1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/contrib/eccref.py
Simon Tatham 25b034ee39 Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.

The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.

I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.

I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.

sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.

A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.

In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.

Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 14:54:59 +00:00

402 lines
14 KiB
Python

import numbers
import itertools
def jacobi(n,m):
"""Compute the Jacobi symbol.
The special case of this when m is prime is the Legendre symbol,
which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
non-zero square number mod m; -1 if n is not congruent to any
square mod m.
"""
assert m & 1
acc = 1
while True:
n %= m
if n == 0:
return 0
while not (n & 1):
n >>= 1
if (m & 7) not in {1,7}:
acc *= -1
if n == 1:
return acc
if (n & 3) == 3 and (m & 3) == 3:
acc *= -1
n, m = m, n
class SqrtModP(object):
"""Class for finding square roots of numbers mod p.
p must be an odd prime (but its primality is not checked)."""
def __init__(self, p):
p = abs(p)
assert p & 1
self.p = p
# Decompose p as 2^e k + 1 for odd k.
self.k = p-1
self.e = 0
while not (self.k & 1):
self.k >>= 1
self.e += 1
# Find a non-square mod p.
for self.z in itertools.count(1):
if jacobi(self.z, self.p) == -1:
break
self.zinv = ModP(self.p, self.z).invert()
def sqrt_recurse(self, a):
ak = pow(a, self.k, self.p)
for i in range(self.e, -1, -1):
if ak == 1:
break
ak = ak*ak % self.p
assert i > 0
if i == self.e:
return pow(a, (self.k+1) // 2, self.p)
r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
def sqrt(self, a):
j = jacobi(a, self.p)
if j == 0:
return 0
if j < 0:
raise ValueError("{} has no square root mod {}".format(a, self.p))
a %= self.p
r = self.sqrt_recurse(a)
assert r*r % self.p == a
# Normalise to the smaller (or 'positive') one of the two roots.
return min(r, self.p - r)
def __str__(self):
return "{}({})".format(type(self).__name__, self.p)
def __repr__(self):
return self.__str__()
class ModP(object):
"""Class that represents integers mod p as a field.
All the usual arithmetic operations are supported directly,
including division, so you can write formulas in a natural way
without having to keep saying '% p' everywhere or call a
cumbersome modular_inverse() function.
"""
def __init__(self, p, n=0):
self.p = p
if isinstance(n, type(self)):
self.check(n)
n = n.n
self.n = n % p
def check(self, other):
assert isinstance(other, type(self))
assert isinstance(self, type(other))
assert self.p == other.p
def coerce_to(self, other):
if not isinstance(other, type(self)):
other = type(self)(self.p, other)
else:
self.check(other)
return other
def invert(self):
"Internal routine which returns the bare inverse."
if self.n % self.p == 0:
raise ZeroDivisionError("division by {!r}".format(self))
a = self.n, 1, 0
b = self.p, 0, 1
while b[0]:
q = a[0] // b[0]
a = a[0] - q*b[0], a[1] - q*b[1], a[2] - q*b[2]
b, a = a, b
assert abs(a[0]) == 1
return a[1]*a[0]
def __add__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n + rhs.n) % self.p)
def __neg__(self):
return type(self)(self.p, -self.n % self.p)
def __radd__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n + rhs.n) % self.p)
def __sub__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n - rhs.n) % self.p)
def __rsub__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (rhs.n - self.n) % self.p)
def __mul__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n * rhs.n) % self.p)
def __rmul__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n * rhs.n) % self.p)
def __div__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (self.n * rhs.invert()) % self.p)
def __rdiv__(self, rhs):
rhs = self.coerce_to(rhs)
return type(self)(self.p, (rhs.n * self.invert()) % self.p)
def __pow__(self, exponent):
assert exponent >= 0
n, b_to_n = 1, self
total = type(self)(self.p, 1)
while True:
if exponent & n:
exponent -= n
total *= b_to_n
n *= 2
if n > exponent:
break
b_to_n *= b_to_n
return total
def __cmp__(self, rhs):
rhs = self.coerce_to(rhs)
return cmp(self.n, rhs.n)
def __eq__(self, rhs):
rhs = self.coerce_to(rhs)
return self.n == rhs.n
def __ne__(self, rhs):
rhs = self.coerce_to(rhs)
return self.n != rhs.n
def __lt__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __le__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __gt__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __ge__(self, rhs):
raise ValueError("Elements of a modular ring have no ordering")
def __str__(self):
return "0x{:x}".format(self.n)
def __repr__(self):
return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
class AffinePoint(object):
"""Base class for points on an elliptic curve."""
def __init__(self, curve, *args):
self.curve = curve
if len(args) == 0:
self.infinite = True
self.x = self.y = None
else:
assert len(args) == 2
self.infinite = False
self.x = ModP(self.curve.p, args[0])
self.y = ModP(self.curve.p, args[1])
self.check_equation()
def __neg__(self):
if self.infinite:
return self
return type(self)(self.curve, self.x, -self.y)
def __mul__(self, rhs):
if not isinstance(rhs, numbers.Integral):
raise ValueError("Elliptic curve points can only be multiplied by integers")
P = self
if rhs < 0:
rhs = -rhs
P = -P
toret = self.curve.point()
n = 1
nP = P
while rhs != 0:
if rhs & n:
rhs -= n
toret += nP
n += n
nP += nP
return toret
def __rmul__(self, rhs):
return self * rhs
def __sub__(self, rhs):
return self + (-rhs)
def __rsub__(self, rhs):
return (-self) + rhs
def __str__(self):
if self.infinite:
return "inf"
else:
return "({},{})".format(self.x, self.y)
def __repr__(self):
if self.infinite:
args = ""
else:
args = ", {}, {}".format(self.x, self.y)
return "{}.Point({}{})".format(type(self.curve).__name__,
self.curve, args)
def __eq__(self, rhs):
if self.infinite or rhs.infinite:
return self.infinite and rhs.infinite
return (self.x, self.y) == (rhs.x, rhs.y)
def __ne__(self, rhs):
return not (self == rhs)
def __lt__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __le__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __gt__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __ge__(self, rhs):
raise ValueError("Elliptic curve points have no ordering")
def __hash__(self):
if self.infinite:
return hash((True,))
else:
return hash((False, self.x, self.y))
class CurveBase(object):
def point(self, *args):
return self.Point(self, *args)
class WeierstrassCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
assert (self.y*self.y ==
self.x*self.x*self.x +
self.curve.a*self.x + self.curve.b)
def __add__(self, rhs):
if self.infinite:
return rhs
if rhs.infinite:
return self
if self.x == rhs.x and self.y != rhs.y:
return self.curve.point()
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
xdiff = x2-x1
if xdiff != 0:
slope = (y2-y1) / xdiff
else:
assert y1 == y2
slope = (3*x1*x1 + self.curve.a) / (2*y1)
xp = slope*slope - x1 - x2
yp = -(y1 + slope * (xp-x1))
return self.curve.point(xp, yp)
def __init__(self, p, a, b):
self.p = p
self.a = ModP(p, a)
self.b = ModP(p, b)
def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p)
rhs = x**3 + self.a.n * x + self.b.n
y = self.sqrtmodp.sqrt(rhs)
if (y - yparity) % 2:
y = -y
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.a, self.b)
class MontgomeryCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
assert (self.curve.b*self.y*self.y ==
self.x*self.x*self.x +
self.curve.a*self.x*self.x + self.x)
def __add__(self, rhs):
if self.infinite:
return rhs
if rhs.infinite:
return self
if self.x == rhs.x and self.y != rhs.y:
return self.curve.point()
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
xdiff = x2-x1
if xdiff != 0:
slope = (y2-y1) / xdiff
else:
assert y1 == y2
slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
yp = -(y1 + slope * (xp-x1))
return self.curve.point(xp, yp)
def __init__(self, p, a, b):
self.p = p
self.a = ModP(p, a)
self.b = ModP(p, b)
def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p)
rhs = x**3 + self.a.n * x**2 + self.b.n * x
y = self.sqrtmodp.sqrt(rhs)
if (y - yparity) % 2:
y = -y
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.a, self.b)
class TwistedEdwardsCurve(CurveBase):
class Point(AffinePoint):
def check_equation(self):
x2, y2 = self.x*self.x, self.y*self.y
assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
def __neg__(self):
return type(self)(self.curve, -self.x, self.y)
def __add__(self, rhs):
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
dxxyy = self.curve.d*x1x2*y1y2
return self.curve.point((x1y2+y1x2)/(1+dxxyy),
(y1y2-self.curve.a*x1x2)/(1-dxxyy))
def __init__(self, p, d, a):
self.p = p
self.d = ModP(p, d)
self.a = ModP(p, a)
def point(self, *args):
# This curve form represents the identity using finite
# numbers, so it doesn't need the special infinity flag.
# Detect a no-argument call to point() and substitute the pair
# of integers that gives the identity.
if len(args) == 0:
args = [0, 1]
return super(TwistedEdwardsCurve, self).point(*args)
def cpoint(self, y, xparity=0):
if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p)
y = ModP(self.p, y)
y2 = y**2
radicand = (y2 - 1) / (self.d * y2 - self.a)
x = self.sqrtmodp.sqrt(radicand.n)
if (x - xparity) % 2:
x = -x
return self.point(x, y)
def __repr__(self):
return "{}(0x{:x}, {}, {})".format(
type(self).__name__, self.p, self.d, self.a)
p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
curve25519.G = curve25519.cpoint(9)
ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed