mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
63b8f537f2
The more features and options I add to PrimeCandidateSource, the more cumbersome it will be to replicate each one in a command-line option to the ultimate primegen() function. So I'm moving to an API in which the client of primegen() constructs a PrimeCandidateSource themself, and passes it in to primegen(). Also, changed the API for pcs_new() so that you don't have to pass 'firstbits' unless you really want to. The net effect is that even though we've added flexibility, we've also simplified the call sites of primegen() in the simple case: if you want a 1234-bit prime, you just need to pass pcs_new(1234) as the argument to primegen, and you're done. The new declaration of primegen() lives in ssh_keygen.h, along with all the types it depends on. So I've had to #include that header in a few new files.
119 lines
3.9 KiB
C
119 lines
3.9 KiB
C
/*
|
|
* DSS key generation.
|
|
*/
|
|
|
|
#include "misc.h"
|
|
#include "ssh.h"
|
|
#include "sshkeygen.h"
|
|
#include "mpint.h"
|
|
|
|
int dsa_generate(struct dss_key *key, int bits, progfn_t pfn,
|
|
void *pfnparam)
|
|
{
|
|
/*
|
|
* Set up the phase limits for the progress report. We do this
|
|
* by passing minus the phase number.
|
|
*
|
|
* For prime generation: our initial filter finds things
|
|
* coprime to everything below 2^16. Computing the product of
|
|
* (p-1)/p for all prime p below 2^16 gives about 20.33; so
|
|
* among B-bit integers, one in every 20.33 will get through
|
|
* the initial filter to be a candidate prime.
|
|
*
|
|
* Meanwhile, we are searching for primes in the region of 2^B;
|
|
* since pi(x) ~ x/log(x), when x is in the region of 2^B, the
|
|
* prime density will be d/dx pi(x) ~ 1/log(B), i.e. about
|
|
* 1/0.6931B. So the chance of any given candidate being prime
|
|
* is 20.33/0.6931B, which is roughly 29.34 divided by B.
|
|
*
|
|
* So now we have this probability P, we're looking at an
|
|
* exponential distribution with parameter P: we will manage in
|
|
* one attempt with probability P, in two with probability
|
|
* P(1-P), in three with probability P(1-P)^2, etc. The
|
|
* probability that we have still not managed to find a prime
|
|
* after N attempts is (1-P)^N.
|
|
*
|
|
* We therefore inform the progress indicator of the number B
|
|
* (29.34/B), so that it knows how much to increment by each
|
|
* time. We do this in 16-bit fixed point, so 29.34 becomes
|
|
* 0x1D.57C4.
|
|
*/
|
|
pfn(pfnparam, PROGFN_PHASE_EXTENT, 1, 0x2800);
|
|
pfn(pfnparam, PROGFN_EXP_PHASE, 1, -0x1D57C4 / 160);
|
|
pfn(pfnparam, PROGFN_PHASE_EXTENT, 2, 0x40 * bits);
|
|
pfn(pfnparam, PROGFN_EXP_PHASE, 2, -0x1D57C4 / bits);
|
|
|
|
/*
|
|
* In phase three we are finding an order-q element of the
|
|
* multiplicative group of p, by finding an element whose order
|
|
* is _divisible_ by q and raising it to the power of (p-1)/q.
|
|
* _Most_ elements will have order divisible by q, since for a
|
|
* start phi(p) of them will be primitive roots. So
|
|
* realistically we don't need to set this much below 1 (64K).
|
|
* Still, we'll set it to 1/2 (32K) to be on the safe side.
|
|
*/
|
|
pfn(pfnparam, PROGFN_PHASE_EXTENT, 3, 0x2000);
|
|
pfn(pfnparam, PROGFN_EXP_PHASE, 3, -32768);
|
|
|
|
pfn(pfnparam, PROGFN_READY, 0, 0);
|
|
|
|
PrimeCandidateSource *pcs;
|
|
|
|
/*
|
|
* Generate q: a prime of length 160.
|
|
*/
|
|
pcs = pcs_new(160);
|
|
mp_int *q = primegen(pcs, 1, pfn, pfnparam);
|
|
|
|
/*
|
|
* Now generate p: a prime of length `bits', such that p-1 is
|
|
* divisible by q.
|
|
*/
|
|
pcs = pcs_new(bits);
|
|
pcs_require_residue_1(pcs, q);
|
|
mp_int *p = primegen(pcs, 2, pfn, pfnparam);
|
|
|
|
/*
|
|
* Next we need g. Raise 2 to the power (p-1)/q modulo p, and
|
|
* if that comes out to one then try 3, then 4 and so on. As
|
|
* soon as we hit a non-unit (and non-zero!) one, that'll do
|
|
* for g.
|
|
*/
|
|
mp_int *power = mp_div(p, q); /* this is floor(p/q) == (p-1)/q */
|
|
mp_int *h = mp_from_integer(1);
|
|
int progress = 0;
|
|
mp_int *g;
|
|
while (1) {
|
|
pfn(pfnparam, PROGFN_PROGRESS, 3, ++progress);
|
|
g = mp_modpow(h, power, p);
|
|
if (mp_hs_integer(g, 2))
|
|
break; /* got one */
|
|
mp_free(g);
|
|
mp_add_integer_into(h, h, 1);
|
|
}
|
|
mp_free(h);
|
|
mp_free(power);
|
|
|
|
/*
|
|
* Now we're nearly done. All we need now is our private key x,
|
|
* which should be a number between 1 and q-1 exclusive, and
|
|
* our public key y = g^x mod p.
|
|
*/
|
|
mp_int *two = mp_from_integer(2);
|
|
mp_int *qm1 = mp_copy(q);
|
|
mp_sub_integer_into(qm1, qm1, 1);
|
|
mp_int *x = mp_random_in_range(two, qm1);
|
|
mp_free(two);
|
|
mp_free(qm1);
|
|
|
|
key->sshk.vt = &ssh_dss;
|
|
|
|
key->p = p;
|
|
key->q = q;
|
|
key->g = g;
|
|
key->x = x;
|
|
key->y = mp_modpow(key->g, key->x, key->p);
|
|
|
|
return 1;
|
|
}
|