1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/sshpubk.c
Simon Tatham d5240d4157 Make memory management uniform: _everything_ now goes through the
smalloc() macros and thence to the safemalloc() functions in misc.c.
This should allow me to plug in a debugging allocator and track
memory leaks and segfaults and things.

[originally from svn r818]
2000-12-12 10:33:13 +00:00

279 lines
7.4 KiB
C

/*
* Generic SSH public-key handling operations. In particular,
* reading of SSH public-key files, and also the generic `sign'
* operation for ssh2 (which checks the type of the key and
* dispatches to the appropriate key-type specific function).
*/
#include <stdio.h>
#include <stdlib.h>
#include "ssh.h"
#define PUT_32BIT(cp, value) do { \
(cp)[3] = (value); \
(cp)[2] = (value) >> 8; \
(cp)[1] = (value) >> 16; \
(cp)[0] = (value) >> 24; } while (0)
#define GET_32BIT(cp) \
(((unsigned long)(unsigned char)(cp)[0] << 24) | \
((unsigned long)(unsigned char)(cp)[1] << 16) | \
((unsigned long)(unsigned char)(cp)[2] << 8) | \
((unsigned long)(unsigned char)(cp)[3]))
#define rsa_signature "SSH PRIVATE KEY FILE FORMAT 1.1\n"
#define BASE64_TOINT(x) ( (x)-'A'<26 ? (x)-'A'+0 :\
(x)-'a'<26 ? (x)-'a'+26 :\
(x)-'0'<10 ? (x)-'0'+52 :\
(x)=='+' ? 62 : \
(x)=='/' ? 63 : 0 )
static int loadrsakey_main(FILE *fp, struct RSAKey *key, struct RSAAux *aux,
char **commentptr, char *passphrase) {
unsigned char buf[16384];
unsigned char keybuf[16];
int len;
int i, j, ciphertype;
int ret = 0;
struct MD5Context md5c;
char *comment;
/* Slurp the whole file (minus the header) into a buffer. */
len = fread(buf, 1, sizeof(buf), fp);
fclose(fp);
if (len < 0 || len == sizeof(buf))
goto end; /* file too big or not read */
i = 0;
/*
* A zero byte. (The signature includes a terminating NUL.)
*/
if (len-i < 1 || buf[i] != 0)
goto end;
i++;
/* One byte giving encryption type, and one reserved uint32. */
if (len-i < 1)
goto end;
ciphertype = buf[i];
if (ciphertype != 0 && ciphertype != SSH_CIPHER_3DES)
goto end;
i++;
if (len-i < 4)
goto end; /* reserved field not present */
if (buf[i] != 0 || buf[i+1] != 0 || buf[i+2] != 0 || buf[i+3] != 0)
goto end; /* reserved field nonzero, panic! */
i += 4;
/* Now the serious stuff. An ordinary SSH 1 public key. */
i += makekey(buf+i, key, NULL, 1);
if (len-i < 0)
goto end; /* overran */
/* Next, the comment field. */
j = GET_32BIT(buf+i);
i += 4;
if (len-i < j) goto end;
comment = smalloc(j+1);
if (comment) {
memcpy(comment, buf+i, j);
comment[j] = '\0';
}
i += j;
if (commentptr)
*commentptr = comment;
if (key)
key->comment = comment;
if (!key) {
return ciphertype != 0;
}
/*
* Decrypt remainder of buffer.
*/
if (ciphertype) {
MD5Init(&md5c);
MD5Update(&md5c, passphrase, strlen(passphrase));
MD5Final(keybuf, &md5c);
des3_decrypt_pubkey(keybuf, buf+i, (len-i+7)&~7);
memset(keybuf, 0, sizeof(keybuf)); /* burn the evidence */
}
/*
* We are now in the secret part of the key. The first four
* bytes should be of the form a, b, a, b.
*/
if (len-i < 4) goto end;
if (buf[i] != buf[i+2] || buf[i+1] != buf[i+3]) { ret = -1; goto end; }
i += 4;
/*
* After that, we have one further bignum which is our
* decryption exponent, and then the three auxiliary values
* (iqmp, q, p).
*/
i += makeprivate(buf+i, key);
if (len-i < 0) goto end;
if (aux) {
i += ssh1_read_bignum(buf+i, &aux->iqmp);
if (len-i < 0) goto end;
i += ssh1_read_bignum(buf+i, &aux->q);
if (len-i < 0) goto end;
i += ssh1_read_bignum(buf+i, &aux->p);
if (len-i < 0) goto end;
}
ret = 1;
end:
memset(buf, 0, sizeof(buf)); /* burn the evidence */
return ret;
}
int loadrsakey(char *filename, struct RSAKey *key, struct RSAAux *aux,
char *passphrase) {
FILE *fp;
unsigned char buf[64];
fp = fopen(filename, "rb");
if (!fp)
return 0; /* doesn't even exist */
/*
* Read the first line of the file and see if it's a v1 private
* key file.
*/
if (fgets(buf, sizeof(buf), fp) &&
!strcmp(buf, rsa_signature)) {
return loadrsakey_main(fp, key, aux, NULL, passphrase);
}
/*
* Otherwise, we have nothing. Return empty-handed.
*/
fclose(fp);
return 0;
}
/*
* See whether an RSA key is encrypted. Return its comment field as
* well.
*/
int rsakey_encrypted(char *filename, char **comment) {
FILE *fp;
unsigned char buf[64];
fp = fopen(filename, "rb");
if (!fp)
return 0; /* doesn't even exist */
/*
* Read the first line of the file and see if it's a v1 private
* key file.
*/
if (fgets(buf, sizeof(buf), fp) &&
!strcmp(buf, rsa_signature)) {
return loadrsakey_main(fp, NULL, NULL, comment, NULL);
}
fclose(fp);
return 0; /* wasn't the right kind of file */
}
/*
* Save an RSA key file. Return nonzero on success.
*/
int saversakey(char *filename, struct RSAKey *key, struct RSAAux *aux,
char *passphrase) {
unsigned char buf[16384];
unsigned char keybuf[16];
struct MD5Context md5c;
unsigned char *p, *estart;
FILE *fp;
/*
* Write the initial signature.
*/
p = buf;
memcpy(p, rsa_signature, sizeof(rsa_signature));
p += sizeof(rsa_signature);
/*
* One byte giving encryption type, and one reserved (zero)
* uint32.
*/
*p++ = (passphrase ? SSH_CIPHER_3DES : 0);
PUT_32BIT(p, 0); p += 4;
/*
* An ordinary SSH 1 public key consists of: a uint32
* containing the bit count, then two bignums containing the
* modulus and exponent respectively.
*/
PUT_32BIT(p, ssh1_bignum_bitcount(key->modulus)); p += 4;
p += ssh1_write_bignum(p, key->modulus);
p += ssh1_write_bignum(p, key->exponent);
/*
* A string containing the comment field.
*/
if (key->comment) {
PUT_32BIT(p, strlen(key->comment)); p += 4;
memcpy(p, key->comment, strlen(key->comment));
p += strlen(key->comment);
} else {
PUT_32BIT(p, 0); p += 4;
}
/*
* The encrypted portion starts here.
*/
estart = p;
/*
* Two bytes, then the same two bytes repeated.
*/
*p++ = random_byte();
*p++ = random_byte();
p[0] = p[-2]; p[1] = p[-1]; p += 2;
/*
* Four more bignums: the decryption exponent, then iqmp, then
* q, then p.
*/
p += ssh1_write_bignum(p, key->private_exponent);
p += ssh1_write_bignum(p, aux->iqmp);
p += ssh1_write_bignum(p, aux->q);
p += ssh1_write_bignum(p, aux->p);
/*
* Now write zeros until the encrypted portion is a multiple of
* 8 bytes.
*/
while ((p-estart) % 8)
*p++ = '\0';
/*
* Now encrypt the encrypted portion.
*/
if (passphrase) {
MD5Init(&md5c);
MD5Update(&md5c, passphrase, strlen(passphrase));
MD5Final(keybuf, &md5c);
des3_encrypt_pubkey(keybuf, estart, p-estart);
memset(keybuf, 0, sizeof(keybuf)); /* burn the evidence */
}
/*
* Done. Write the result to the file.
*/
fp = fopen(filename, "wb");
if (fp) {
int ret = (fwrite(buf, 1, p-buf, fp) == (size_t)(p-buf));
ret = ret && (fclose(fp) == 0);
return ret;
} else
return 0;
}