}
|
|
static Bignum getmp(char **data, int *datalen)
|
|
{
|
|
char *p;
|
|
int length;
|
|
Bignum b;
|
|
|
|
getstring(data, datalen, &p, &length);
|
|
if (!p)
|
|
return NULL;
|
|
b = bignum_from_bytes((unsigned char *)p, length);
|
|
return b;
|
|
}
|
|
|
|
static void *rsa2_newkey(char *data, int len)
|
|
{
|
|
char *p;
|
|
int slen;
|
|
struct RSAKey *rsa;
|
|
|
|
rsa = snew(struct RSAKey);
|
|
if (!rsa)
|
|
return NULL;
|
|
getstring(&data, &len, &p, &slen);
|
|
|
|
if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
|
|
sfree(rsa);
|
|
return NULL;
|
|
}
|
|
rsa->exponent = getmp(&data, &len);
|
|
rsa->modulus = getmp(&data, &len);
|
|
rsa->private_exponent = NULL;
|
|
rsa->p = rsa->q = rsa->iqmp = NULL;
|
|
rsa->comment = NULL;
|
|
|
|
return rsa;
|
|
}
|
|
|
|
static void rsa2_freekey(void *key)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
freersakey(rsa);
|
|
sfree(rsa);
|
|
}
|
|
|
|
static char *rsa2_fmtkey(void *key)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
char *p;
|
|
int len;
|
|
|
|
len = rsastr_len(rsa);
|
|
p = snewn(len, char);
|
|
rsastr_fmt(p, rsa);
|
|
return p;
|
|
}
|
|
|
|
static unsigned char *rsa2_public_blob(void *key, int *len)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
int elen, mlen, bloblen;
|
|
int i;
|
|
unsigned char *blob, *p;
|
|
|
|
elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
|
|
mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;
|
|
|
|
/*
|
|
* string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
|
|
* (three length fields, 12+7=19).
|
|
*/
|
|
bloblen = 19 + elen + mlen;
|
|
blob = snewn(bloblen, unsigned char);
|
|
p = blob;
|
|
PUT_32BIT(p, 7);
|
|
p += 4;
|
|
memcpy(p, "ssh-rsa", 7);
|
|
p += 7;
|
|
PUT_32BIT(p, elen);
|
|
p += 4;
|
|
for (i = elen; i--;)
|
|
*p++ = bignum_byte(rsa->exponent, i);
|
|
PUT_32BIT(p, mlen);
|
|
p += 4;
|
|
for (i = mlen; i--;)
|
|
*p++ = bignum_byte(rsa->modulus, i);
|
|
assert(p == blob + bloblen);
|
|
*len = bloblen;
|
|
return blob;
|
|
}
|
|
|
|
static unsigned char *rsa2_private_blob(void *key, int *len)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
int dlen, plen, qlen, ulen, bloblen;
|
|
int i;
|
|
unsigned char *blob, *p;
|
|
|
|
dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
|
|
plen = (bignum_bitcount(rsa->p) + 8) / 8;
|
|
qlen = (bignum_bitcount(rsa->q) + 8) / 8;
|
|
ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;
|
|
|
|
/*
|
|
* mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
|
|
* sum of lengths.
|
|
*/
|
|
bloblen = 16 + dlen + plen + qlen + ulen;
|
|
blob = snewn(bloblen, unsigned char);
|
|
p = blob;
|
|
PUT_32BIT(p, dlen);
|
|
p += 4;
|
|
for (i = dlen; i--;)
|
|
*p++ = bignum_byte(rsa->private_exponent, i);
|
|
PUT_32BIT(p, plen);
|
|
p += 4;
|
|
for (i = plen; i--;)
|
|
*p++ = bignum_byte(rsa->p, i);
|
|
PUT_32BIT(p, qlen);
|
|
p += 4;
|
|
for (i = qlen; i--;)
|
|
*p++ = bignum_byte(rsa->q, i);
|
|
PUT_32BIT(p, ulen);
|
|
p += 4;
|
|
for (i = ulen; i--;)
|
|
*p++ = bignum_byte(rsa->iqmp, i);
|
|
assert(p == blob + bloblen);
|
|
*len = bloblen;
|
|
return blob;
|
|
}
|
|
|
|
static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
|
|
unsigned char *priv_blob, int priv_len)
|
|
{
|
|
struct RSAKey *rsa;
|
|
char *pb = (char *) priv_blob;
|
|
|
|
rsa = rsa2_newkey((char *) pub_blob, pub_len);
|
|
rsa->private_exponent = getmp(&pb, &priv_len);
|
|
rsa->p = getmp(&pb, &priv_len);
|
|
rsa->q = getmp(&pb, &priv_len);
|
|
rsa->iqmp = getmp(&pb, &priv_len);
|
|
|
|
if (!rsa_verify(rsa)) {
|
|
rsa2_freekey(rsa);
|
|
return NULL;
|
|
}
|
|
|
|
return rsa;
|
|
}
|
|
|
|
static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
|
|
{
|
|
char **b = (char **) blob;
|
|
struct RSAKey *rsa;
|
|
|
|
rsa = snew(struct RSAKey);
|
|
if (!rsa)
|
|
return NULL;
|
|
rsa->comment = NULL;
|
|
|
|
rsa->modulus = getmp(b, len);
|
|
rsa->exponent = getmp(b, len);
|
|
rsa->private_exponent = getmp(b, len);
|
|
rsa->iqmp = getmp(b, len);
|
|
rsa->p = getmp(b, len);
|
|
rsa->q = getmp(b, len);
|
|
|
|
if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
|
|
!rsa->iqmp || !rsa->p || !rsa->q) {
|
|
sfree(rsa->modulus);
|
|
sfree(rsa->exponent);
|
|
sfree(rsa->private_exponent);
|
|
sfree(rsa->iqmp);
|
|
sfree(rsa->p);
|
|
sfree(rsa->q);
|
|
sfree(rsa);
|
|
return NULL;
|
|
}
|
|
|
|
return rsa;
|
|
}
|
|
|
|
static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
int bloblen, i;
|
|
|
|
bloblen =
|
|
ssh2_bignum_length(rsa->modulus) +
|
|
ssh2_bignum_length(rsa->exponent) +
|
|
ssh2_bignum_length(rsa->private_exponent) +
|
|
ssh2_bignum_length(rsa->iqmp) +
|
|
ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);
|
|
|
|
if (bloblen > len)
|
|
return bloblen;
|
|
|
|
bloblen = 0;
|
|
#define ENC(x) \
|
|
PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
|
|
for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
|
|
ENC(rsa->modulus);
|
|
ENC(rsa->exponent);
|
|
ENC(rsa->private_exponent);
|
|
ENC(rsa->iqmp);
|
|
ENC(rsa->p);
|
|
ENC(rsa->q);
|
|
|
|
return bloblen;
|
|
}
|
|
|
|
static int rsa2_pubkey_bits(void *blob, int len)
|
|
{
|
|
struct RSAKey *rsa;
|
|
int ret;
|
|
|
|
rsa = rsa2_newkey((char *) blob, len);
|
|
ret = bignum_bitcount(rsa->modulus);
|
|
rsa2_freekey(rsa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *rsa2_fingerprint(void *key)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
struct MD5Context md5c;
|
|
unsigned char digest[16], lenbuf[4];
|
|
char buffer[16 * 3 + 40];
|
|
char *ret;
|
|
int numlen, i;
|
|
|
|
MD5Init(&md5c);
|
|
MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);
|
|
|
|
#define ADD_BIGNUM(bignum) \
|
|
numlen = (bignum_bitcount(bignum)+8)/8; \
|
|
PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
|
|
for (i = numlen; i-- ;) { \
|
|
unsigned char c = bignum_byte(bignum, i); \
|
|
MD5Update(&md5c, &c, 1); \
|
|
}
|
|
ADD_BIGNUM(rsa->exponent);
|
|
ADD_BIGNUM(rsa->modulus);
|
|
#undef ADD_BIGNUM
|
|
|
|
MD5Final(digest, &md5c);
|
|
|
|
sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
|
|
for (i = 0; i < 16; i++)
|
|
sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
|
|
digest[i]);
|
|
ret = snewn(strlen(buffer) + 1, char);
|
|
if (ret)
|
|
strcpy(ret, buffer);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the magic ASN.1/DER prefix that goes in the decoded
|
|
* signature, between the string of FFs and the actual SHA hash
|
|
* value. The meaning of it is:
|
|
*
|
|
* 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
|
|
*
|
|
* 30 21 -- a constructed SEQUENCE of length 0x21
|
|
* 30 09 -- a constructed sub-SEQUENCE of length 9
|
|
* 06 05 -- an object identifier, length 5
|
|
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
|
|
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
|
|
* 05 00 -- NULL
|
|
* 04 14 -- a primitive OCTET STRING of length 0x14
|
|
* [0x14 bytes of hash data follows]
|
|
*
|
|
* The object id in the middle there is listed as `id-sha1' in
|
|
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
|
|
* ASN module for PKCS #1) and its expanded form is as follows:
|
|
*
|
|
* id-sha1 OBJECT IDENTIFIER ::= {
|
|
* iso(1) identified-organization(3) oiw(14) secsig(3)
|
|
* algorithms(2) 26 }
|
|
*/
|
|
static const unsigned char asn1_weird_stuff[] = {
|
|
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
|
|
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
|
|
};
|
|
|
|
#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
|
|
|
|
static int rsa2_verifysig(void *key, char *sig, int siglen,
|
|
char *data, int datalen)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
Bignum in, out;
|
|
char *p;
|
|
int slen;
|
|
int bytes, i, j, ret;
|
|
unsigned char hash[20];
|
|
|
|
getstring(&sig, &siglen, &p, &slen);
|
|
if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
|
|
return 0;
|
|
}
|
|
in = getmp(&sig, &siglen);
|
|
out = modpow(in, rsa->exponent, rsa->modulus);
|
|
freebn(in);
|
|
|
|
ret = 1;
|
|
|
|
bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
|
|
/* Top (partial) byte should be zero. */
|
|
if (bignum_byte(out, bytes - 1) != 0)
|
|
ret = 0;
|
|
/* First whole byte should be 1. */
|
|
if (bignum_byte(out, bytes - 2) != 1)
|
|
ret = 0;
|
|
/* Most of the rest should be FF. */
|
|
for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
|
|
if (bignum_byte(out, i) != 0xFF)
|
|
ret = 0;
|
|
}
|
|
/* Then we expect to see the asn1_weird_stuff. */
|
|
for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
|
|
if (bignum_byte(out, i) != asn1_weird_stuff[j])
|
|
ret = 0;
|
|
}
|
|
/* Finally, we expect to see the SHA-1 hash of the signed data. */
|
|
SHA_Simple(data, datalen, hash);
|
|
for (i = 19, j = 0; i >= 0; i--, j++) {
|
|
if (bignum_byte(out, i) != hash[j])
|
|
ret = 0;
|
|
}
|
|
freebn(out);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned char *rsa2_sign(void *key, char *data, int datalen,
|
|
int *siglen)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
unsigned char *bytes;
|
|
int nbytes;
|
|
unsigned char hash[20];
|
|
Bignum in, out;
|
|
int i, j;
|
|
|
|
SHA_Simple(data, datalen, hash);
|
|
|
|
nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
|
|
assert(1 <= nbytes - 20 - ASN1_LEN);
|
|
bytes = snewn(nbytes, unsigned char);
|
|
|
|
bytes[0] = 1;
|
|
for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
|
|
bytes[i] = 0xFF;
|
|
for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
|
|
bytes[i] = asn1_weird_stuff[j];
|
|
for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
|
|
bytes[i] = hash[j];
|
|
|
|
in = bignum_from_bytes(bytes, nbytes);
|
|
sfree(bytes);
|
|
|
|
out = rsa_privkey_op(in, rsa);
|
|
freebn(in);
|
|
|
|
nbytes = (bignum_bitcount(out) + 7) / 8;
|
|
bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
|
|
PUT_32BIT(bytes, 7);
|
|
memcpy(bytes + 4, "ssh-rsa", 7);
|
|
PUT_32BIT(bytes + 4 + 7, nbytes);
|
|
for (i = 0; i < nbytes; i++)
|
|
bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
|
|
freebn(out);
|
|
|
|
*siglen = 4 + 7 + 4 + nbytes;
|
|
return bytes;
|
|
}
|
|
|
|
const struct ssh_signkey ssh_rsa = {
|
|
rsa2_newkey,
|
|
rsa2_freekey,
|
|
rsa2_fmtkey,
|
|
rsa2_public_blob,
|
|
rsa2_private_blob,
|
|
rsa2_createkey,
|
|
rsa2_openssh_createkey,
|
|
rsa2_openssh_fmtkey,
|
|
rsa2_pubkey_bits,
|
|
rsa2_fingerprint,
|
|
rsa2_verifysig,
|
|
rsa2_sign,
|
|
"ssh-rsa",
|
|
"rsa2"
|
|
};
|
|
|
|
void *ssh_rsakex_newkey(char *data, int len)
|
|
{
|
|
return rsa2_newkey(data, len);
|
|
}
|
|
|
|
void ssh_rsakex_freekey(void *key)
|
|
{
|
|
rsa2_freekey(key);
|
|
}
|
|
|
|
int ssh_rsakex_klen(void *key)
|
|
{
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
|
|
return bignum_bitcount(rsa->modulus);
|
|
}
|
|
|
|
static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen,
|
|
void *vdata, int datalen)
|
|
{
|
|
unsigned char *data = (unsigned char *)vdata;
|
|
unsigned count = 0;
|
|
|
|
while (datalen > 0) {
|
|
int i, max = (datalen > h->hlen ? h->hlen : datalen);
|
|
void *s;
|
|
unsigned char counter[4], hash[SSH2_KEX_MAX_HASH_LEN];
|
|
|
|
assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
|
|
PUT_32BIT(counter, count);
|
|
s = h->init();
|
|
h->bytes(s, seed, seedlen);
|
|
h->bytes(s, counter, 4);
|
|
h->final(s, hash);
|
|
count++;
|
|
|
|
for (i = 0; i < max; i++)
|
|
data[i] ^= hash[i];
|
|
|
|
data += max;
|
|
datalen -= max;
|
|
}
|
|
}
|
|
|
|
void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen,
|
|
unsigned char *out, int outlen,
|
|
void *key)
|
|
{
|
|
Bignum b1, b2;
|
|
struct RSAKey *rsa = (struct RSAKey *) key;
|
|
int k, i;
|
|
char *p;
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Here we encrypt using RSAES-OAEP. Essentially this means:
|
|
*
|
|
* - we have a SHA-based `mask generation function' which
|
|
* creates a pseudo-random stream of mask data
|
|
* deterministically from an input chunk of data.
|
|
*
|
|
* - we have a random chunk of data called a seed.
|
|
*
|
|
* - we use the seed to generate a mask which we XOR with our
|
|
* plaintext.
|
|
*
|
|
* - then we use _the masked plaintext_ to generate a mask
|
|
* which we XOR with the seed.
|
|
*
|
|
* - then we concatenate the masked seed and the masked
|
|
* plaintext, and RSA-encrypt that lot.
|
|
*
|
|
* The result is that the data input to the encryption function
|
|
* is random-looking and (hopefully) contains no exploitable
|
|
* structure such as PKCS1-v1_5 does.
|
|
*
|
|
* For a precise specification, see RFC 3447, section 7.1.1.
|
|
* Some of the variable names below are derived from that, so
|
|
* it'd probably help to read it anyway.
|
|
*/
|
|
|
|
/* k denotes the length in octets of the RSA modulus. */
|
|
k = (7 + bignum_bitcount(rsa->modulus)) / 8;
|
|
|
|
/* The length of the input data must be at most k - 2hLen - 2. */
|
|
assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
|
|
|
|
/* The length of the output data wants to be precisely k. */
|
|
assert(outlen == k);
|
|
|
|
/*
|
|
* Now perform EME-OAEP encoding. First set up all the unmasked
|
|
* output data.
|
|
*/
|
|
/* Leading byte zero. */
|
|
out[0] = 0;
|
|
/* At position 1, the seed: HLEN bytes of random data. */
|
|
for (i = 0; i < HLEN; i++)
|
|
out[i + 1] = random_byte();
|
|
/* At position 1+HLEN, the data block DB, consisting of: */
|
|
/* The hash of the label (we only support an empty label here) */
|
|
h->final(h->init(), out + HLEN + 1);
|
|
/* A bunch of zero octets */
|
|
memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
|
|
/* A single 1 octet, followed by the input message data. */
|
|
out[outlen - inlen - 1] = 1;
|
|
memcpy(out + outlen - inlen, in, inlen);
|
|
|
|
/*
|
|
* Now use the seed data to mask the block DB.
|
|
*/
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/*
|
|
* And now use the masked DB to mask the seed itself.
|
|
*/
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
|
|
/*
|
|
* Now `out' contains precisely the data we want to
|
|
* RSA-encrypt.
|
|
*/
|
|
b1 = bignum_from_bytes(out, outlen);
|
|
b2 = modpow(b1, rsa->exponent, rsa->modulus);
|
|
p = (char *)out;
|
|
for (i = outlen; i--;) {
|
|
*p++ = bignum_byte(b2, i);
|
|
}
|
|
freebn(b1);
|
|
freebn(b2);
|
|
|
|
/*
|
|
* And we're done.
|
|
*/
|
|
}
|
|
|
|
static const struct ssh_kex ssh_rsa_kex_sha1 = {
|
|
"rsa1024-sha1", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha1
|
|
};
|
|
|
|
static const struct ssh_kex ssh_rsa_kex_sha256 = {
|
|
"rsa2048-sha256", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha256
|
|
};
|
|
|
|
static const struct ssh_kex *const rsa_kex_list[] = {
|
|
&ssh_rsa_kex_sha256,
|
|
&ssh_rsa_kex_sha1
|
|
};
|
|
|
|
const struct ssh_kexes ssh_rsa_kex = {
|
|
sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
|
|
rsa_kex_list
|
|
};
|