1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/sshbn.c
Simon Tatham 5bcb8d6aac More consistently defend against division by zero with assertions. We
now check that all the modular functions (modpow, modinv, modmul,
bigdivmod) have nonzero moduli, and that modinv also has a nonzero
thing to try to invert.

[originally from svn r9987]
2013-08-04 19:33:53 +00:00

1962 lines
52 KiB
C

/*
* Bignum routines for RSA and DH and stuff.
*/
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "misc.h"
/*
* Usage notes:
* * Do not call the DIVMOD_WORD macro with expressions such as array
* subscripts, as some implementations object to this (see below).
* * Note that none of the division methods below will cope if the
* quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
* to avoid this case.
* If this condition occurs, in the case of the x86 DIV instruction,
* an overflow exception will occur, which (according to a correspondent)
* will manifest on Windows as something like
* 0xC0000095: Integer overflow
* The C variant won't give the right answer, either.
*/
#if defined __GNUC__ && defined __i386__
typedef unsigned long BignumInt;
typedef unsigned long long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFUL
#define BIGNUM_TOP_BIT 0x80000000UL
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) \
__asm__("div %2" : \
"=d" (r), "=a" (q) : \
"r" (w), "d" (hi), "a" (lo))
#elif defined _MSC_VER && defined _M_IX86
typedef unsigned __int32 BignumInt;
typedef unsigned __int64 BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFUL
#define BIGNUM_TOP_BIT 0x80000000UL
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
/* Note: MASM interprets array subscripts in the macro arguments as
* assembler syntax, which gives the wrong answer. Don't supply them.
* <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
__asm mov edx, hi \
__asm mov eax, lo \
__asm div w \
__asm mov r, edx \
__asm mov q, eax \
} while(0)
#elif defined _LP64
/* 64-bit architectures can do 32x32->64 chunks at a time */
typedef unsigned int BignumInt;
typedef unsigned long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFU
#define BIGNUM_TOP_BIT 0x80000000U
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
q = n / w; \
r = n % w; \
} while (0)
#elif defined _LLP64
/* 64-bit architectures in which unsigned long is 32 bits, not 64 */
typedef unsigned long BignumInt;
typedef unsigned long long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFUL
#define BIGNUM_TOP_BIT 0x80000000UL
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
q = n / w; \
r = n % w; \
} while (0)
#else
/* Fallback for all other cases */
typedef unsigned short BignumInt;
typedef unsigned long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFU
#define BIGNUM_TOP_BIT 0x8000U
#define BIGNUM_INT_BITS 16
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
q = n / w; \
r = n % w; \
} while (0)
#endif
#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
#define BIGNUM_INTERNAL
typedef BignumInt *Bignum;
#include "ssh.h"
BignumInt bnZero[1] = { 0 };
BignumInt bnOne[2] = { 1, 1 };
/*
* The Bignum format is an array of `BignumInt'. The first
* element of the array counts the remaining elements. The
* remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
* significant digit first. (So it's trivial to extract the bit
* with value 2^n for any n.)
*
* All Bignums in this module are positive. Negative numbers must
* be dealt with outside it.
*
* INVARIANT: the most significant word of any Bignum must be
* nonzero.
*/
Bignum Zero = bnZero, One = bnOne;
static Bignum newbn(int length)
{
Bignum b = snewn(length + 1, BignumInt);
if (!b)
abort(); /* FIXME */
memset(b, 0, (length + 1) * sizeof(*b));
b[0] = length;
return b;
}
void bn_restore_invariant(Bignum b)
{
while (b[0] > 1 && b[b[0]] == 0)
b[0]--;
}
Bignum copybn(Bignum orig)
{
Bignum b = snewn(orig[0] + 1, BignumInt);
if (!b)
abort(); /* FIXME */
memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
return b;
}
void freebn(Bignum b)
{
/*
* Burn the evidence, just in case.
*/
smemclr(b, sizeof(b[0]) * (b[0] + 1));
sfree(b);
}
Bignum bn_power_2(int n)
{
Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
bignum_set_bit(ret, n, 1);
return ret;
}
/*
* Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
* big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
* off the top.
*/
static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len)
{
int i;
BignumDblInt carry = 0;
for (i = len-1; i >= 0; i--) {
carry += (BignumDblInt)a[i] + b[i];
c[i] = (BignumInt)carry;
carry >>= BIGNUM_INT_BITS;
}
return (BignumInt)carry;
}
/*
* Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
* all big-endian arrays of 'len' BignumInts. Any borrow from the top
* is ignored.
*/
static void internal_sub(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len)
{
int i;
BignumDblInt carry = 1;
for (i = len-1; i >= 0; i--) {
carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
c[i] = (BignumInt)carry;
carry >>= BIGNUM_INT_BITS;
}
}
/*
* Compute c = a * b.
* Input is in the first len words of a and b.
* Result is returned in the first 2*len words of c.
*
* 'scratch' must point to an array of BignumInt of size at least
* mul_compute_scratch(len). (This covers the needs of internal_mul
* and all its recursive calls to itself.)
*/
#define KARATSUBA_THRESHOLD 50
static int mul_compute_scratch(int len)
{
int ret = 0;
while (len > KARATSUBA_THRESHOLD) {
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
int midlen = botlen + 1;
ret += 4*midlen;
len = midlen;
}
return ret;
}
static void internal_mul(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len, BignumInt *scratch)
{
if (len > KARATSUBA_THRESHOLD) {
int i;
/*
* Karatsuba divide-and-conquer algorithm. Cut each input in
* half, so that it's expressed as two big 'digits' in a giant
* base D:
*
* a = a_1 D + a_0
* b = b_1 D + b_0
*
* Then the product is of course
*
* ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
*
* and we compute the three coefficients by recursively
* calling ourself to do half-length multiplications.
*
* The clever bit that makes this worth doing is that we only
* need _one_ half-length multiplication for the central
* coefficient rather than the two that it obviouly looks
* like, because we can use a single multiplication to compute
*
* (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
*
* and then we subtract the other two coefficients (a_1 b_1
* and a_0 b_0) which we were computing anyway.
*
* Hence we get to multiply two numbers of length N in about
* three times as much work as it takes to multiply numbers of
* length N/2, which is obviously better than the four times
* as much work it would take if we just did a long
* conventional multiply.
*/
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
int midlen = botlen + 1;
BignumDblInt carry;
#ifdef KARA_DEBUG
int i;
#endif
/*
* The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
* in the output array, so we can compute them immediately in
* place.
*/
#ifdef KARA_DEBUG
printf("a1,a0 = 0x");
for (i = 0; i < len; i++) {
if (i == toplen) printf(", 0x");
printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
}
printf("\n");
printf("b1,b0 = 0x");
for (i = 0; i < len; i++) {
if (i == toplen) printf(", 0x");
printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
}
printf("\n");
#endif
/* a_1 b_1 */
internal_mul(a, b, c, toplen, scratch);
#ifdef KARA_DEBUG
printf("a1b1 = 0x");
for (i = 0; i < 2*toplen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
}
printf("\n");
#endif
/* a_0 b_0 */
internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
#ifdef KARA_DEBUG
printf("a0b0 = 0x");
for (i = 0; i < 2*botlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
}
printf("\n");
#endif
/* Zero padding. midlen exceeds toplen by at most 2, so just
* zero the first two words of each input and the rest will be
* copied over. */
scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
for (i = 0; i < toplen; i++) {
scratch[midlen - toplen + i] = a[i]; /* a_1 */
scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
}
/* compute a_1 + a_0 */
scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
#ifdef KARA_DEBUG
printf("a1plusa0 = 0x");
for (i = 0; i < midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
}
printf("\n");
#endif
/* compute b_1 + b_0 */
scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
scratch+midlen+1, botlen);
#ifdef KARA_DEBUG
printf("b1plusb0 = 0x");
for (i = 0; i < midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
}
printf("\n");
#endif
/*
* Now we can do the third multiplication.
*/
internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
scratch + 4*midlen);
#ifdef KARA_DEBUG
printf("a1plusa0timesb1plusb0 = 0x");
for (i = 0; i < 2*midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
}
printf("\n");
#endif
/*
* Now we can reuse the first half of 'scratch' to compute the
* sum of the outer two coefficients, to subtract from that
* product to obtain the middle one.
*/
scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
for (i = 0; i < 2*toplen; i++)
scratch[2*midlen - 2*toplen + i] = c[i];
scratch[1] = internal_add(scratch+2, c + 2*toplen,
scratch+2, 2*botlen);
#ifdef KARA_DEBUG
printf("a1b1plusa0b0 = 0x");
for (i = 0; i < 2*midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
}
printf("\n");
#endif
internal_sub(scratch + 2*midlen, scratch,
scratch + 2*midlen, 2*midlen);
#ifdef KARA_DEBUG
printf("a1b0plusa0b1 = 0x");
for (i = 0; i < 2*midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
}
printf("\n");
#endif
/*
* And now all we need to do is to add that middle coefficient
* back into the output. We may have to propagate a carry
* further up the output, but we can be sure it won't
* propagate right the way off the top.
*/
carry = internal_add(c + 2*len - botlen - 2*midlen,
scratch + 2*midlen,
c + 2*len - botlen - 2*midlen, 2*midlen);
i = 2*len - botlen - 2*midlen - 1;
while (carry) {
assert(i >= 0);
carry += c[i];
c[i] = (BignumInt)carry;
carry >>= BIGNUM_INT_BITS;
i--;
}
#ifdef KARA_DEBUG
printf("ab = 0x");
for (i = 0; i < 2*len; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
}
printf("\n");
#endif
} else {
int i;
BignumInt carry;
BignumDblInt t;
const BignumInt *ap, *bp;
BignumInt *cp, *cps;
/*
* Multiply in the ordinary O(N^2) way.
*/
for (i = 0; i < 2 * len; i++)
c[i] = 0;
for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
carry = 0;
for (cp = cps, bp = b + len; cp--, bp-- > b ;) {
t = (MUL_WORD(*ap, *bp) + carry) + *cp;
*cp = (BignumInt) t;
carry = (BignumInt)(t >> BIGNUM_INT_BITS);
}
*cp = carry;
}
}
}
/*
* Variant form of internal_mul used for the initial step of
* Montgomery reduction. Only bothers outputting 'len' words
* (everything above that is thrown away).
*/
static void internal_mul_low(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len, BignumInt *scratch)
{
if (len > KARATSUBA_THRESHOLD) {
int i;
/*
* Karatsuba-aware version of internal_mul_low. As before, we
* express each input value as a shifted combination of two
* halves:
*
* a = a_1 D + a_0
* b = b_1 D + b_0
*
* Then the full product is, as before,
*
* ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
*
* Provided we choose D on the large side (so that a_0 and b_0
* are _at least_ as long as a_1 and b_1), we don't need the
* topmost term at all, and we only need half of the middle
* term. So there's no point in doing the proper Karatsuba
* optimisation which computes the middle term using the top
* one, because we'd take as long computing the top one as
* just computing the middle one directly.
*
* So instead, we do a much more obvious thing: we call the
* fully optimised internal_mul to compute a_0 b_0, and we
* recursively call ourself to compute the _bottom halves_ of
* a_1 b_0 and a_0 b_1, each of which we add into the result
* in the obvious way.
*
* In other words, there's no actual Karatsuba _optimisation_
* in this function; the only benefit in doing it this way is
* that we call internal_mul proper for a large part of the
* work, and _that_ can optimise its operation.
*/
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
/*
* Scratch space for the various bits and pieces we're going
* to be adding together: we need botlen*2 words for a_0 b_0
* (though we may end up throwing away its topmost word), and
* toplen words for each of a_1 b_0 and a_0 b_1. That adds up
* to exactly 2*len.
*/
/* a_0 b_0 */
internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
scratch + 2*len);
/* a_1 b_0 */
internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
scratch + 2*len);
/* a_0 b_1 */
internal_mul_low(a + len - toplen, b, scratch, toplen,
scratch + 2*len);
/* Copy the bottom half of the big coefficient into place */
for (i = 0; i < botlen; i++)
c[toplen + i] = scratch[2*toplen + botlen + i];
/* Add the two small coefficients, throwing away the returned carry */
internal_add(scratch, scratch + toplen, scratch, toplen);
/* And add that to the large coefficient, leaving the result in c. */
internal_add(scratch, scratch + 2*toplen + botlen - toplen,
c, toplen);
} else {
int i;
BignumInt carry;
BignumDblInt t;
const BignumInt *ap, *bp;
BignumInt *cp, *cps;
/*
* Multiply in the ordinary O(N^2) way.
*/
for (i = 0; i < len; i++)
c[i] = 0;
for (cps = c + len, ap = a + len; ap-- > a; cps--) {
carry = 0;
for (cp = cps, bp = b + len; bp--, cp-- > c ;) {
t = (MUL_WORD(*ap, *bp) + carry) + *cp;
*cp = (BignumInt) t;
carry = (BignumInt)(t >> BIGNUM_INT_BITS);
}
}
}
}
/*
* Montgomery reduction. Expects x to be a big-endian array of 2*len
* BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
* BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
* a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
* x' < n.
*
* 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
* each, containing respectively n and the multiplicative inverse of
* -n mod r.
*
* 'tmp' is an array of BignumInt used as scratch space, of length at
* least 3*len + mul_compute_scratch(len).
*/
static void monty_reduce(BignumInt *x, const BignumInt *n,
const BignumInt *mninv, BignumInt *tmp, int len)
{
int i;
BignumInt carry;
/*
* Multiply x by (-n)^{-1} mod r. This gives us a value m such
* that mn is congruent to -x mod r. Hence, mn+x is an exact
* multiple of r, and is also (obviously) congruent to x mod n.
*/
internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
/*
* Compute t = (mn+x)/r in ordinary, non-modular, integer
* arithmetic. By construction this is exact, and is congruent mod
* n to x * r^{-1}, i.e. the answer we want.
*
* The following multiply leaves that answer in the _most_
* significant half of the 'x' array, so then we must shift it
* down.
*/
internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
carry = internal_add(x, tmp+len, x, 2*len);
for (i = 0; i < len; i++)
x[len + i] = x[i], x[i] = 0;
/*
* Reduce t mod n. This doesn't require a full-on division by n,
* but merely a test and single optional subtraction, since we can
* show that 0 <= t < 2n.
*
* Proof:
* + we computed m mod r, so 0 <= m < r.
* + so 0 <= mn < rn, obviously
* + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
* + yielding 0 <= (mn+x)/r < 2n as required.
*/
if (!carry) {
for (i = 0; i < len; i++)
if (x[len + i] != n[i])
break;
}
if (carry || i >= len || x[len + i] > n[i])
internal_sub(x+len, n, x+len, len);
}
static void internal_add_shifted(BignumInt *number,
unsigned n, int shift)
{
int word = 1 + (shift / BIGNUM_INT_BITS);
int bshift = shift % BIGNUM_INT_BITS;
BignumDblInt addend;
addend = (BignumDblInt)n << bshift;
while (addend) {
addend += number[word];
number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
addend >>= BIGNUM_INT_BITS;
word++;
}
}
/*
* Compute a = a % m.
* Input in first alen words of a and first mlen words of m.
* Output in first alen words of a
* (of which first alen-mlen words will be zero).
* The MSW of m MUST have its high bit set.
* Quotient is accumulated in the `quotient' array, which is a Bignum
* rather than the internal bigendian format. Quotient parts are shifted
* left by `qshift' before adding into quot.
*/
static void internal_mod(BignumInt *a, int alen,
BignumInt *m, int mlen,
BignumInt *quot, int qshift)
{
BignumInt m0, m1;
unsigned int h;
int i, k;
m0 = m[0];
assert(m0 >> (BIGNUM_INT_BITS-1) == 1);
if (mlen > 1)
m1 = m[1];
else
m1 = 0;
for (i = 0; i <= alen - mlen; i++) {
BignumDblInt t;
unsigned int q, r, c, ai1;
if (i == 0) {
h = 0;
} else {
h = a[i - 1];
a[i - 1] = 0;
}
if (i == alen - 1)
ai1 = 0;
else
ai1 = a[i + 1];
/* Find q = h:a[i] / m0 */
if (h >= m0) {
/*
* Special case.
*
* To illustrate it, suppose a BignumInt is 8 bits, and
* we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
* our initial division will be 0xA123 / 0xA1, which
* will give a quotient of 0x100 and a divide overflow.
* However, the invariants in this division algorithm
* are not violated, since the full number A1:23:... is
* _less_ than the quotient prefix A1:B2:... and so the
* following correction loop would have sorted it out.
*
* In this situation we set q to be the largest
* quotient we _can_ stomach (0xFF, of course).
*/
q = BIGNUM_INT_MASK;
} else {
/* Macro doesn't want an array subscript expression passed
* into it (see definition), so use a temporary. */
BignumInt tmplo = a[i];
DIVMOD_WORD(q, r, h, tmplo, m0);
/* Refine our estimate of q by looking at
h:a[i]:a[i+1] / m0:m1 */
t = MUL_WORD(m1, q);
if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
q--;
t -= m1;
r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
if (r >= (BignumDblInt) m0 &&
t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
}
}
/* Subtract q * m from a[i...] */
c = 0;
for (k = mlen - 1; k >= 0; k--) {
t = MUL_WORD(q, m[k]);
t += c;
c = (unsigned)(t >> BIGNUM_INT_BITS);
if ((BignumInt) t > a[i + k])
c++;
a[i + k] -= (BignumInt) t;
}
/* Add back m in case of borrow */
if (c != h) {
t = 0;
for (k = mlen - 1; k >= 0; k--) {
t += m[k];
t += a[i + k];
a[i + k] = (BignumInt) t;
t = t >> BIGNUM_INT_BITS;
}
q--;
}
if (quot)
internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
}
}
/*
* Compute (base ^ exp) % mod, the pedestrian way.
*/
Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
{
BignumInt *a, *b, *n, *m, *scratch;
int mshift;
int mlen, scratchlen, i, j;
Bignum base, result;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/*
* Make sure the base is smaller than the modulus, by reducing
* it modulo the modulus if not.
*/
base = bigmod(base_in, mod);
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, BignumInt);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
if ((m[0] << mshift) & BIGNUM_TOP_BIT)
break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
m[mlen - 1] = m[mlen - 1] << mshift;
}
/* Allocate n of size mlen, copy base to n */
n = snewn(mlen, BignumInt);
i = mlen - base[0];
for (j = 0; j < i; j++)
n[j] = 0;
for (j = 0; j < (int)base[0]; j++)
n[i + j] = base[base[0] - j];
/* Allocate a and b of size 2*mlen. Set a = 1 */
a = snewn(2 * mlen, BignumInt);
b = snewn(2 * mlen, BignumInt);
for (i = 0; i < 2 * mlen; i++)
a[i] = 0;
a[2 * mlen - 1] = 1;
/* Scratch space for multiplies */
scratchlen = mul_compute_scratch(mlen);
scratch = snewn(scratchlen, BignumInt);
/* Skip leading zero bits of exp. */
i = 0;
j = BIGNUM_INT_BITS-1;
while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
j--;
if (j < 0) {
i++;
j = BIGNUM_INT_BITS-1;
}
}
/* Main computation */
while (i < (int)exp[0]) {
while (j >= 0) {
internal_mul(a + mlen, a + mlen, b, mlen, scratch);
internal_mod(b, mlen * 2, m, mlen, NULL, 0);
if ((exp[exp[0] - i] & (1 << j)) != 0) {
internal_mul(b + mlen, n, a, mlen, scratch);
internal_mod(a, mlen * 2, m, mlen, NULL, 0);
} else {
BignumInt *t;
t = a;
a = b;
b = t;
}
j--;
}
i++;
j = BIGNUM_INT_BITS-1;
}
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = mlen - 1; i < 2 * mlen - 1; i++)
a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
internal_mod(a, mlen * 2, m, mlen, NULL, 0);
for (i = 2 * mlen - 1; i >= mlen; i--)
a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
}
/* Copy result to buffer */
result = newbn(mod[0]);
for (i = 0; i < mlen; i++)
result[result[0] - i] = a[i + mlen];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
smemclr(a, 2 * mlen * sizeof(*a));
sfree(a);
smemclr(scratch, scratchlen * sizeof(*scratch));
sfree(scratch);
smemclr(b, 2 * mlen * sizeof(*b));
sfree(b);
smemclr(m, mlen * sizeof(*m));
sfree(m);
smemclr(n, mlen * sizeof(*n));
sfree(n);
freebn(base);
return result;
}
/*
* Compute (base ^ exp) % mod. Uses the Montgomery multiplication
* technique where possible, falling back to modpow_simple otherwise.
*/
Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
{
BignumInt *a, *b, *x, *n, *mninv, *scratch;
int len, scratchlen, i, j;
Bignum base, base2, r, rn, inv, result;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/*
* mod had better be odd, or we can't do Montgomery multiplication
* using a power of two at all.
*/
if (!(mod[1] & 1))
return modpow_simple(base_in, exp, mod);
/*
* Make sure the base is smaller than the modulus, by reducing
* it modulo the modulus if not.
*/
base = bigmod(base_in, mod);
/*
* Compute the inverse of n mod r, for monty_reduce. (In fact we
* want the inverse of _minus_ n mod r, but we'll sort that out
* below.)
*/
len = mod[0];
r = bn_power_2(BIGNUM_INT_BITS * len);
inv = modinv(mod, r);
/*
* Multiply the base by r mod n, to get it into Montgomery
* representation.
*/
base2 = modmul(base, r, mod);
freebn(base);
base = base2;
rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
freebn(r); /* won't need this any more */
/*
* Set up internal arrays of the right lengths, in big-endian
* format, containing the base, the modulus, and the modulus's
* inverse.
*/
n = snewn(len, BignumInt);
for (j = 0; j < len; j++)
n[len - 1 - j] = mod[j + 1];
mninv = snewn(len, BignumInt);
for (j = 0; j < len; j++)
mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
freebn(inv); /* we don't need this copy of it any more */
/* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
x = snewn(len, BignumInt);
for (j = 0; j < len; j++)
x[j] = 0;
internal_sub(x, mninv, mninv, len);
/* x = snewn(len, BignumInt); */ /* already done above */
for (j = 0; j < len; j++)
x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
freebn(base); /* we don't need this copy of it any more */
a = snewn(2*len, BignumInt);
b = snewn(2*len, BignumInt);
for (j = 0; j < len; j++)
a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
freebn(rn);
/* Scratch space for multiplies */
scratchlen = 3*len + mul_compute_scratch(len);
scratch = snewn(scratchlen, BignumInt);
/* Skip leading zero bits of exp. */
i = 0;
j = BIGNUM_INT_BITS-1;
while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
j--;
if (j < 0) {
i++;
j = BIGNUM_INT_BITS-1;
}
}
/* Main computation */
while (i < (int)exp[0]) {
while (j >= 0) {
internal_mul(a + len, a + len, b, len, scratch);
monty_reduce(b, n, mninv, scratch, len);
if ((exp[exp[0] - i] & (1 << j)) != 0) {
internal_mul(b + len, x, a, len, scratch);
monty_reduce(a, n, mninv, scratch, len);
} else {
BignumInt *t;
t = a;
a = b;
b = t;
}
j--;
}
i++;
j = BIGNUM_INT_BITS-1;
}
/*
* Final monty_reduce to get back from the adjusted Montgomery
* representation.
*/
monty_reduce(a, n, mninv, scratch, len);
/* Copy result to buffer */
result = newbn(mod[0]);
for (i = 0; i < len; i++)
result[result[0] - i] = a[i + len];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
smemclr(scratch, scratchlen * sizeof(*scratch));
sfree(scratch);
smemclr(a, 2 * len * sizeof(*a));
sfree(a);
smemclr(b, 2 * len * sizeof(*b));
sfree(b);
smemclr(mninv, len * sizeof(*mninv));
sfree(mninv);
smemclr(n, len * sizeof(*n));
sfree(n);
smemclr(x, len * sizeof(*x));
sfree(x);
return result;
}
/*
* Compute (p * q) % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
*/
Bignum modmul(Bignum p, Bignum q, Bignum mod)
{
BignumInt *a, *n, *m, *o, *scratch;
int mshift, scratchlen;
int pqlen, mlen, rlen, i, j;
Bignum result;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, BignumInt);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
if ((m[0] << mshift) & BIGNUM_TOP_BIT)
break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
m[mlen - 1] = m[mlen - 1] << mshift;
}
pqlen = (p[0] > q[0] ? p[0] : q[0]);
/*
* Make sure that we're allowing enough space. The shifting below
* will underflow the vectors we allocate if pqlen is too small.
*/
if (2*pqlen <= mlen)
pqlen = mlen/2 + 1;
/* Allocate n of size pqlen, copy p to n */
n = snewn(pqlen, BignumInt);
i = pqlen - p[0];
for (j = 0; j < i; j++)
n[j] = 0;
for (j = 0; j < (int)p[0]; j++)
n[i + j] = p[p[0] - j];
/* Allocate o of size pqlen, copy q to o */
o = snewn(pqlen, BignumInt);
i = pqlen - q[0];
for (j = 0; j < i; j++)
o[j] = 0;
for (j = 0; j < (int)q[0]; j++)
o[i + j] = q[q[0] - j];
/* Allocate a of size 2*pqlen for result */
a = snewn(2 * pqlen, BignumInt);
/* Scratch space for multiplies */
scratchlen = mul_compute_scratch(pqlen);
scratch = snewn(scratchlen, BignumInt);
/* Main computation */
internal_mul(n, o, a, pqlen, scratch);
internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
}
/* Copy result to buffer */
rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
result = newbn(rlen);
for (i = 0; i < rlen; i++)
result[result[0] - i] = a[i + 2 * pqlen - rlen];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
smemclr(scratch, scratchlen * sizeof(*scratch));
sfree(scratch);
smemclr(a, 2 * pqlen * sizeof(*a));
sfree(a);
smemclr(m, mlen * sizeof(*m));
sfree(m);
smemclr(n, pqlen * sizeof(*n));
sfree(n);
smemclr(o, pqlen * sizeof(*o));
sfree(o);
return result;
}
/*
* Compute p % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
* We optionally write out a quotient if `quotient' is non-NULL.
* We can avoid writing out the result if `result' is NULL.
*/
static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
{
BignumInt *n, *m;
int mshift;
int plen, mlen, i, j;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, BignumInt);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
if ((m[0] << mshift) & BIGNUM_TOP_BIT)
break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
m[mlen - 1] = m[mlen - 1] << mshift;
}
plen = p[0];
/* Ensure plen > mlen */
if (plen <= mlen)
plen = mlen + 1;
/* Allocate n of size plen, copy p to n */
n = snewn(plen, BignumInt);
for (j = 0; j < plen; j++)
n[j] = 0;
for (j = 1; j <= (int)p[0]; j++)
n[plen - j] = p[j];
/* Main computation */
internal_mod(n, plen, m, mlen, quotient, mshift);
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = plen - mlen - 1; i < plen - 1; i++)
n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
n[plen - 1] = n[plen - 1] << mshift;
internal_mod(n, plen, m, mlen, quotient, 0);
for (i = plen - 1; i >= plen - mlen; i--)
n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
}
/* Copy result to buffer */
if (result) {
for (i = 1; i <= (int)result[0]; i++) {
int j = plen - i;
result[i] = j >= 0 ? n[j] : 0;
}
}
/* Free temporary arrays */
smemclr(m, mlen * sizeof(*m));
sfree(m);
smemclr(n, plen * sizeof(*n));
sfree(n);
}
/*
* Decrement a number.
*/
void decbn(Bignum bn)
{
int i = 1;
while (i < (int)bn[0] && bn[i] == 0)
bn[i++] = BIGNUM_INT_MASK;
bn[i]--;
}
Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
{
Bignum result;
int w, i;
w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
result = newbn(w);
for (i = 1; i <= w; i++)
result[i] = 0;
for (i = nbytes; i--;) {
unsigned char byte = *data++;
result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
}
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
return result;
}
/*
* Read an SSH-1-format bignum from a data buffer. Return the number
* of bytes consumed, or -1 if there wasn't enough data.
*/
int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
{
const unsigned char *p = data;
int i;
int w, b;
if (len < 2)
return -1;
w = 0;
for (i = 0; i < 2; i++)
w = (w << 8) + *p++;
b = (w + 7) / 8; /* bits -> bytes */
if (len < b+2)
return -1;
if (!result) /* just return length */
return b + 2;
*result = bignum_from_bytes(p, b);
return p + b - data;
}
/*
* Return the bit count of a bignum, for SSH-1 encoding.
*/
int bignum_bitcount(Bignum bn)
{
int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
while (bitcount >= 0
&& (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
return bitcount + 1;
}
/*
* Return the byte length of a bignum when SSH-1 encoded.
*/
int ssh1_bignum_length(Bignum bn)
{
return 2 + (bignum_bitcount(bn) + 7) / 8;
}
/*
* Return the byte length of a bignum when SSH-2 encoded.
*/
int ssh2_bignum_length(Bignum bn)
{
return 4 + (bignum_bitcount(bn) + 8) / 8;
}
/*
* Return a byte from a bignum; 0 is least significant, etc.
*/
int bignum_byte(Bignum bn, int i)
{
if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
return 0; /* beyond the end */
else
return (bn[i / BIGNUM_INT_BYTES + 1] >>
((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
}
/*
* Return a bit from a bignum; 0 is least significant, etc.
*/
int bignum_bit(Bignum bn, int i)
{
if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
return 0; /* beyond the end */
else
return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
}
/*
* Set a bit in a bignum; 0 is least significant, etc.
*/
void bignum_set_bit(Bignum bn, int bitnum, int value)
{
if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
abort(); /* beyond the end */
else {
int v = bitnum / BIGNUM_INT_BITS + 1;
int mask = 1 << (bitnum % BIGNUM_INT_BITS);
if (value)
bn[v] |= mask;
else
bn[v] &= ~mask;
}
}
/*
* Write a SSH-1-format bignum into a buffer. It is assumed the
* buffer is big enough. Returns the number of bytes used.
*/
int ssh1_write_bignum(void *data, Bignum bn)
{
unsigned char *p = data;
int len = ssh1_bignum_length(bn);
int i;
int bitc = bignum_bitcount(bn);
*p++ = (bitc >> 8) & 0xFF;
*p++ = (bitc) & 0xFF;
for (i = len - 2; i--;)
*p++ = bignum_byte(bn, i);
return len;
}
/*
* Compare two bignums. Returns like strcmp.
*/
int bignum_cmp(Bignum a, Bignum b)
{
int amax = a[0], bmax = b[0];
int i = (amax > bmax ? amax : bmax);
while (i) {
BignumInt aval = (i > amax ? 0 : a[i]);
BignumInt bval = (i > bmax ? 0 : b[i]);
if (aval < bval)
return -1;
if (aval > bval)
return +1;
i--;
}
return 0;
}
/*
* Right-shift one bignum to form another.
*/
Bignum bignum_rshift(Bignum a, int shift)
{
Bignum ret;
int i, shiftw, shiftb, shiftbb, bits;
BignumInt ai, ai1;
bits = bignum_bitcount(a) - shift;
ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
if (ret) {
shiftw = shift / BIGNUM_INT_BITS;
shiftb = shift % BIGNUM_INT_BITS;
shiftbb = BIGNUM_INT_BITS - shiftb;
ai1 = a[shiftw + 1];
for (i = 1; i <= (int)ret[0]; i++) {
ai = ai1;
ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
}
}
return ret;
}
/*
* Non-modular multiplication and addition.
*/
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
{
int alen = a[0], blen = b[0];
int mlen = (alen > blen ? alen : blen);
int rlen, i, maxspot;
int wslen;
BignumInt *workspace;
Bignum ret;
/* mlen space for a, mlen space for b, 2*mlen for result,
* plus scratch space for multiplication */
wslen = mlen * 4 + mul_compute_scratch(mlen);
workspace = snewn(wslen, BignumInt);
for (i = 0; i < mlen; i++) {
workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
}
internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
workspace + 2 * mlen, mlen, workspace + 4 * mlen);
/* now just copy the result back */
rlen = alen + blen + 1;
if (addend && rlen <= (int)addend[0])
rlen = addend[0] + 1;
ret = newbn(rlen);
maxspot = 0;
for (i = 1; i <= (int)ret[0]; i++) {
ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
/* now add in the addend, if any */
if (addend) {
BignumDblInt carry = 0;
for (i = 1; i <= rlen; i++) {
carry += (i <= (int)ret[0] ? ret[i] : 0);
carry += (i <= (int)addend[0] ? addend[i] : 0);
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
carry >>= BIGNUM_INT_BITS;
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
}
ret[0] = maxspot;
smemclr(workspace, wslen * sizeof(*workspace));
sfree(workspace);
return ret;
}
/*
* Non-modular multiplication.
*/
Bignum bigmul(Bignum a, Bignum b)
{
return bigmuladd(a, b, NULL);
}
/*
* Simple addition.
*/
Bignum bigadd(Bignum a, Bignum b)
{
int alen = a[0], blen = b[0];
int rlen = (alen > blen ? alen : blen) + 1;
int i, maxspot;
Bignum ret;
BignumDblInt carry;
ret = newbn(rlen);
carry = 0;
maxspot = 0;
for (i = 1; i <= rlen; i++) {
carry += (i <= (int)a[0] ? a[i] : 0);
carry += (i <= (int)b[0] ? b[i] : 0);
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
carry >>= BIGNUM_INT_BITS;
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
ret[0] = maxspot;
return ret;
}
/*
* Subtraction. Returns a-b, or NULL if the result would come out
* negative (recall that this entire bignum module only handles
* positive numbers).
*/
Bignum bigsub(Bignum a, Bignum b)
{
int alen = a[0], blen = b[0];
int rlen = (alen > blen ? alen : blen);
int i, maxspot;
Bignum ret;
BignumDblInt carry;
ret = newbn(rlen);
carry = 1;
maxspot = 0;
for (i = 1; i <= rlen; i++) {
carry += (i <= (int)a[0] ? a[i] : 0);
carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
carry >>= BIGNUM_INT_BITS;
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
ret[0] = maxspot;
if (!carry) {
freebn(ret);
return NULL;
}
return ret;
}
/*
* Create a bignum which is the bitmask covering another one. That
* is, the smallest integer which is >= N and is also one less than
* a power of two.
*/
Bignum bignum_bitmask(Bignum n)
{
Bignum ret = copybn(n);
int i;
BignumInt j;
i = ret[0];
while (n[i] == 0 && i > 0)
i--;
if (i <= 0)
return ret; /* input was zero */
j = 1;
while (j < n[i])
j = 2 * j + 1;
ret[i] = j;
while (--i > 0)
ret[i] = BIGNUM_INT_MASK;
return ret;
}
/*
* Convert a (max 32-bit) long into a bignum.
*/
Bignum bignum_from_long(unsigned long nn)
{
Bignum ret;
BignumDblInt n = nn;
ret = newbn(3);
ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
ret[3] = 0;
ret[0] = (ret[2] ? 2 : 1);
return ret;
}
/*
* Add a long to a bignum.
*/
Bignum bignum_add_long(Bignum number, unsigned long addendx)
{
Bignum ret = newbn(number[0] + 1);
int i, maxspot = 0;
BignumDblInt carry = 0, addend = addendx;
for (i = 1; i <= (int)ret[0]; i++) {
carry += addend & BIGNUM_INT_MASK;
carry += (i <= (int)number[0] ? number[i] : 0);
addend >>= BIGNUM_INT_BITS;
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
carry >>= BIGNUM_INT_BITS;
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
return ret;
}
/*
* Compute the residue of a bignum, modulo a (max 16-bit) short.
*/
unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
{
BignumDblInt mod, r;
int i;
r = 0;
mod = modulus;
for (i = number[0]; i > 0; i--)
r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
return (unsigned short) r;
}
#ifdef DEBUG
void diagbn(char *prefix, Bignum md)
{
int i, nibbles, morenibbles;
static const char hex[] = "0123456789ABCDEF";
debug(("%s0x", prefix ? prefix : ""));
nibbles = (3 + bignum_bitcount(md)) / 4;
if (nibbles < 1)
nibbles = 1;
morenibbles = 4 * md[0] - nibbles;
for (i = 0; i < morenibbles; i++)
debug(("-"));
for (i = nibbles; i--;)
debug(("%c",
hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
if (prefix)
debug(("\n"));
}
#endif
/*
* Simple division.
*/
Bignum bigdiv(Bignum a, Bignum b)
{
Bignum q = newbn(a[0]);
bigdivmod(a, b, NULL, q);
return q;
}
/*
* Simple remainder.
*/
Bignum bigmod(Bignum a, Bignum b)
{
Bignum r = newbn(b[0]);
bigdivmod(a, b, r, NULL);
return r;
}
/*
* Greatest common divisor.
*/
Bignum biggcd(Bignum av, Bignum bv)
{
Bignum a = copybn(av);
Bignum b = copybn(bv);
while (bignum_cmp(b, Zero) != 0) {
Bignum t = newbn(b[0]);
bigdivmod(a, b, t, NULL);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
freebn(a);
a = b;
b = t;
}
freebn(b);
return a;
}
/*
* Modular inverse, using Euclid's extended algorithm.
*/
Bignum modinv(Bignum number, Bignum modulus)
{
Bignum a = copybn(modulus);
Bignum b = copybn(number);
Bignum xp = copybn(Zero);
Bignum x = copybn(One);
int sign = +1;
assert(number[number[0]] != 0);
assert(modulus[modulus[0]] != 0);
while (bignum_cmp(b, One) != 0) {
Bignum t = newbn(b[0]);
Bignum q = newbn(a[0]);
bigdivmod(a, b, t, q);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
freebn(a);
a = b;
b = t;
t = xp;
xp = x;
x = bigmuladd(q, xp, t);
sign = -sign;
freebn(t);
freebn(q);
}
freebn(b);
freebn(a);
freebn(xp);
/* now we know that sign * x == 1, and that x < modulus */
if (sign < 0) {
/* set a new x to be modulus - x */
Bignum newx = newbn(modulus[0]);
BignumInt carry = 0;
int maxspot = 1;
int i;
for (i = 1; i <= (int)newx[0]; i++) {
BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
newx[i] = aword - bword - carry;
bword = ~bword;
carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
if (newx[i] != 0)
maxspot = i;
}
newx[0] = maxspot;
freebn(x);
x = newx;
}
/* and return. */
return x;
}
/*
* Render a bignum into decimal. Return a malloced string holding
* the decimal representation.
*/
char *bignum_decimal(Bignum x)
{
int ndigits, ndigit;
int i, iszero;
BignumDblInt carry;
char *ret;
BignumInt *workspace;
/*
* First, estimate the number of digits. Since log(10)/log(2)
* is just greater than 93/28 (the joys of continued fraction
* approximations...) we know that for every 93 bits, we need
* at most 28 digits. This will tell us how much to malloc.
*
* Formally: if x has i bits, that means x is strictly less
* than 2^i. Since 2 is less than 10^(28/93), this is less than
* 10^(28i/93). We need an integer power of ten, so we must
* round up (rounding down might make it less than x again).
* Therefore if we multiply the bit count by 28/93, rounding
* up, we will have enough digits.
*
* i=0 (i.e., x=0) is an irritating special case.
*/
i = bignum_bitcount(x);
if (!i)
ndigits = 1; /* x = 0 */
else
ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
ndigits++; /* allow for trailing \0 */
ret = snewn(ndigits, char);
/*
* Now allocate some workspace to hold the binary form as we
* repeatedly divide it by ten. Initialise this to the
* big-endian form of the number.
*/
workspace = snewn(x[0], BignumInt);
for (i = 0; i < (int)x[0]; i++)
workspace[i] = x[x[0] - i];
/*
* Next, write the decimal number starting with the last digit.
* We use ordinary short division, dividing 10 into the
* workspace.
*/
ndigit = ndigits - 1;
ret[ndigit] = '\0';
do {
iszero = 1;
carry = 0;
for (i = 0; i < (int)x[0]; i++) {
carry = (carry << BIGNUM_INT_BITS) + workspace[i];
workspace[i] = (BignumInt) (carry / 10);
if (workspace[i])
iszero = 0;
carry %= 10;
}
ret[--ndigit] = (char) (carry + '0');
} while (!iszero);
/*
* There's a chance we've fallen short of the start of the
* string. Correct if so.
*/
if (ndigit > 0)
memmove(ret, ret + ndigit, ndigits - ndigit);
/*
* Done.
*/
smemclr(workspace, x[0] * sizeof(*workspace));
sfree(workspace);
return ret;
}
#ifdef TESTBN
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
/*
* gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset
*
* Then feed to this program's standard input the output of
* testdata/bignum.py .
*/
void modalfatalbox(char *p, ...)
{
va_list ap;
fprintf(stderr, "FATAL ERROR: ");
va_start(ap, p);
vfprintf(stderr, p, ap);
va_end(ap);
fputc('\n', stderr);
exit(1);
}
#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
int main(int argc, char **argv)
{
char *buf;
int line = 0;
int passes = 0, fails = 0;
while ((buf = fgetline(stdin)) != NULL) {
int maxlen = strlen(buf);
unsigned char *data = snewn(maxlen, unsigned char);
unsigned char *ptrs[5], *q;
int ptrnum;
char *bufp = buf;
line++;
q = data;
ptrnum = 0;
while (*bufp && !isspace((unsigned char)*bufp))
bufp++;
if (bufp)
*bufp++ = '\0';
while (*bufp) {
char *start, *end;
int i;
while (*bufp && !isxdigit((unsigned char)*bufp))
bufp++;
start = bufp;
if (!*bufp)
break;
while (*bufp && isxdigit((unsigned char)*bufp))
bufp++;
end = bufp;
if (ptrnum >= lenof(ptrs))
break;
ptrs[ptrnum++] = q;
for (i = -((end - start) & 1); i < end-start; i += 2) {
unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
val = val * 16 + fromxdigit(start[i+1]);
*q++ = val;
}
ptrs[ptrnum] = q;
}
if (!strcmp(buf, "mul")) {
Bignum a, b, c, p;
if (ptrnum != 3) {
printf("%d: mul with %d parameters, expected 3\n", line, ptrnum);
exit(1);
}
a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
p = bigmul(a, b);
if (bignum_cmp(c, p) == 0) {
passes++;
} else {
char *as = bignum_decimal(a);
char *bs = bignum_decimal(b);
char *cs = bignum_decimal(c);
char *ps = bignum_decimal(p);
printf("%d: fail: %s * %s gave %s expected %s\n",
line, as, bs, ps, cs);
fails++;
sfree(as);
sfree(bs);
sfree(cs);
sfree(ps);
}
freebn(a);
freebn(b);
freebn(c);
freebn(p);
} else if (!strcmp(buf, "modmul")) {
Bignum a, b, m, c, p;
if (ptrnum != 4) {
printf("%d: modmul with %d parameters, expected 4\n",
line, ptrnum);
exit(1);
}
a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
m = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
c = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
p = modmul(a, b, m);
if (bignum_cmp(c, p) == 0) {
passes++;
} else {
char *as = bignum_decimal(a);
char *bs = bignum_decimal(b);
char *ms = bignum_decimal(m);
char *cs = bignum_decimal(c);
char *ps = bignum_decimal(p);
printf("%d: fail: %s * %s mod %s gave %s expected %s\n",
line, as, bs, ms, ps, cs);
fails++;
sfree(as);
sfree(bs);
sfree(ms);
sfree(cs);
sfree(ps);
}
freebn(a);
freebn(b);
freebn(m);
freebn(c);
freebn(p);
} else if (!strcmp(buf, "pow")) {
Bignum base, expt, modulus, expected, answer;
if (ptrnum != 4) {
printf("%d: mul with %d parameters, expected 4\n", line, ptrnum);
exit(1);
}
base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
answer = modpow(base, expt, modulus);
if (bignum_cmp(expected, answer) == 0) {
passes++;
} else {
char *as = bignum_decimal(base);
char *bs = bignum_decimal(expt);
char *cs = bignum_decimal(modulus);
char *ds = bignum_decimal(answer);
char *ps = bignum_decimal(expected);
printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
line, as, bs, cs, ds, ps);
fails++;
sfree(as);
sfree(bs);
sfree(cs);
sfree(ds);
sfree(ps);
}
freebn(base);
freebn(expt);
freebn(modulus);
freebn(expected);
freebn(answer);
} else {
printf("%d: unrecognised test keyword: '%s'\n", line, buf);
exit(1);
}
sfree(buf);
sfree(data);
}
printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
return fails != 0;
}
#endif