mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
5b0f32a100
There was no point in rsa2_sign and rsa2_verify having mirrored versions of the same code to construct the cleartext of the RSA signature integer, just because one is building it and the other is checking it. Much more sensible to have a single function that builds it, and then rsa2_verify can compare the received integer against that while rsa2_sign encodes it into an output integer.
1094 lines
29 KiB
C
1094 lines
29 KiB
C
/*
|
|
* RSA implementation for PuTTY.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "misc.h"
|
|
|
|
void BinarySource_get_rsa_ssh1_pub(
|
|
BinarySource *src, struct RSAKey *rsa, RsaSsh1Order order)
|
|
{
|
|
unsigned bits;
|
|
Bignum e, m;
|
|
|
|
bits = get_uint32(src);
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
e = get_mp_ssh1(src);
|
|
m = get_mp_ssh1(src);
|
|
} else {
|
|
m = get_mp_ssh1(src);
|
|
e = get_mp_ssh1(src);
|
|
}
|
|
|
|
if (rsa) {
|
|
rsa->bits = bits;
|
|
rsa->exponent = e;
|
|
rsa->modulus = m;
|
|
rsa->bytes = (bignum_bitcount(m) + 7) / 8;
|
|
} else {
|
|
freebn(e);
|
|
freebn(m);
|
|
}
|
|
}
|
|
|
|
void BinarySource_get_rsa_ssh1_priv(
|
|
BinarySource *src, struct RSAKey *rsa)
|
|
{
|
|
rsa->private_exponent = get_mp_ssh1(src);
|
|
}
|
|
|
|
bool rsa_ssh1_encrypt(unsigned char *data, int length, struct RSAKey *key)
|
|
{
|
|
Bignum b1, b2;
|
|
int i;
|
|
unsigned char *p;
|
|
|
|
if (key->bytes < length + 4)
|
|
return false; /* RSA key too short! */
|
|
|
|
memmove(data + key->bytes - length, data, length);
|
|
data[0] = 0;
|
|
data[1] = 2;
|
|
|
|
for (i = 2; i < key->bytes - length - 1; i++) {
|
|
do {
|
|
data[i] = random_byte();
|
|
} while (data[i] == 0);
|
|
}
|
|
data[key->bytes - length - 1] = 0;
|
|
|
|
b1 = bignum_from_bytes(data, key->bytes);
|
|
|
|
b2 = modpow(b1, key->exponent, key->modulus);
|
|
|
|
p = data;
|
|
for (i = key->bytes; i--;) {
|
|
*p++ = bignum_byte(b2, i);
|
|
}
|
|
|
|
freebn(b1);
|
|
freebn(b2);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
|
|
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
|
|
* Uses Chinese Remainder Theorem to speed computation up over the
|
|
* obvious implementation of a single big modpow.
|
|
*/
|
|
Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
|
|
Bignum p, Bignum q, Bignum iqmp)
|
|
{
|
|
Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;
|
|
|
|
/*
|
|
* Reduce the exponent mod phi(p) and phi(q), to save time when
|
|
* exponentiating mod p and mod q respectively. Of course, since p
|
|
* and q are prime, phi(p) == p-1 and similarly for q.
|
|
*/
|
|
pm1 = copybn(p);
|
|
decbn(pm1);
|
|
qm1 = copybn(q);
|
|
decbn(qm1);
|
|
pexp = bigmod(exp, pm1);
|
|
qexp = bigmod(exp, qm1);
|
|
|
|
/*
|
|
* Do the two modpows.
|
|
*/
|
|
presult = modpow(base, pexp, p);
|
|
qresult = modpow(base, qexp, q);
|
|
|
|
/*
|
|
* Recombine the results. We want a value which is congruent to
|
|
* qresult mod q, and to presult mod p.
|
|
*
|
|
* We know that iqmp * q is congruent to 1 * mod p (by definition
|
|
* of iqmp) and to 0 mod q (obviously). So we start with qresult
|
|
* (which is congruent to qresult mod both primes), and add on
|
|
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
|
|
* to presult mod p without affecting its value mod q.
|
|
*/
|
|
if (bignum_cmp(presult, qresult) < 0) {
|
|
/*
|
|
* Can't subtract presult from qresult without first adding on
|
|
* p.
|
|
*/
|
|
Bignum tmp = presult;
|
|
presult = bigadd(presult, p);
|
|
freebn(tmp);
|
|
}
|
|
diff = bigsub(presult, qresult);
|
|
multiplier = bigmul(iqmp, q);
|
|
ret0 = bigmuladd(multiplier, diff, qresult);
|
|
|
|
/*
|
|
* Finally, reduce the result mod n.
|
|
*/
|
|
ret = bigmod(ret0, mod);
|
|
|
|
/*
|
|
* Free all the intermediate results before returning.
|
|
*/
|
|
freebn(pm1);
|
|
freebn(qm1);
|
|
freebn(pexp);
|
|
freebn(qexp);
|
|
freebn(presult);
|
|
freebn(qresult);
|
|
freebn(diff);
|
|
freebn(multiplier);
|
|
freebn(ret0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function is a wrapper on modpow(). It has the same effect as
|
|
* modpow(), but employs RSA blinding to protect against timing
|
|
* attacks and also uses the Chinese Remainder Theorem (implemented
|
|
* above, in crt_modpow()) to speed up the main operation.
|
|
*/
|
|
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
|
|
{
|
|
Bignum random, random_encrypted, random_inverse;
|
|
Bignum input_blinded, ret_blinded;
|
|
Bignum ret;
|
|
|
|
SHA512_State ss;
|
|
unsigned char digest512[64];
|
|
int digestused = lenof(digest512);
|
|
int hashseq = 0;
|
|
|
|
/*
|
|
* Start by inventing a random number chosen uniformly from the
|
|
* range 2..modulus-1. (We do this by preparing a random number
|
|
* of the right length and retrying if it's greater than the
|
|
* modulus, to prevent any potential Bleichenbacher-like
|
|
* attacks making use of the uneven distribution within the
|
|
* range that would arise from just reducing our number mod n.
|
|
* There are timing implications to the potential retries, of
|
|
* course, but all they tell you is the modulus, which you
|
|
* already knew.)
|
|
*
|
|
* To preserve determinism and avoid Pageant needing to share
|
|
* the random number pool, we actually generate this `random'
|
|
* number by hashing stuff with the private key.
|
|
*/
|
|
while (1) {
|
|
int bits, byte, bitsleft, v;
|
|
random = copybn(key->modulus);
|
|
/*
|
|
* Find the topmost set bit. (This function will return its
|
|
* index plus one.) Then we'll set all bits from that one
|
|
* downwards randomly.
|
|
*/
|
|
bits = bignum_bitcount(random);
|
|
byte = 0;
|
|
bitsleft = 0;
|
|
while (bits--) {
|
|
if (bitsleft <= 0) {
|
|
bitsleft = 8;
|
|
/*
|
|
* Conceptually the following few lines are equivalent to
|
|
* byte = random_byte();
|
|
*/
|
|
if (digestused >= lenof(digest512)) {
|
|
SHA512_Init(&ss);
|
|
put_data(&ss, "RSA deterministic blinding", 26);
|
|
put_uint32(&ss, hashseq);
|
|
put_mp_ssh2(&ss, key->private_exponent);
|
|
SHA512_Final(&ss, digest512);
|
|
hashseq++;
|
|
|
|
/*
|
|
* Now hash that digest plus the signature
|
|
* input.
|
|
*/
|
|
SHA512_Init(&ss);
|
|
put_data(&ss, digest512, sizeof(digest512));
|
|
put_mp_ssh2(&ss, input);
|
|
SHA512_Final(&ss, digest512);
|
|
|
|
digestused = 0;
|
|
}
|
|
byte = digest512[digestused++];
|
|
}
|
|
v = byte & 1;
|
|
byte >>= 1;
|
|
bitsleft--;
|
|
bignum_set_bit(random, bits, v);
|
|
}
|
|
bn_restore_invariant(random);
|
|
|
|
/*
|
|
* Now check that this number is strictly greater than
|
|
* zero, and strictly less than modulus.
|
|
*/
|
|
if (bignum_cmp(random, Zero) <= 0 ||
|
|
bignum_cmp(random, key->modulus) >= 0) {
|
|
freebn(random);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Also, make sure it has an inverse mod modulus.
|
|
*/
|
|
random_inverse = modinv(random, key->modulus);
|
|
if (!random_inverse) {
|
|
freebn(random);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* RSA blinding relies on the fact that (xy)^d mod n is equal
|
|
* to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
|
|
* y and y^d; then we multiply x by y, raise to the power d mod
|
|
* n as usual, and divide by y^d to recover x^d. Thus an
|
|
* attacker can't correlate the timing of the modpow with the
|
|
* input, because they don't know anything about the number
|
|
* that was input to the actual modpow.
|
|
*
|
|
* The clever bit is that we don't have to do a huge modpow to
|
|
* get y and y^d; we will use the number we just invented as
|
|
* _y^d_, and use the _public_ exponent to compute (y^d)^e = y
|
|
* from it, which is much faster to do.
|
|
*/
|
|
random_encrypted = crt_modpow(random, key->exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
input_blinded = modmul(input, random_encrypted, key->modulus);
|
|
ret_blinded = crt_modpow(input_blinded, key->private_exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
ret = modmul(ret_blinded, random_inverse, key->modulus);
|
|
|
|
freebn(ret_blinded);
|
|
freebn(input_blinded);
|
|
freebn(random_inverse);
|
|
freebn(random_encrypted);
|
|
freebn(random);
|
|
|
|
return ret;
|
|
}
|
|
|
|
Bignum rsa_ssh1_decrypt(Bignum input, struct RSAKey *key)
|
|
{
|
|
return rsa_privkey_op(input, key);
|
|
}
|
|
|
|
bool rsa_ssh1_decrypt_pkcs1(Bignum input, struct RSAKey *key, strbuf *outbuf)
|
|
{
|
|
strbuf *data = strbuf_new();
|
|
bool success = false;
|
|
BinarySource src[1];
|
|
|
|
{
|
|
Bignum *b = rsa_ssh1_decrypt(input, key);
|
|
int i;
|
|
for (i = (bignum_bitcount(key->modulus) + 7) / 8; i-- > 0 ;) {
|
|
put_byte(data, bignum_byte(b, i));
|
|
}
|
|
freebn(b);
|
|
}
|
|
|
|
BinarySource_BARE_INIT(src, data->u, data->len);
|
|
|
|
/* Check PKCS#1 formatting prefix */
|
|
if (get_byte(src) != 0) goto out;
|
|
if (get_byte(src) != 2) goto out;
|
|
while (1) {
|
|
unsigned char byte = get_byte(src);
|
|
if (get_err(src)) goto out;
|
|
if (byte == 0)
|
|
break;
|
|
}
|
|
|
|
/* Everything else is the payload */
|
|
success = true;
|
|
put_data(outbuf, get_ptr(src), get_avail(src));
|
|
|
|
out:
|
|
strbuf_free(data);
|
|
return success;
|
|
}
|
|
|
|
int rsastr_len(struct RSAKey *key)
|
|
{
|
|
Bignum md, ex;
|
|
int mdlen, exlen;
|
|
|
|
md = key->modulus;
|
|
ex = key->exponent;
|
|
mdlen = (bignum_bitcount(md) + 15) / 16;
|
|
exlen = (bignum_bitcount(ex) + 15) / 16;
|
|
return 4 * (mdlen + exlen) + 20;
|
|
}
|
|
|
|
void rsastr_fmt(char *str, struct RSAKey *key)
|
|
{
|
|
Bignum md, ex;
|
|
int len = 0, i, nibbles;
|
|
static const char hex[] = "0123456789abcdef";
|
|
|
|
md = key->modulus;
|
|
ex = key->exponent;
|
|
|
|
len += sprintf(str + len, "0x");
|
|
|
|
nibbles = (3 + bignum_bitcount(ex)) / 4;
|
|
if (nibbles < 1)
|
|
nibbles = 1;
|
|
for (i = nibbles; i--;)
|
|
str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
|
|
|
|
len += sprintf(str + len, ",0x");
|
|
|
|
nibbles = (3 + bignum_bitcount(md)) / 4;
|
|
if (nibbles < 1)
|
|
nibbles = 1;
|
|
for (i = nibbles; i--;)
|
|
str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
|
|
|
|
str[len] = '\0';
|
|
}
|
|
|
|
/*
|
|
* Generate a fingerprint string for the key. Compatible with the
|
|
* OpenSSH fingerprint code.
|
|
*/
|
|
char *rsa_ssh1_fingerprint(struct RSAKey *key)
|
|
{
|
|
struct MD5Context md5c;
|
|
unsigned char digest[16];
|
|
strbuf *out;
|
|
int i;
|
|
|
|
MD5Init(&md5c);
|
|
put_mp_ssh1(&md5c, key->modulus);
|
|
put_mp_ssh1(&md5c, key->exponent);
|
|
MD5Final(digest, &md5c);
|
|
|
|
out = strbuf_new();
|
|
strbuf_catf(out, "%d ", bignum_bitcount(key->modulus));
|
|
for (i = 0; i < 16; i++)
|
|
strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]);
|
|
if (key->comment)
|
|
strbuf_catf(out, " %s", key->comment);
|
|
return strbuf_to_str(out);
|
|
}
|
|
|
|
/*
|
|
* Verify that the public data in an RSA key matches the private
|
|
* data. We also check the private data itself: we ensure that p >
|
|
* q and that iqmp really is the inverse of q mod p.
|
|
*/
|
|
bool rsa_verify(struct RSAKey *key)
|
|
{
|
|
Bignum n, ed, pm1, qm1;
|
|
int cmp;
|
|
|
|
/* n must equal pq. */
|
|
n = bigmul(key->p, key->q);
|
|
cmp = bignum_cmp(n, key->modulus);
|
|
freebn(n);
|
|
if (cmp != 0)
|
|
return false;
|
|
|
|
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
|
|
pm1 = copybn(key->p);
|
|
decbn(pm1);
|
|
ed = modmul(key->exponent, key->private_exponent, pm1);
|
|
freebn(pm1);
|
|
cmp = bignum_cmp(ed, One);
|
|
freebn(ed);
|
|
if (cmp != 0)
|
|
return false;
|
|
|
|
qm1 = copybn(key->q);
|
|
decbn(qm1);
|
|
ed = modmul(key->exponent, key->private_exponent, qm1);
|
|
freebn(qm1);
|
|
cmp = bignum_cmp(ed, One);
|
|
freebn(ed);
|
|
if (cmp != 0)
|
|
return false;
|
|
|
|
/*
|
|
* Ensure p > q.
|
|
*
|
|
* I have seen key blobs in the wild which were generated with
|
|
* p < q, so instead of rejecting the key in this case we
|
|
* should instead flip them round into the canonical order of
|
|
* p > q. This also involves regenerating iqmp.
|
|
*/
|
|
if (bignum_cmp(key->p, key->q) <= 0) {
|
|
Bignum tmp = key->p;
|
|
key->p = key->q;
|
|
key->q = tmp;
|
|
|
|
freebn(key->iqmp);
|
|
key->iqmp = modinv(key->q, key->p);
|
|
if (!key->iqmp)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Ensure iqmp * q is congruent to 1, modulo p.
|
|
*/
|
|
n = modmul(key->iqmp, key->q, key->p);
|
|
cmp = bignum_cmp(n, One);
|
|
freebn(n);
|
|
if (cmp != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void rsa_ssh1_public_blob(BinarySink *bs, struct RSAKey *key,
|
|
RsaSsh1Order order)
|
|
{
|
|
put_uint32(bs, bignum_bitcount(key->modulus));
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
put_mp_ssh1(bs, key->exponent);
|
|
put_mp_ssh1(bs, key->modulus);
|
|
} else {
|
|
put_mp_ssh1(bs, key->modulus);
|
|
put_mp_ssh1(bs, key->exponent);
|
|
}
|
|
}
|
|
|
|
/* Given an SSH-1 public key blob, determine its length. */
|
|
int rsa_ssh1_public_blob_len(void *data, int maxlen)
|
|
{
|
|
BinarySource src[1];
|
|
|
|
BinarySource_BARE_INIT(src, data, maxlen);
|
|
|
|
/* Expect a length word, then exponent and modulus. (It doesn't
|
|
* even matter which order.) */
|
|
get_uint32(src);
|
|
freebn(get_mp_ssh1(src));
|
|
freebn(get_mp_ssh1(src));
|
|
|
|
if (get_err(src))
|
|
return -1;
|
|
|
|
/* Return the number of bytes consumed. */
|
|
return src->pos;
|
|
}
|
|
|
|
void freersapriv(struct RSAKey *key)
|
|
{
|
|
if (key->private_exponent) {
|
|
freebn(key->private_exponent);
|
|
key->private_exponent = NULL;
|
|
}
|
|
if (key->p) {
|
|
freebn(key->p);
|
|
key->p = NULL;
|
|
}
|
|
if (key->q) {
|
|
freebn(key->q);
|
|
key->q = NULL;
|
|
}
|
|
if (key->iqmp) {
|
|
freebn(key->iqmp);
|
|
key->iqmp = NULL;
|
|
}
|
|
}
|
|
|
|
void freersakey(struct RSAKey *key)
|
|
{
|
|
freersapriv(key);
|
|
if (key->modulus) {
|
|
freebn(key->modulus);
|
|
key->modulus = NULL;
|
|
}
|
|
if (key->exponent) {
|
|
freebn(key->exponent);
|
|
key->exponent = NULL;
|
|
}
|
|
if (key->comment) {
|
|
sfree(key->comment);
|
|
key->comment = NULL;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Implementation of the ssh-rsa signing key type.
|
|
*/
|
|
|
|
static void rsa2_freekey(ssh_key *key); /* forward reference */
|
|
|
|
static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
|
|
{
|
|
BinarySource src[1];
|
|
struct RSAKey *rsa;
|
|
|
|
BinarySource_BARE_INIT(src, data.ptr, data.len);
|
|
if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
|
|
return NULL;
|
|
|
|
rsa = snew(struct RSAKey);
|
|
rsa->sshk.vt = &ssh_rsa;
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->private_exponent = NULL;
|
|
rsa->p = rsa->q = rsa->iqmp = NULL;
|
|
rsa->comment = NULL;
|
|
|
|
if (get_err(src)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_freekey(ssh_key *key)
|
|
{
|
|
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
|
|
freersakey(rsa);
|
|
sfree(rsa);
|
|
}
|
|
|
|
static char *rsa2_cache_str(ssh_key *key)
|
|
{
|
|
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
|
|
char *p;
|
|
int len;
|
|
|
|
len = rsastr_len(rsa);
|
|
p = snewn(len, char);
|
|
rsastr_fmt(p, rsa);
|
|
return p;
|
|
}
|
|
|
|
static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
|
|
|
|
put_stringz(bs, "ssh-rsa");
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
}
|
|
|
|
static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
|
|
ptrlen pub, ptrlen priv)
|
|
{
|
|
BinarySource src[1];
|
|
ssh_key *sshk;
|
|
struct RSAKey *rsa;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return NULL;
|
|
|
|
rsa = container_of(sshk, struct RSAKey, sshk);
|
|
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
|
|
BinarySource *src)
|
|
{
|
|
struct RSAKey *rsa;
|
|
|
|
rsa = snew(struct RSAKey);
|
|
rsa->sshk.vt = &ssh_rsa;
|
|
rsa->comment = NULL;
|
|
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
}
|
|
|
|
static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
|
|
{
|
|
ssh_key *sshk;
|
|
struct RSAKey *rsa;
|
|
int ret;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return -1;
|
|
|
|
rsa = container_of(sshk, struct RSAKey, sshk);
|
|
ret = bignum_bitcount(rsa->modulus);
|
|
rsa2_freekey(&rsa->sshk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the magic ASN.1/DER prefix that goes in the decoded
|
|
* signature, between the string of FFs and the actual SHA hash
|
|
* value. The meaning of it is:
|
|
*
|
|
* 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
|
|
*
|
|
* 30 21 -- a constructed SEQUENCE of length 0x21
|
|
* 30 09 -- a constructed sub-SEQUENCE of length 9
|
|
* 06 05 -- an object identifier, length 5
|
|
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
|
|
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
|
|
* 05 00 -- NULL
|
|
* 04 14 -- a primitive OCTET STRING of length 0x14
|
|
* [0x14 bytes of hash data follows]
|
|
*
|
|
* The object id in the middle there is listed as `id-sha1' in
|
|
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
|
|
* ASN module for PKCS #1) and its expanded form is as follows:
|
|
*
|
|
* id-sha1 OBJECT IDENTIFIER ::= {
|
|
* iso(1) identified-organization(3) oiw(14) secsig(3)
|
|
* algorithms(2) 26 }
|
|
*/
|
|
static const unsigned char sha1_asn1_prefix[] = {
|
|
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
|
|
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
|
|
};
|
|
|
|
/*
|
|
* Two more similar pieces of ASN.1 used for signatures using SHA-256
|
|
* and SHA-512, in the same format but differing only in various
|
|
* length fields and OID.
|
|
*/
|
|
static const unsigned char sha256_asn1_prefix[] = {
|
|
0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
|
|
0x05, 0x00, 0x04, 0x20,
|
|
};
|
|
static const unsigned char sha512_asn1_prefix[] = {
|
|
0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
|
|
0x05, 0x00, 0x04, 0x40,
|
|
};
|
|
|
|
#define SHA1_ASN1_PREFIX_LEN sizeof(sha1_asn1_prefix)
|
|
|
|
static unsigned char *rsa_pkcs1_signature_string(
|
|
size_t nbytes, const struct ssh_hashalg *halg, ptrlen data)
|
|
{
|
|
const unsigned char *asn1_prefix;
|
|
unsigned asn1_prefix_size;
|
|
|
|
if (halg == &ssh_sha256) {
|
|
asn1_prefix = sha256_asn1_prefix;
|
|
asn1_prefix_size = sizeof(sha256_asn1_prefix);
|
|
} else if (halg == &ssh_sha512) {
|
|
asn1_prefix = sha512_asn1_prefix;
|
|
asn1_prefix_size = sizeof(sha512_asn1_prefix);
|
|
} else {
|
|
assert(halg == &ssh_sha1);
|
|
asn1_prefix = sha1_asn1_prefix;
|
|
asn1_prefix_size = sizeof(sha1_asn1_prefix);
|
|
}
|
|
|
|
size_t fixed_parts = halg->hlen + asn1_prefix_size + 2;
|
|
assert(nbytes >= fixed_parts);
|
|
size_t padding = nbytes - fixed_parts;
|
|
|
|
unsigned char *bytes = snewn(nbytes, unsigned char);
|
|
|
|
bytes[0] = 0;
|
|
bytes[1] = 1;
|
|
|
|
memset(bytes + 2, 0xFF, padding);
|
|
|
|
memcpy(bytes + 2 + padding, asn1_prefix, asn1_prefix_size);
|
|
|
|
ssh_hash *h = ssh_hash_new(halg);
|
|
put_data(h, data.ptr, data.len);
|
|
ssh_hash_final(h, bytes + 2 + padding + asn1_prefix_size);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
|
|
{
|
|
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
|
|
BinarySource src[1];
|
|
ptrlen type, in_pl;
|
|
Bignum in, out;
|
|
bool toret;
|
|
|
|
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
|
|
type = get_string(src);
|
|
/*
|
|
* RFC 4253 section 6.6: the signature integer in an ssh-rsa
|
|
* signature is 'without lengths or padding'. That is, we _don't_
|
|
* expect the usual leading zero byte if the topmost bit of the
|
|
* first byte is set. (However, because of the possibility of
|
|
* BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
|
|
* there.) So we can't use get_mp_ssh2, which enforces that
|
|
* leading-byte scheme; instead we use get_string and
|
|
* bignum_from_bytes, which will tolerate anything.
|
|
*/
|
|
in_pl = get_string(src);
|
|
if (get_err(src) || !ptrlen_eq_string(type, "ssh-rsa"))
|
|
return false;
|
|
|
|
in = bignum_from_bytes(in_pl.ptr, in_pl.len);
|
|
out = modpow(in, rsa->exponent, rsa->modulus);
|
|
freebn(in);
|
|
|
|
toret = true;
|
|
|
|
size_t nbytes = (bignum_bitcount(rsa->modulus) + 7) / 8;
|
|
unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, &ssh_sha1, data);
|
|
for (size_t i = 0; i < nbytes; i++)
|
|
if (bytes[nbytes-1 - i] != bignum_byte(out, i))
|
|
toret = false;
|
|
smemclr(bytes, nbytes);
|
|
sfree(bytes);
|
|
freebn(out);
|
|
|
|
return toret;
|
|
}
|
|
|
|
static void rsa2_sign(ssh_key *key, const void *data, int datalen,
|
|
unsigned flags, BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
|
|
unsigned char *bytes;
|
|
int nbytes;
|
|
Bignum in, out;
|
|
const struct ssh_hashalg *halg;
|
|
const char *sign_alg_name;
|
|
|
|
if (flags & SSH_AGENT_RSA_SHA2_256) {
|
|
halg = &ssh_sha256;
|
|
sign_alg_name = "rsa-sha2-256";
|
|
} else if (flags & SSH_AGENT_RSA_SHA2_512) {
|
|
halg = &ssh_sha512;
|
|
sign_alg_name = "rsa-sha2-512";
|
|
} else {
|
|
halg = &ssh_sha1;
|
|
sign_alg_name = "ssh-rsa";
|
|
}
|
|
|
|
nbytes = (bignum_bitcount(rsa->modulus) + 7) / 8;
|
|
|
|
bytes = rsa_pkcs1_signature_string(
|
|
nbytes, halg, make_ptrlen(data, datalen));
|
|
in = bignum_from_bytes(bytes, nbytes);
|
|
smemclr(bytes, nbytes);
|
|
sfree(bytes);
|
|
|
|
out = rsa_privkey_op(in, rsa);
|
|
freebn(in);
|
|
|
|
put_stringz(bs, sign_alg_name);
|
|
nbytes = (bignum_bitcount(out) + 7) / 8;
|
|
put_uint32(bs, nbytes);
|
|
for (size_t i = 0; i < nbytes; i++)
|
|
put_byte(bs, bignum_byte(out, nbytes - 1 - i));
|
|
|
|
freebn(out);
|
|
}
|
|
|
|
const ssh_keyalg ssh_rsa = {
|
|
rsa2_new_pub,
|
|
rsa2_new_priv,
|
|
rsa2_new_priv_openssh,
|
|
|
|
rsa2_freekey,
|
|
rsa2_sign,
|
|
rsa2_verify,
|
|
rsa2_public_blob,
|
|
rsa2_private_blob,
|
|
rsa2_openssh_blob,
|
|
rsa2_cache_str,
|
|
|
|
rsa2_pubkey_bits,
|
|
|
|
"ssh-rsa",
|
|
"rsa2",
|
|
NULL,
|
|
SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512,
|
|
};
|
|
|
|
struct RSAKey *ssh_rsakex_newkey(const void *data, int len)
|
|
{
|
|
ssh_key *sshk = rsa2_new_pub(&ssh_rsa, make_ptrlen(data, len));
|
|
if (!sshk)
|
|
return NULL;
|
|
return container_of(sshk, struct RSAKey, sshk);
|
|
}
|
|
|
|
void ssh_rsakex_freekey(struct RSAKey *key)
|
|
{
|
|
rsa2_freekey(&key->sshk);
|
|
}
|
|
|
|
int ssh_rsakex_klen(struct RSAKey *rsa)
|
|
{
|
|
return bignum_bitcount(rsa->modulus);
|
|
}
|
|
|
|
static void oaep_mask(const struct ssh_hashalg *h, void *seed, int seedlen,
|
|
void *vdata, int datalen)
|
|
{
|
|
unsigned char *data = (unsigned char *)vdata;
|
|
unsigned count = 0;
|
|
|
|
while (datalen > 0) {
|
|
int i, max = (datalen > h->hlen ? h->hlen : datalen);
|
|
ssh_hash *s;
|
|
unsigned char hash[SSH2_KEX_MAX_HASH_LEN];
|
|
|
|
assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
|
|
s = ssh_hash_new(h);
|
|
put_data(s, seed, seedlen);
|
|
put_uint32(s, count);
|
|
ssh_hash_final(s, hash);
|
|
count++;
|
|
|
|
for (i = 0; i < max; i++)
|
|
data[i] ^= hash[i];
|
|
|
|
data += max;
|
|
datalen -= max;
|
|
}
|
|
}
|
|
|
|
void ssh_rsakex_encrypt(const struct ssh_hashalg *h,
|
|
unsigned char *in, int inlen,
|
|
unsigned char *out, int outlen, struct RSAKey *rsa)
|
|
{
|
|
Bignum b1, b2;
|
|
int k, i;
|
|
char *p;
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Here we encrypt using RSAES-OAEP. Essentially this means:
|
|
*
|
|
* - we have a SHA-based `mask generation function' which
|
|
* creates a pseudo-random stream of mask data
|
|
* deterministically from an input chunk of data.
|
|
*
|
|
* - we have a random chunk of data called a seed.
|
|
*
|
|
* - we use the seed to generate a mask which we XOR with our
|
|
* plaintext.
|
|
*
|
|
* - then we use _the masked plaintext_ to generate a mask
|
|
* which we XOR with the seed.
|
|
*
|
|
* - then we concatenate the masked seed and the masked
|
|
* plaintext, and RSA-encrypt that lot.
|
|
*
|
|
* The result is that the data input to the encryption function
|
|
* is random-looking and (hopefully) contains no exploitable
|
|
* structure such as PKCS1-v1_5 does.
|
|
*
|
|
* For a precise specification, see RFC 3447, section 7.1.1.
|
|
* Some of the variable names below are derived from that, so
|
|
* it'd probably help to read it anyway.
|
|
*/
|
|
|
|
/* k denotes the length in octets of the RSA modulus. */
|
|
k = (7 + bignum_bitcount(rsa->modulus)) / 8;
|
|
|
|
/* The length of the input data must be at most k - 2hLen - 2. */
|
|
assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
|
|
|
|
/* The length of the output data wants to be precisely k. */
|
|
assert(outlen == k);
|
|
|
|
/*
|
|
* Now perform EME-OAEP encoding. First set up all the unmasked
|
|
* output data.
|
|
*/
|
|
/* Leading byte zero. */
|
|
out[0] = 0;
|
|
/* At position 1, the seed: HLEN bytes of random data. */
|
|
for (i = 0; i < HLEN; i++)
|
|
out[i + 1] = random_byte();
|
|
/* At position 1+HLEN, the data block DB, consisting of: */
|
|
/* The hash of the label (we only support an empty label here) */
|
|
{
|
|
ssh_hash *s = ssh_hash_new(h);
|
|
ssh_hash_final(s, out + HLEN + 1);
|
|
}
|
|
/* A bunch of zero octets */
|
|
memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
|
|
/* A single 1 octet, followed by the input message data. */
|
|
out[outlen - inlen - 1] = 1;
|
|
memcpy(out + outlen - inlen, in, inlen);
|
|
|
|
/*
|
|
* Now use the seed data to mask the block DB.
|
|
*/
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/*
|
|
* And now use the masked DB to mask the seed itself.
|
|
*/
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
|
|
/*
|
|
* Now `out' contains precisely the data we want to
|
|
* RSA-encrypt.
|
|
*/
|
|
b1 = bignum_from_bytes(out, outlen);
|
|
b2 = modpow(b1, rsa->exponent, rsa->modulus);
|
|
p = (char *)out;
|
|
for (i = outlen; i--;) {
|
|
*p++ = bignum_byte(b2, i);
|
|
}
|
|
freebn(b1);
|
|
freebn(b2);
|
|
|
|
/*
|
|
* And we're done.
|
|
*/
|
|
}
|
|
|
|
Bignum ssh_rsakex_decrypt(const struct ssh_hashalg *h, ptrlen ciphertext,
|
|
struct RSAKey *rsa)
|
|
{
|
|
Bignum b1, b2;
|
|
int outlen, i;
|
|
unsigned char *out;
|
|
unsigned char labelhash[64];
|
|
ssh_hash *hash;
|
|
BinarySource src[1];
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Decryption side of the RSA key exchange operation.
|
|
*/
|
|
|
|
/* The length of the encrypted data should be exactly the length
|
|
* in octets of the RSA modulus.. */
|
|
outlen = (7 + bignum_bitcount(rsa->modulus)) / 8;
|
|
if (ciphertext.len != outlen)
|
|
return NULL;
|
|
|
|
/* Do the RSA decryption, and extract the result into a byte array. */
|
|
b1 = bignum_from_bytes(ciphertext.ptr, ciphertext.len);
|
|
b2 = rsa_privkey_op(b1, rsa);
|
|
out = snewn(outlen, unsigned char);
|
|
for (i = 0; i < outlen; i++)
|
|
out[i] = bignum_byte(b2, outlen-1-i);
|
|
freebn(b1);
|
|
freebn(b2);
|
|
|
|
/* Do the OAEP masking operations, in the reverse order from encryption */
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/* Check the leading byte is zero. */
|
|
if (out[0] != 0) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
/* Check the label hash at position 1+HLEN */
|
|
assert(HLEN <= lenof(labelhash));
|
|
hash = ssh_hash_new(h);
|
|
ssh_hash_final(hash, labelhash);
|
|
if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
/* Expect zero bytes followed by a 1 byte */
|
|
for (i = 1 + 2 * HLEN; i < outlen; i++) {
|
|
if (out[i] == 1) {
|
|
i++; /* skip over the 1 byte */
|
|
break;
|
|
} else if (out[i] != 1) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
}
|
|
/* And what's left is the input message data, which should be
|
|
* encoded as an ordinary SSH-2 mpint. */
|
|
BinarySource_BARE_INIT(src, out + i, outlen - i);
|
|
b1 = get_mp_ssh2(src);
|
|
sfree(out);
|
|
if (get_err(src) || get_avail(src) != 0) {
|
|
freebn(b1);
|
|
return NULL;
|
|
}
|
|
|
|
/* Success! */
|
|
return b1;
|
|
}
|
|
|
|
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
|
|
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
|
|
|
|
static const struct ssh_kex ssh_rsa_kex_sha1 = {
|
|
"rsa1024-sha1", NULL, KEXTYPE_RSA,
|
|
&ssh_sha1, &ssh_rsa_kex_extra_sha1,
|
|
};
|
|
|
|
static const struct ssh_kex ssh_rsa_kex_sha256 = {
|
|
"rsa2048-sha256", NULL, KEXTYPE_RSA,
|
|
&ssh_sha256, &ssh_rsa_kex_extra_sha256,
|
|
};
|
|
|
|
static const struct ssh_kex *const rsa_kex_list[] = {
|
|
&ssh_rsa_kex_sha256,
|
|
&ssh_rsa_kex_sha1
|
|
};
|
|
|
|
const struct ssh_kexes ssh_rsa_kex = {
|
|
sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
|
|
rsa_kex_list
|
|
};
|