mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 09:12:24 +00:00
25b034ee39
The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
402 lines
14 KiB
Python
402 lines
14 KiB
Python
import numbers
|
|
import itertools
|
|
|
|
def jacobi(n,m):
|
|
"""Compute the Jacobi symbol.
|
|
|
|
The special case of this when m is prime is the Legendre symbol,
|
|
which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
|
|
non-zero square number mod m; -1 if n is not congruent to any
|
|
square mod m.
|
|
|
|
"""
|
|
assert m & 1
|
|
acc = 1
|
|
while True:
|
|
n %= m
|
|
if n == 0:
|
|
return 0
|
|
while not (n & 1):
|
|
n >>= 1
|
|
if (m & 7) not in {1,7}:
|
|
acc *= -1
|
|
if n == 1:
|
|
return acc
|
|
if (n & 3) == 3 and (m & 3) == 3:
|
|
acc *= -1
|
|
n, m = m, n
|
|
|
|
class SqrtModP(object):
|
|
"""Class for finding square roots of numbers mod p.
|
|
|
|
p must be an odd prime (but its primality is not checked)."""
|
|
|
|
def __init__(self, p):
|
|
p = abs(p)
|
|
assert p & 1
|
|
self.p = p
|
|
|
|
# Decompose p as 2^e k + 1 for odd k.
|
|
self.k = p-1
|
|
self.e = 0
|
|
while not (self.k & 1):
|
|
self.k >>= 1
|
|
self.e += 1
|
|
|
|
# Find a non-square mod p.
|
|
for self.z in itertools.count(1):
|
|
if jacobi(self.z, self.p) == -1:
|
|
break
|
|
self.zinv = ModP(self.p, self.z).invert()
|
|
|
|
def sqrt_recurse(self, a):
|
|
ak = pow(a, self.k, self.p)
|
|
for i in range(self.e, -1, -1):
|
|
if ak == 1:
|
|
break
|
|
ak = ak*ak % self.p
|
|
assert i > 0
|
|
if i == self.e:
|
|
return pow(a, (self.k+1) // 2, self.p)
|
|
r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
|
|
return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
|
|
|
|
def sqrt(self, a):
|
|
j = jacobi(a, self.p)
|
|
if j == 0:
|
|
return 0
|
|
if j < 0:
|
|
raise ValueError("{} has no square root mod {}".format(a, self.p))
|
|
a %= self.p
|
|
r = self.sqrt_recurse(a)
|
|
assert r*r % self.p == a
|
|
# Normalise to the smaller (or 'positive') one of the two roots.
|
|
return min(r, self.p - r)
|
|
|
|
def __str__(self):
|
|
return "{}({})".format(type(self).__name__, self.p)
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
class ModP(object):
|
|
"""Class that represents integers mod p as a field.
|
|
|
|
All the usual arithmetic operations are supported directly,
|
|
including division, so you can write formulas in a natural way
|
|
without having to keep saying '% p' everywhere or call a
|
|
cumbersome modular_inverse() function.
|
|
|
|
"""
|
|
def __init__(self, p, n=0):
|
|
self.p = p
|
|
if isinstance(n, type(self)):
|
|
self.check(n)
|
|
n = n.n
|
|
self.n = n % p
|
|
def check(self, other):
|
|
assert isinstance(other, type(self))
|
|
assert isinstance(self, type(other))
|
|
assert self.p == other.p
|
|
def coerce_to(self, other):
|
|
if not isinstance(other, type(self)):
|
|
other = type(self)(self.p, other)
|
|
else:
|
|
self.check(other)
|
|
return other
|
|
def invert(self):
|
|
"Internal routine which returns the bare inverse."
|
|
if self.n % self.p == 0:
|
|
raise ZeroDivisionError("division by {!r}".format(self))
|
|
a = self.n, 1, 0
|
|
b = self.p, 0, 1
|
|
while b[0]:
|
|
q = a[0] // b[0]
|
|
a = a[0] - q*b[0], a[1] - q*b[1], a[2] - q*b[2]
|
|
b, a = a, b
|
|
assert abs(a[0]) == 1
|
|
return a[1]*a[0]
|
|
def __add__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
|
def __neg__(self):
|
|
return type(self)(self.p, -self.n % self.p)
|
|
def __radd__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
|
def __sub__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n - rhs.n) % self.p)
|
|
def __rsub__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (rhs.n - self.n) % self.p)
|
|
def __mul__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
|
def __rmul__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
|
def __div__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n * rhs.invert()) % self.p)
|
|
def __rdiv__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (rhs.n * self.invert()) % self.p)
|
|
def __pow__(self, exponent):
|
|
assert exponent >= 0
|
|
n, b_to_n = 1, self
|
|
total = type(self)(self.p, 1)
|
|
while True:
|
|
if exponent & n:
|
|
exponent -= n
|
|
total *= b_to_n
|
|
n *= 2
|
|
if n > exponent:
|
|
break
|
|
b_to_n *= b_to_n
|
|
return total
|
|
def __cmp__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return cmp(self.n, rhs.n)
|
|
def __eq__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return self.n == rhs.n
|
|
def __ne__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return self.n != rhs.n
|
|
def __lt__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __le__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __gt__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __ge__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __str__(self):
|
|
return "0x{:x}".format(self.n)
|
|
def __repr__(self):
|
|
return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
|
|
|
|
class AffinePoint(object):
|
|
"""Base class for points on an elliptic curve."""
|
|
|
|
def __init__(self, curve, *args):
|
|
self.curve = curve
|
|
if len(args) == 0:
|
|
self.infinite = True
|
|
self.x = self.y = None
|
|
else:
|
|
assert len(args) == 2
|
|
self.infinite = False
|
|
self.x = ModP(self.curve.p, args[0])
|
|
self.y = ModP(self.curve.p, args[1])
|
|
self.check_equation()
|
|
def __neg__(self):
|
|
if self.infinite:
|
|
return self
|
|
return type(self)(self.curve, self.x, -self.y)
|
|
def __mul__(self, rhs):
|
|
if not isinstance(rhs, numbers.Integral):
|
|
raise ValueError("Elliptic curve points can only be multiplied by integers")
|
|
P = self
|
|
if rhs < 0:
|
|
rhs = -rhs
|
|
P = -P
|
|
toret = self.curve.point()
|
|
n = 1
|
|
nP = P
|
|
while rhs != 0:
|
|
if rhs & n:
|
|
rhs -= n
|
|
toret += nP
|
|
n += n
|
|
nP += nP
|
|
return toret
|
|
def __rmul__(self, rhs):
|
|
return self * rhs
|
|
def __sub__(self, rhs):
|
|
return self + (-rhs)
|
|
def __rsub__(self, rhs):
|
|
return (-self) + rhs
|
|
def __str__(self):
|
|
if self.infinite:
|
|
return "inf"
|
|
else:
|
|
return "({},{})".format(self.x, self.y)
|
|
def __repr__(self):
|
|
if self.infinite:
|
|
args = ""
|
|
else:
|
|
args = ", {}, {}".format(self.x, self.y)
|
|
return "{}.Point({}{})".format(type(self.curve).__name__,
|
|
self.curve, args)
|
|
def __eq__(self, rhs):
|
|
if self.infinite or rhs.infinite:
|
|
return self.infinite and rhs.infinite
|
|
return (self.x, self.y) == (rhs.x, rhs.y)
|
|
def __ne__(self, rhs):
|
|
return not (self == rhs)
|
|
def __lt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __le__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __gt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __ge__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __hash__(self):
|
|
if self.infinite:
|
|
return hash((True,))
|
|
else:
|
|
return hash((False, self.x, self.y))
|
|
|
|
class CurveBase(object):
|
|
def point(self, *args):
|
|
return self.Point(self, *args)
|
|
|
|
class WeierstrassCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x + self.curve.b)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
else:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + self.curve.a) / (2*y1)
|
|
xp = slope*slope - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = SqrtModP(self.p)
|
|
rhs = x**3 + self.a.n * x + self.b.n
|
|
y = self.sqrtmodp.sqrt(rhs)
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class MontgomeryCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.curve.b*self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x*self.x + self.x)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
else:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
|
|
xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = SqrtModP(self.p)
|
|
rhs = x**3 + self.a.n * x**2 + self.b.n * x
|
|
y = self.sqrtmodp.sqrt(rhs)
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class TwistedEdwardsCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
x2, y2 = self.x*self.x, self.y*self.y
|
|
assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
|
|
def __neg__(self):
|
|
return type(self)(self.curve, -self.x, self.y)
|
|
def __add__(self, rhs):
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
|
|
dxxyy = self.curve.d*x1x2*y1y2
|
|
return self.curve.point((x1y2+y1x2)/(1+dxxyy),
|
|
(y1y2-self.curve.a*x1x2)/(1-dxxyy))
|
|
|
|
def __init__(self, p, d, a):
|
|
self.p = p
|
|
self.d = ModP(p, d)
|
|
self.a = ModP(p, a)
|
|
|
|
def point(self, *args):
|
|
# This curve form represents the identity using finite
|
|
# numbers, so it doesn't need the special infinity flag.
|
|
# Detect a no-argument call to point() and substitute the pair
|
|
# of integers that gives the identity.
|
|
if len(args) == 0:
|
|
args = [0, 1]
|
|
return super(TwistedEdwardsCurve, self).point(*args)
|
|
|
|
def cpoint(self, y, xparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = SqrtModP(self.p)
|
|
y = ModP(self.p, y)
|
|
y2 = y**2
|
|
radicand = (y2 - 1) / (self.d * y2 - self.a)
|
|
x = self.sqrtmodp.sqrt(radicand.n)
|
|
if (x - xparity) % 2:
|
|
x = -x
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.d, self.a)
|
|
|
|
p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
|
|
p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
|
|
p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
|
|
|
|
p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
|
|
p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
|
|
p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
|
|
|
|
p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
|
|
p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
|
|
p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
|
|
|
|
curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
|
|
curve25519.G = curve25519.cpoint(9)
|
|
|
|
ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
|
|
ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
|
|
ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
|
|
|