1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/sshpubk.c
Simon Tatham 7398dfa3fc Remove a pointless allocation.
The char buffer 'blob' allocated in read_blob was never actually used
for anything, so there was no need to allocate it - and also no need
for the assert() just before it, which was added in commit
63a58759b5 to be extra safe against integer overflow when
computing the buffer size.

I feel a bit silly for having added that assertion in the first place
rather than removing the allocation it was protecting! It was
unnecessary even then, and I completely failed to notice :-)

(cherry picked from commit c780cffb7a)
2023-04-19 14:18:58 +01:00

1968 lines
57 KiB
C

/*
* Generic SSH public-key handling operations. In particular,
* reading of SSH public-key files, and also the generic `sign'
* operation for SSH-2 (which checks the type of the key and
* dispatches to the appropriate key-type specific function).
*/
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <assert.h>
#include <ctype.h>
#include "putty.h"
#include "mpint.h"
#include "ssh.h"
#include "misc.h"
/*
* Fairly arbitrary size limit on any public or private key blob.
* Chosen to match AGENT_MAX_MSGLEN, on the basis that any key too
* large to transfer over the ssh-agent protocol is probably too large
* to be useful in general.
*
* MAX_KEY_BLOB_LINES is the corresponding limit on the Public-Lines
* or Private-Lines header field in a key file.
*/
#define MAX_KEY_BLOB_SIZE 262144
#define MAX_KEY_BLOB_LINES (MAX_KEY_BLOB_SIZE / 48)
/*
* Corresponding limit on the size of a key _file_ itself, based on
* base64-encoding the key blob and then adding a few Kb for
* surrounding metadata.
*/
#define MAX_KEY_FILE_SIZE (MAX_KEY_BLOB_SIZE * 4 / 3 + 4096)
static const ptrlen rsa1_signature =
PTRLEN_DECL_LITERAL("SSH PRIVATE KEY FILE FORMAT 1.1\n\0");
#define BASE64_TOINT(x) ( (x)-'A'<26 ? (x)-'A'+0 :\
(x)-'a'<26 ? (x)-'a'+26 :\
(x)-'0'<10 ? (x)-'0'+52 :\
(x)=='+' ? 62 : \
(x)=='/' ? 63 : 0 )
LoadedFile *lf_new(size_t max_size)
{
LoadedFile *lf = snew_plus(LoadedFile, max_size);
lf->data = snew_plus_get_aux(lf);
lf->len = 0;
lf->max_size = max_size;
return lf;
}
void lf_free(LoadedFile *lf)
{
smemclr(lf->data, lf->max_size);
smemclr(lf, sizeof(LoadedFile));
sfree(lf);
}
LoadFileStatus lf_load_fp(LoadedFile *lf, FILE *fp)
{
lf->len = 0;
while (lf->len < lf->max_size) {
size_t retd = fread(lf->data + lf->len, 1, lf->max_size - lf->len, fp);
if (ferror(fp))
return LF_ERROR;
if (retd == 0)
break;
lf->len += retd;
}
LoadFileStatus status = LF_OK;
if (lf->len == lf->max_size) {
/* The file might be too long to fit in our fixed-size
* structure. Try reading one more byte, to check. */
if (fgetc(fp) != EOF)
status = LF_TOO_BIG;
}
BinarySource_INIT(lf, lf->data, lf->len);
return status;
}
LoadFileStatus lf_load(LoadedFile *lf, const Filename *filename)
{
FILE *fp = f_open(filename, "rb", false);
if (!fp)
return LF_ERROR;
LoadFileStatus status = lf_load_fp(lf, fp);
fclose(fp);
return status;
}
static inline bool lf_load_keyfile_helper(LoadFileStatus status,
const char **errptr)
{
const char *error;
switch (status) {
case LF_OK:
return true;
case LF_TOO_BIG:
error = "file is too large to be a key file";
break;
case LF_ERROR:
error = strerror(errno);
break;
default:
unreachable("bad status value in lf_load_keyfile_helper");
}
if (errptr)
*errptr = error;
return false;
}
LoadedFile *lf_load_keyfile(const Filename *filename, const char **errptr)
{
LoadedFile *lf = lf_new(MAX_KEY_FILE_SIZE);
if (!lf_load_keyfile_helper(lf_load(lf, filename), errptr)) {
lf_free(lf);
return NULL;
}
return lf;
}
LoadedFile *lf_load_keyfile_fp(FILE *fp, const char **errptr)
{
LoadedFile *lf = lf_new(MAX_KEY_FILE_SIZE);
if (!lf_load_keyfile_helper(lf_load_fp(lf, fp), errptr)) {
lf_free(lf);
return NULL;
}
return lf;
}
static bool expect_signature(BinarySource *src, ptrlen realsig)
{
ptrlen thissig = get_data(src, realsig.len);
return !get_err(src) && ptrlen_eq_ptrlen(realsig, thissig);
}
static int rsa1_load_s_internal(BinarySource *src, RSAKey *key, bool pub_only,
char **commentptr, const char *passphrase,
const char **error)
{
strbuf *buf = NULL;
int ciphertype;
int ret = 0;
ptrlen comment;
*error = "not an SSH-1 RSA file";
if (!expect_signature(src, rsa1_signature))
goto end;
*error = "file format error";
/* One byte giving encryption type, and one reserved uint32. */
ciphertype = get_byte(src);
if (ciphertype != 0 && ciphertype != SSH1_CIPHER_3DES)
goto end;
if (get_uint32(src) != 0)
goto end; /* reserved field nonzero, panic! */
/* Now the serious stuff. An ordinary SSH-1 public key. */
get_rsa_ssh1_pub(src, key, RSA_SSH1_MODULUS_FIRST);
/* Next, the comment field. */
comment = get_string(src);
if (commentptr)
*commentptr = mkstr(comment);
if (key)
key->comment = mkstr(comment);
if (pub_only) {
ret = 1;
goto end;
}
if (!key) {
ret = ciphertype != 0;
*error = NULL;
goto end;
}
/*
* Decrypt remainder of buffer.
*/
if (ciphertype) {
size_t enclen = get_avail(src);
if (enclen & 7)
goto end;
buf = strbuf_dup_nm(get_data(src, enclen));
unsigned char keybuf[16];
hash_simple(&ssh_md5, ptrlen_from_asciz(passphrase), keybuf);
des3_decrypt_pubkey(keybuf, buf->u, enclen);
smemclr(keybuf, sizeof(keybuf)); /* burn the evidence */
BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buf));
}
/*
* We are now in the secret part of the key. The first four
* bytes should be of the form a, b, a, b.
*/
{
int b0a = get_byte(src);
int b1a = get_byte(src);
int b0b = get_byte(src);
int b1b = get_byte(src);
if (b0a != b0b || b1a != b1b) {
*error = "wrong passphrase";
ret = -1;
goto end;
}
}
/*
* After that, we have one further bignum which is our
* decryption exponent, and then the three auxiliary values
* (iqmp, q, p).
*/
get_rsa_ssh1_priv(src, key);
key->iqmp = get_mp_ssh1(src);
key->q = get_mp_ssh1(src);
key->p = get_mp_ssh1(src);
if (!rsa_verify(key)) {
*error = "rsa_verify failed";
freersakey(key);
ret = 0;
} else {
*error = NULL;
ret = 1;
}
end:
if (buf)
strbuf_free(buf);
return ret;
}
int rsa1_load_s(BinarySource *src, RSAKey *key,
const char *passphrase, const char **errstr)
{
return rsa1_load_s_internal(src, key, false, NULL, passphrase, errstr);
}
int rsa1_load_f(const Filename *filename, RSAKey *key,
const char *passphrase, const char **errstr)
{
LoadedFile *lf = lf_load_keyfile(filename, errstr);
if (!lf)
return false;
int toret = rsa1_load_s(BinarySource_UPCAST(lf), key, passphrase, errstr);
lf_free(lf);
return toret;
}
/*
* See whether an RSA key is encrypted. Return its comment field as
* well.
*/
bool rsa1_encrypted_s(BinarySource *src, char **comment)
{
const char *dummy;
return rsa1_load_s_internal(src, NULL, false, comment, NULL, &dummy) == 1;
}
bool rsa1_encrypted_f(const Filename *filename, char **comment)
{
LoadedFile *lf = lf_load_keyfile(filename, NULL);
if (!lf)
return false; /* couldn't even open the file */
bool toret = rsa1_encrypted_s(BinarySource_UPCAST(lf), comment);
lf_free(lf);
return toret;
}
/*
* Read the public part of an SSH-1 RSA key from a file (public or
* private), and generate its public blob in exponent-first order.
*/
int rsa1_loadpub_s(BinarySource *src, BinarySink *bs,
char **commentptr, const char **errorstr)
{
RSAKey key;
int ret;
const char *error = NULL;
/* Default return if we fail. */
ret = 0;
bool is_privkey_file = expect_signature(src, rsa1_signature);
BinarySource_REWIND(src);
if (is_privkey_file) {
/*
* Load just the public half from an SSH-1 private key file.
*/
memset(&key, 0, sizeof(key));
if (rsa1_load_s_internal(src, &key, true, commentptr, NULL, &error)) {
rsa_ssh1_public_blob(bs, &key, RSA_SSH1_EXPONENT_FIRST);
freersakey(&key);
ret = 1;
}
} else {
/*
* Try interpreting the file as an SSH-1 public key.
*/
char *line, *p, *bitsp, *expp, *modp, *commentp;
line = mkstr(get_chomped_line(src));
p = line;
bitsp = p;
p += strspn(p, "0123456789");
if (*p != ' ')
goto not_public_either;
*p++ = '\0';
expp = p;
p += strspn(p, "0123456789");
if (*p != ' ')
goto not_public_either;
*p++ = '\0';
modp = p;
p += strspn(p, "0123456789");
if (*p) {
if (*p != ' ')
goto not_public_either;
*p++ = '\0';
commentp = p;
} else {
commentp = NULL;
}
memset(&key, 0, sizeof(key));
key.exponent = mp_from_decimal(expp);
key.modulus = mp_from_decimal(modp);
if (atoi(bitsp) != mp_get_nbits(key.modulus)) {
mp_free(key.exponent);
mp_free(key.modulus);
sfree(line);
error = "key bit count does not match in SSH-1 public key file";
goto end;
}
if (commentptr)
*commentptr = commentp ? dupstr(commentp) : NULL;
rsa_ssh1_public_blob(bs, &key, RSA_SSH1_EXPONENT_FIRST);
freersakey(&key);
sfree(line);
return 1;
not_public_either:
sfree(line);
error = "not an SSH-1 RSA file";
}
end:
if ((ret != 1) && errorstr)
*errorstr = error;
return ret;
}
int rsa1_loadpub_f(const Filename *filename, BinarySink *bs,
char **commentptr, const char **errorstr)
{
LoadedFile *lf = lf_load_keyfile(filename, errorstr);
if (!lf)
return 0;
int toret = rsa1_loadpub_s(BinarySource_UPCAST(lf), bs,
commentptr, errorstr);
lf_free(lf);
return toret;
}
strbuf *rsa1_save_sb(RSAKey *key, const char *passphrase)
{
strbuf *buf = strbuf_new_nm();
int estart;
/*
* The public part of the key.
*/
put_datapl(buf, rsa1_signature);
put_byte(buf, passphrase ? SSH1_CIPHER_3DES : 0); /* encryption type */
put_uint32(buf, 0); /* reserved */
rsa_ssh1_public_blob(BinarySink_UPCAST(buf), key,
RSA_SSH1_MODULUS_FIRST);
put_stringz(buf, NULLTOEMPTY(key->comment));
/*
* The encrypted portion starts here.
*/
estart = buf->len;
/*
* Two bytes, then the same two bytes repeated.
*/
{
uint8_t bytes[2];
random_read(bytes, 2);
put_data(buf, bytes, 2);
put_data(buf, bytes, 2);
}
/*
* Four more bignums: the decryption exponent, then iqmp, then
* q, then p.
*/
put_mp_ssh1(buf, key->private_exponent);
put_mp_ssh1(buf, key->iqmp);
put_mp_ssh1(buf, key->q);
put_mp_ssh1(buf, key->p);
/*
* Now write zeros until the encrypted portion is a multiple of
* 8 bytes.
*/
put_padding(buf, (estart - buf->len) & 7, 0);
/*
* Now encrypt the encrypted portion.
*/
if (passphrase) {
unsigned char keybuf[16];
hash_simple(&ssh_md5, ptrlen_from_asciz(passphrase), keybuf);
des3_encrypt_pubkey(keybuf, buf->u + estart, buf->len - estart);
smemclr(keybuf, sizeof(keybuf)); /* burn the evidence */
}
return buf;
}
/*
* Save an RSA key file. Return true on success.
*/
bool rsa1_save_f(const Filename *filename, RSAKey *key, const char *passphrase)
{
FILE *fp = f_open(filename, "wb", true);
if (!fp)
return false;
strbuf *buf = rsa1_save_sb(key, passphrase);
bool toret = fwrite(buf->s, 1, buf->len, fp) == buf->len;
if (fclose(fp))
toret = false;
strbuf_free(buf);
return toret;
}
/* ----------------------------------------------------------------------
* SSH-2 private key load/store functions.
*
* PuTTY's own file format for SSH-2 keys is given in doc/ppk.but, aka
* the "PPK file format" appendix in the PuTTY manual.
*/
static bool read_header(BinarySource *src, char *header)
{
int len = 39;
int c;
while (1) {
c = get_byte(src);
if (c == '\n' || c == '\r' || get_err(src))
return false; /* failure */
if (c == ':') {
c = get_byte(src);
if (c != ' ')
return false;
*header = '\0';
return true; /* success! */
}
if (len == 0)
return false; /* failure */
*header++ = c;
len--;
}
return false; /* failure */
}
static char *read_body(BinarySource *src)
{
strbuf *buf = strbuf_new_nm();
while (1) {
int c = get_byte(src);
if (c == '\r' || c == '\n' || get_err(src)) {
if (!get_err(src)) {
c = get_byte(src);
if (c != '\r' && c != '\n' && !get_err(src))
src->pos--;
}
return strbuf_to_str(buf);
}
put_byte(buf, c);
}
}
static bool read_blob(BinarySource *src, int nlines, BinarySink *bs)
{
char *line;
int linelen;
int i, j, k;
/* We expect at most 64 base64 characters, ie 48 real bytes, per line. */
for (i = 0; i < nlines; i++) {
line = read_body(src);
if (!line)
return false;
linelen = strlen(line);
if (linelen % 4 != 0 || linelen > 64) {
sfree(line);
return false;
}
for (j = 0; j < linelen; j += 4) {
unsigned char decoded[3];
k = base64_decode_atom(line + j, decoded);
if (!k) {
sfree(line);
return false;
}
put_data(bs, decoded, k);
}
sfree(line);
}
return true;
}
/*
* Magic error return value for when the passphrase is wrong.
*/
ssh2_userkey ssh2_wrong_passphrase = { NULL, NULL };
const ssh_keyalg *const all_keyalgs[] = {
&ssh_rsa,
&ssh_rsa_sha256,
&ssh_rsa_sha512,
&ssh_dsa,
&ssh_ecdsa_nistp256,
&ssh_ecdsa_nistp384,
&ssh_ecdsa_nistp521,
&ssh_ecdsa_ed25519,
&ssh_ecdsa_ed448,
&opensshcert_ssh_dsa,
&opensshcert_ssh_rsa,
&opensshcert_ssh_rsa_sha256,
&opensshcert_ssh_rsa_sha512,
&opensshcert_ssh_ecdsa_ed25519,
&opensshcert_ssh_ecdsa_nistp256,
&opensshcert_ssh_ecdsa_nistp384,
&opensshcert_ssh_ecdsa_nistp521,
};
const size_t n_keyalgs = lenof(all_keyalgs);
const ssh_keyalg *find_pubkey_alg_len(ptrlen name)
{
for (size_t i = 0; i < n_keyalgs; i++)
if (ptrlen_eq_string(name, all_keyalgs[i]->ssh_id))
return all_keyalgs[i];
return NULL;
}
const ssh_keyalg *find_pubkey_alg(const char *name)
{
return find_pubkey_alg_len(ptrlen_from_asciz(name));
}
ptrlen pubkey_blob_to_alg_name(ptrlen blob)
{
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, blob);
return get_string(src);
}
const ssh_keyalg *pubkey_blob_to_alg(ptrlen blob)
{
return find_pubkey_alg_len(pubkey_blob_to_alg_name(blob));
}
struct ppk_cipher {
const char *name;
size_t blocklen, keylen, ivlen;
};
static const struct ppk_cipher ppk_cipher_none = { "none", 1, 0, 0 };
static const struct ppk_cipher ppk_cipher_aes256_cbc = { "aes256-cbc", 16, 32, 16 };
static void ssh2_ppk_derive_keys(
unsigned fmt_version, const struct ppk_cipher *ciphertype,
ptrlen passphrase, strbuf *storage, ptrlen *cipherkey, ptrlen *cipheriv,
ptrlen *mackey, ptrlen passphrase_salt, ppk_save_parameters *params)
{
size_t mac_keylen;
switch (fmt_version) {
case 3: {
if (ciphertype->keylen == 0) {
mac_keylen = 0;
break;
}
ptrlen empty = PTRLEN_LITERAL("");
mac_keylen = 32;
uint32_t taglen = ciphertype->keylen + ciphertype->ivlen + mac_keylen;
if (params->argon2_passes_auto) {
uint32_t passes;
argon2_choose_passes(
params->argon2_flavour, params->argon2_mem,
params->argon2_milliseconds, &passes,
params->argon2_parallelism, taglen,
passphrase, passphrase_salt, empty, empty, storage);
params->argon2_passes_auto = false;
params->argon2_passes = passes;
} else {
argon2(params->argon2_flavour, params->argon2_mem,
params->argon2_passes, params->argon2_parallelism, taglen,
passphrase, passphrase_salt, empty, empty, storage);
}
break;
}
case 2:
case 1: {
/* Counter-mode iteration to generate cipher key data. */
for (unsigned ctr = 0; ctr * 20 < ciphertype->keylen; ctr++) {
ssh_hash *h = ssh_hash_new(&ssh_sha1);
put_uint32(h, ctr);
put_datapl(h, passphrase);
ssh_hash_final(h, strbuf_append(storage, 20));
}
strbuf_shrink_to(storage, ciphertype->keylen);
/* In this version of the format, the CBC IV was always all 0. */
put_padding(storage, ciphertype->ivlen, 0);
/* Completely separate hash for the MAC key. */
ssh_hash *h = ssh_hash_new(&ssh_sha1);
mac_keylen = ssh_hash_alg(h)->hlen;
put_datapl(h, PTRLEN_LITERAL("putty-private-key-file-mac-key"));
put_datapl(h, passphrase);
ssh_hash_final(h, strbuf_append(storage, mac_keylen));
break;
}
default:
unreachable("bad format version in ssh2_ppk_derive_keys");
}
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(storage));
*cipherkey = get_data(src, ciphertype->keylen);
*cipheriv = get_data(src, ciphertype->ivlen);
*mackey = get_data(src, mac_keylen);
}
static int userkey_parse_line_counter(const char *text)
{
char *endptr;
unsigned long ul = strtoul(text, &endptr, 10);
if (*text && !*endptr && ul < MAX_KEY_BLOB_LINES)
return ul;
else
return -1;
}
static bool str_to_uint32_t(const char *s, uint32_t *out)
{
char *endptr;
unsigned long converted = strtoul(s, &endptr, 10);
if (*s && !*endptr && converted <= ~(uint32_t)0) {
*out = converted;
return true;
} else {
return false;
}
}
ssh2_userkey *ppk_load_s(BinarySource *src, const char *passphrase,
const char **errorstr)
{
char header[40], *b, *encryption, *comment, *mac;
const ssh_keyalg *alg;
ssh2_userkey *ukey;
strbuf *public_blob, *private_blob, *cipher_mac_keys_blob;
strbuf *passphrase_salt = strbuf_new();
ptrlen cipherkey, cipheriv, mackey;
const struct ppk_cipher *ciphertype;
int i;
bool is_mac;
unsigned fmt_version;
const char *error = NULL;
ppk_save_parameters params;
ukey = NULL; /* return NULL for most errors */
encryption = comment = mac = NULL;
public_blob = private_blob = cipher_mac_keys_blob = NULL;
/* Read the first header line which contains the key type. */
if (!read_header(src, header)) {
error = "no header line found in key file";
goto error;
}
if (0 == strcmp(header, "PuTTY-User-Key-File-3")) {
fmt_version = 3;
} else if (0 == strcmp(header, "PuTTY-User-Key-File-2")) {
fmt_version = 2;
} else if (0 == strcmp(header, "PuTTY-User-Key-File-1")) {
/* this is an old key file; warn and then continue */
old_keyfile_warning();
fmt_version = 1;
} else if (0 == strncmp(header, "PuTTY-User-Key-File-", 20)) {
/* this is a key file FROM THE FUTURE; refuse it, but with a
* more specific error message than the generic one below */
error = "PuTTY key format too new";
goto error;
} else {
error = "not a PuTTY SSH-2 private key";
goto error;
}
error = "file format error";
if ((b = read_body(src)) == NULL)
goto error;
/* Select key algorithm structure. */
alg = find_pubkey_alg(b);
if (!alg) {
sfree(b);
goto error;
}
sfree(b);
/* Read the Encryption header line. */
if (!read_header(src, header) || 0 != strcmp(header, "Encryption"))
goto error;
if ((encryption = read_body(src)) == NULL)
goto error;
if (!strcmp(encryption, "aes256-cbc")) {
ciphertype = &ppk_cipher_aes256_cbc;
} else if (!strcmp(encryption, "none")) {
ciphertype = &ppk_cipher_none;
} else {
goto error;
}
/* Read the Comment header line. */
if (!read_header(src, header) || 0 != strcmp(header, "Comment"))
goto error;
if ((comment = read_body(src)) == NULL)
goto error;
memset(&params, 0, sizeof(params)); /* in particular, sets
* passes_auto=false */
/* Read the Public-Lines header line and the public blob. */
if (!read_header(src, header) || 0 != strcmp(header, "Public-Lines"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
i = userkey_parse_line_counter(b);
sfree(b);
if (i < 0)
goto error;
public_blob = strbuf_new();
if (!read_blob(src, i, BinarySink_UPCAST(public_blob)))
goto error;
if (fmt_version >= 3 && ciphertype->keylen != 0) {
/* Read Argon2 key derivation parameters. */
if (!read_header(src, header) || 0 != strcmp(header, "Key-Derivation"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
if (!strcmp(b, "Argon2d")) {
params.argon2_flavour = Argon2d;
} else if (!strcmp(b, "Argon2i")) {
params.argon2_flavour = Argon2i;
} else if (!strcmp(b, "Argon2id")) {
params.argon2_flavour = Argon2id;
} else {
sfree(b);
goto error;
}
sfree(b);
if (!read_header(src, header) || 0 != strcmp(header, "Argon2-Memory"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
if (!str_to_uint32_t(b, &params.argon2_mem)) {
sfree(b);
goto error;
}
sfree(b);
if (!read_header(src, header) || 0 != strcmp(header, "Argon2-Passes"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
if (!str_to_uint32_t(b, &params.argon2_passes)) {
sfree(b);
goto error;
}
sfree(b);
if (!read_header(src, header) ||
0 != strcmp(header, "Argon2-Parallelism"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
if (!str_to_uint32_t(b, &params.argon2_parallelism)) {
sfree(b);
goto error;
}
sfree(b);
if (!read_header(src, header) || 0 != strcmp(header, "Argon2-Salt"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
for (size_t i = 0; b[i]; i += 2) {
if (isxdigit((unsigned char)b[i]) && b[i+1] &&
isxdigit((unsigned char)b[i+1])) {
char s[3];
s[0] = b[i];
s[1] = b[i+1];
s[2] = '\0';
put_byte(passphrase_salt, strtoul(s, NULL, 16));
} else {
sfree(b);
goto error;
}
}
sfree(b);
}
/* Read the Private-Lines header line and the Private blob. */
if (!read_header(src, header) || 0 != strcmp(header, "Private-Lines"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
i = userkey_parse_line_counter(b);
sfree(b);
if (i < 0)
goto error;
private_blob = strbuf_new_nm();
if (!read_blob(src, i, BinarySink_UPCAST(private_blob)))
goto error;
/* Read the Private-MAC or Private-Hash header line. */
if (!read_header(src, header))
goto error;
if (0 == strcmp(header, "Private-MAC")) {
if ((mac = read_body(src)) == NULL)
goto error;
is_mac = true;
} else if (0 == strcmp(header, "Private-Hash") && fmt_version == 1) {
if ((mac = read_body(src)) == NULL)
goto error;
is_mac = false;
} else
goto error;
cipher_mac_keys_blob = strbuf_new();
ssh2_ppk_derive_keys(fmt_version, ciphertype,
ptrlen_from_asciz(passphrase ? passphrase : ""),
cipher_mac_keys_blob, &cipherkey, &cipheriv, &mackey,
ptrlen_from_strbuf(passphrase_salt), &params);
/*
* Decrypt the private blob.
*/
if (private_blob->len % ciphertype->blocklen)
goto error;
if (ciphertype == &ppk_cipher_aes256_cbc) {
aes256_decrypt_pubkey(cipherkey.ptr, cipheriv.ptr,
private_blob->u, private_blob->len);
}
/*
* Verify the MAC.
*/
{
unsigned char binary[32];
char realmac[sizeof(binary) * 2 + 1];
strbuf *macdata;
bool free_macdata;
const ssh2_macalg *mac_alg =
fmt_version <= 2 ? &ssh_hmac_sha1 : &ssh_hmac_sha256;
if (fmt_version == 1) {
/* MAC (or hash) only covers the private blob. */
macdata = private_blob;
free_macdata = false;
} else {
macdata = strbuf_new_nm();
put_stringz(macdata, alg->ssh_id);
put_stringz(macdata, encryption);
put_stringz(macdata, comment);
put_string(macdata, public_blob->s,
public_blob->len);
put_string(macdata, private_blob->s,
private_blob->len);
free_macdata = true;
}
if (is_mac) {
ssh2_mac *mac;
mac = ssh2_mac_new(mac_alg, NULL);
ssh2_mac_setkey(mac, mackey);
ssh2_mac_start(mac);
put_data(mac, macdata->s, macdata->len);
ssh2_mac_genresult(mac, binary);
ssh2_mac_free(mac);
} else {
hash_simple(&ssh_sha1, ptrlen_from_strbuf(macdata), binary);
}
if (free_macdata)
strbuf_free(macdata);
for (i = 0; i < mac_alg->len; i++)
sprintf(realmac + 2 * i, "%02x", binary[i]);
if (strcmp(mac, realmac)) {
/* An incorrect MAC is an unconditional Error if the key is
* unencrypted. Otherwise, it means Wrong Passphrase. */
if (ciphertype->keylen != 0) {
error = "wrong passphrase";
ukey = SSH2_WRONG_PASSPHRASE;
} else {
error = "MAC failed";
ukey = NULL;
}
goto error;
}
}
/*
* Create and return the key.
*/
ukey = snew(ssh2_userkey);
ukey->comment = comment;
comment = NULL;
ukey->key = ssh_key_new_priv(
alg, ptrlen_from_strbuf(public_blob),
ptrlen_from_strbuf(private_blob));
if (!ukey->key) {
sfree(ukey);
ukey = NULL;
error = "createkey failed";
goto error;
}
error = NULL;
/*
* Error processing.
*/
error:
if (comment)
sfree(comment);
if (encryption)
sfree(encryption);
if (mac)
sfree(mac);
if (public_blob)
strbuf_free(public_blob);
if (private_blob)
strbuf_free(private_blob);
if (cipher_mac_keys_blob)
strbuf_free(cipher_mac_keys_blob);
strbuf_free(passphrase_salt);
if (errorstr)
*errorstr = error;
return ukey;
}
ssh2_userkey *ppk_load_f(const Filename *filename, const char *passphrase,
const char **errorstr)
{
LoadedFile *lf = lf_load_keyfile(filename, errorstr);
ssh2_userkey *toret;
if (lf) {
toret = ppk_load_s(BinarySource_UPCAST(lf), passphrase, errorstr);
lf_free(lf);
} else {
toret = NULL;
*errorstr = "can't open file";
}
return toret;
}
static bool rfc4716_loadpub(BinarySource *src, char **algorithm,
BinarySink *bs,
char **commentptr, const char **errorstr)
{
const char *error;
char *line, *colon, *value;
char *comment = NULL;
strbuf *pubblob = NULL;
char base64in[4];
unsigned char base64out[3];
int base64bytes;
int alglen;
line = mkstr(get_chomped_line(src));
if (!line || 0 != strcmp(line, "---- BEGIN SSH2 PUBLIC KEY ----")) {
error = "invalid begin line in SSH-2 public key file";
goto error;
}
sfree(line); line = NULL;
while (1) {
line = mkstr(get_chomped_line(src));
if (!line) {
error = "truncated SSH-2 public key file";
goto error;
}
colon = strstr(line, ": ");
if (!colon)
break;
*colon = '\0';
value = colon + 2;
if (!strcmp(line, "Comment")) {
char *p, *q;
/* Remove containing double quotes, if present */
p = value;
if (*p == '"' && p[strlen(p)-1] == '"') {
p[strlen(p)-1] = '\0';
p++;
}
/* Remove \-escaping, not in RFC4716 but seen in the wild
* in practice. */
for (q = line; *p; p++) {
if (*p == '\\' && p[1])
p++;
*q++ = *p;
}
*q = '\0';
sfree(comment); /* *just* in case of multiple Comment headers */
comment = dupstr(line);
} else if (!strcmp(line, "Subject") ||
!strncmp(line, "x-", 2)) {
/* Headers we recognise and ignore. Do nothing. */
} else {
error = "unrecognised header in SSH-2 public key file";
goto error;
}
sfree(line); line = NULL;
}
/*
* Now line contains the initial line of base64 data. Loop round
* while it still does contain base64.
*/
pubblob = strbuf_new();
base64bytes = 0;
while (line && line[0] != '-') {
char *p;
for (p = line; *p; p++) {
base64in[base64bytes++] = *p;
if (base64bytes == 4) {
int n = base64_decode_atom(base64in, base64out);
put_data(pubblob, base64out, n);
base64bytes = 0;
}
}
sfree(line); line = NULL;
line = mkstr(get_chomped_line(src));
}
/*
* Finally, check the END line makes sense.
*/
if (!line || 0 != strcmp(line, "---- END SSH2 PUBLIC KEY ----")) {
error = "invalid end line in SSH-2 public key file";
goto error;
}
sfree(line); line = NULL;
/*
* OK, we now have a public blob and optionally a comment. We must
* return the key algorithm string too, so look for that at the
* start of the public blob.
*/
if (pubblob->len < 4) {
error = "not enough data in SSH-2 public key file";
goto error;
}
alglen = toint(GET_32BIT_MSB_FIRST(pubblob->u));
if (alglen < 0 || alglen > pubblob->len-4) {
error = "invalid algorithm prefix in SSH-2 public key file";
goto error;
}
if (algorithm)
*algorithm = dupprintf("%.*s", alglen, pubblob->s+4);
if (commentptr)
*commentptr = comment;
else
sfree(comment);
put_datapl(bs, ptrlen_from_strbuf(pubblob));
strbuf_free(pubblob);
return true;
error:
sfree(line);
sfree(comment);
if (pubblob)
strbuf_free(pubblob);
if (errorstr)
*errorstr = error;
return false;
}
static bool openssh_loadpub(BinarySource *src, char **algorithm,
BinarySink *bs,
char **commentptr, const char **errorstr)
{
const char *error;
char *line, *base64;
char *comment = NULL;
unsigned char *pubblob = NULL;
int pubbloblen, pubblobsize;
int alglen;
line = mkstr(get_chomped_line(src));
base64 = strchr(line, ' ');
if (!base64) {
error = "no key blob in OpenSSH public key file";
goto error;
}
*base64++ = '\0';
comment = strchr(base64, ' ');
if (comment) {
*comment++ = '\0';
comment = dupstr(comment);
}
pubblobsize = strlen(base64) / 4 * 3;
pubblob = snewn(pubblobsize, unsigned char);
pubbloblen = 0;
while (!memchr(base64, '\0', 4)) {
assert(pubbloblen + 3 <= pubblobsize);
pubbloblen += base64_decode_atom(base64, pubblob + pubbloblen);
base64 += 4;
}
if (*base64) {
error = "invalid length for base64 data in OpenSSH public key file";
goto error;
}
/*
* Sanity check: the first word on the line should be the key
* algorithm, and should match the encoded string at the start of
* the public blob.
*/
alglen = strlen(line);
if (pubbloblen < alglen + 4 ||
GET_32BIT_MSB_FIRST(pubblob) != alglen ||
0 != memcmp(pubblob + 4, line, alglen)) {
error = "key algorithms do not match in OpenSSH public key file";
goto error;
}
/*
* Done.
*/
if (algorithm)
*algorithm = dupstr(line);
if (commentptr)
*commentptr = comment;
else
sfree(comment);
sfree(line);
put_data(bs, pubblob, pubbloblen);
sfree(pubblob);
return true;
error:
sfree(line);
sfree(comment);
sfree(pubblob);
if (errorstr)
*errorstr = error;
return false;
}
bool ppk_loadpub_s(BinarySource *src, char **algorithm, BinarySink *bs,
char **commentptr, const char **errorstr)
{
char header[40], *b;
const ssh_keyalg *alg;
int type, i;
const char *error = NULL;
char *comment = NULL;
/* Initially, check if this is a public-only key file. Sometimes
* we'll be asked to read a public blob from one of those. */
type = key_type_s(src);
if (type == SSH_KEYTYPE_SSH2_PUBLIC_RFC4716) {
bool ret = rfc4716_loadpub(src, algorithm, bs, commentptr, errorstr);
return ret;
} else if (type == SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH) {
bool ret = openssh_loadpub(src, algorithm, bs, commentptr, errorstr);
return ret;
} else if (type != SSH_KEYTYPE_SSH2) {
error = "not a public key or a PuTTY SSH-2 private key";
goto error;
}
/* Read the first header line which contains the key type. */
if (!read_header(src, header)
|| (0 != strcmp(header, "PuTTY-User-Key-File-3") &&
0 != strcmp(header, "PuTTY-User-Key-File-2") &&
0 != strcmp(header, "PuTTY-User-Key-File-1"))) {
if (0 == strncmp(header, "PuTTY-User-Key-File-", 20))
error = "PuTTY key format too new";
else
error = "not a public key or a PuTTY SSH-2 private key";
goto error;
}
error = "file format error";
if ((b = read_body(src)) == NULL)
goto error;
/* Select key algorithm structure. */
alg = find_pubkey_alg(b);
sfree(b);
if (!alg) {
goto error;
}
/* Read the Encryption header line. */
if (!read_header(src, header) || 0 != strcmp(header, "Encryption"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
sfree(b); /* we don't care */
/* Read the Comment header line. */
if (!read_header(src, header) || 0 != strcmp(header, "Comment"))
goto error;
if ((comment = read_body(src)) == NULL)
goto error;
if (commentptr)
*commentptr = comment;
else
sfree(comment);
/* Read the Public-Lines header line and the public blob. */
if (!read_header(src, header) || 0 != strcmp(header, "Public-Lines"))
goto error;
if ((b = read_body(src)) == NULL)
goto error;
i = userkey_parse_line_counter(b);
sfree(b);
if (i < 0)
goto error;
if (!read_blob(src, i, bs))
goto error;
if (algorithm)
*algorithm = dupstr(alg->ssh_id);
return true;
/*
* Error processing.
*/
error:
if (errorstr)
*errorstr = error;
if (comment && commentptr) {
sfree(comment);
*commentptr = NULL;
}
return false;
}
bool ppk_loadpub_f(const Filename *filename, char **algorithm, BinarySink *bs,
char **commentptr, const char **errorstr)
{
LoadedFile *lf = lf_load_keyfile(filename, errorstr);
if (!lf)
return false;
bool toret = ppk_loadpub_s(BinarySource_UPCAST(lf), algorithm, bs,
commentptr, errorstr);
lf_free(lf);
return toret;
}
bool ppk_encrypted_s(BinarySource *src, char **commentptr)
{
char header[40], *b, *comment;
bool ret;
if (commentptr)
*commentptr = NULL;
if (!read_header(src, header)
|| (0 != strcmp(header, "PuTTY-User-Key-File-3") &&
0 != strcmp(header, "PuTTY-User-Key-File-2") &&
0 != strcmp(header, "PuTTY-User-Key-File-1"))) {
return false;
}
if ((b = read_body(src)) == NULL) {
return false;
}
sfree(b); /* we don't care about key type here */
/* Read the Encryption header line. */
if (!read_header(src, header) || 0 != strcmp(header, "Encryption")) {
return false;
}
if ((b = read_body(src)) == NULL) {
return false;
}
/* Read the Comment header line. */
if (!read_header(src, header) || 0 != strcmp(header, "Comment")) {
sfree(b);
return true;
}
if ((comment = read_body(src)) == NULL) {
sfree(b);
return true;
}
if (commentptr)
*commentptr = comment;
else
sfree(comment);
if (!strcmp(b, "aes256-cbc"))
ret = true;
else
ret = false;
sfree(b);
return ret;
}
bool ppk_encrypted_f(const Filename *filename, char **commentptr)
{
LoadedFile *lf = lf_load_keyfile(filename, NULL);
if (!lf) {
if (commentptr)
*commentptr = NULL;
return false;
}
bool toret = ppk_encrypted_s(BinarySource_UPCAST(lf), commentptr);
lf_free(lf);
return toret;
}
int base64_lines(int datalen)
{
/* When encoding, we use 64 chars/line, which equals 48 real chars. */
return (datalen + 47) / 48;
}
const ppk_save_parameters ppk_save_default_parameters = {
.fmt_version = 3,
/*
* The Argon2 spec recommends the hybrid variant Argon2id, where
* you don't have a good reason to go with the pure Argon2d or
* Argon2i.
*/
.argon2_flavour = Argon2id,
/*
* Memory requirement for hashing a password: I don't want to set
* this to some truly huge thing like a gigabyte, because for all
* I know people might perfectly reasonably be running PuTTY on
* machines that don't _have_ a gigabyte spare to hash a private
* key passphrase in the legitimate use cases.
*
* I've picked 8 MB as an amount of memory that isn't unreasonable
* to expect a desktop client machine to have, but is also large
* compared to the memory requirements of the PPK v2 password hash
* (which was plain SHA-1), so it still imposes a limit on
* parallel attacks on someone's key file.
*/
.argon2_mem = 8192, /* require 8 Mb memory */
/*
* Automatically scale the number of Argon2 passes so that the
* overall time taken is about 1/10 second. (Again, I could crank
* this up to a larger time and _most_ people might be OK with it,
* but for the moment, I'm trying to err on the side of not
* stopping anyone from using the tools at all.)
*/
.argon2_passes_auto = true,
.argon2_milliseconds = 100,
/*
* PuTTY's own Argon2 implementation is single-threaded. So we
* might as well set parallelism to 1, which requires that
* attackers' implementations must also be effectively
* single-threaded, and they don't get any benefit from using
* multiple cores on the same hash attempt. (Of course they can
* still use multiple cores for _separate_ hash attempts, but at
* least they don't get a speed advantage over us in computing
* even one hash.)
*/
.argon2_parallelism = 1,
};
strbuf *ppk_save_sb(ssh2_userkey *key, const char *passphrase,
const ppk_save_parameters *params_orig)
{
strbuf *pub_blob, *priv_blob, *cipher_mac_keys_blob;
unsigned char *priv_blob_encrypted;
int priv_encrypted_len;
int cipherblk;
int i;
const char *cipherstr;
ptrlen cipherkey, cipheriv, mackey;
const struct ppk_cipher *ciphertype;
unsigned char priv_mac[32];
/*
* Fetch the key component blobs.
*/
pub_blob = strbuf_new();
ssh_key_public_blob(key->key, BinarySink_UPCAST(pub_blob));
priv_blob = strbuf_new_nm();
ssh_key_private_blob(key->key, BinarySink_UPCAST(priv_blob));
/*
* Determine encryption details, and encrypt the private blob.
*/
if (passphrase) {
cipherstr = "aes256-cbc";
cipherblk = 16;
ciphertype = &ppk_cipher_aes256_cbc;
} else {
cipherstr = "none";
cipherblk = 1;
ciphertype = &ppk_cipher_none;
}
priv_encrypted_len = priv_blob->len + cipherblk - 1;
priv_encrypted_len -= priv_encrypted_len % cipherblk;
priv_blob_encrypted = snewn(priv_encrypted_len, unsigned char);
memset(priv_blob_encrypted, 0, priv_encrypted_len);
memcpy(priv_blob_encrypted, priv_blob->u, priv_blob->len);
/* Create padding based on the SHA hash of the unpadded blob. This prevents
* too easy a known-plaintext attack on the last block. */
hash_simple(&ssh_sha1, ptrlen_from_strbuf(priv_blob), priv_mac);
assert(priv_encrypted_len - priv_blob->len < 20);
memcpy(priv_blob_encrypted + priv_blob->len, priv_mac,
priv_encrypted_len - priv_blob->len);
/* Copy the save parameters, so that when derive_keys chooses the
* number of Argon2 passes, it can write the result back to our
* copy for us to retrieve. */
ppk_save_parameters params = *params_orig;
strbuf *passphrase_salt = strbuf_new();
if (params.fmt_version == 3) {
/* Invent a salt for the password hash. */
if (params.salt)
put_data(passphrase_salt, params.salt, params.saltlen);
else
random_read(strbuf_append(passphrase_salt, 16), 16);
}
cipher_mac_keys_blob = strbuf_new();
ssh2_ppk_derive_keys(params.fmt_version, ciphertype,
ptrlen_from_asciz(passphrase ? passphrase : ""),
cipher_mac_keys_blob, &cipherkey, &cipheriv, &mackey,
ptrlen_from_strbuf(passphrase_salt), &params);
const ssh2_macalg *macalg = (params.fmt_version == 2 ?
&ssh_hmac_sha1 : &ssh_hmac_sha256);
/* Now create the MAC. */
{
strbuf *macdata;
macdata = strbuf_new_nm();
put_stringz(macdata, ssh_key_ssh_id(key->key));
put_stringz(macdata, cipherstr);
put_stringz(macdata, key->comment);
put_string(macdata, pub_blob->s, pub_blob->len);
put_string(macdata, priv_blob_encrypted, priv_encrypted_len);
mac_simple(macalg, mackey, ptrlen_from_strbuf(macdata), priv_mac);
strbuf_free(macdata);
}
if (passphrase) {
assert(cipherkey.len == 32);
aes256_encrypt_pubkey(cipherkey.ptr, cipheriv.ptr,
priv_blob_encrypted, priv_encrypted_len);
}
strbuf *out = strbuf_new_nm();
put_fmt(out, "PuTTY-User-Key-File-%u: %s\n",
params.fmt_version, ssh_key_ssh_id(key->key));
put_fmt(out, "Encryption: %s\n", cipherstr);
put_fmt(out, "Comment: %s\n", key->comment);
put_fmt(out, "Public-Lines: %d\n", base64_lines(pub_blob->len));
base64_encode_bs(BinarySink_UPCAST(out), ptrlen_from_strbuf(pub_blob), 64);
if (params.fmt_version == 3 && ciphertype->keylen != 0) {
put_fmt(out, "Key-Derivation: %s\n",
params.argon2_flavour == Argon2d ? "Argon2d" :
params.argon2_flavour == Argon2i ? "Argon2i" : "Argon2id");
put_fmt(out, "Argon2-Memory: %"PRIu32"\n", params.argon2_mem);
assert(!params.argon2_passes_auto);
put_fmt(out, "Argon2-Passes: %"PRIu32"\n", params.argon2_passes);
put_fmt(out, "Argon2-Parallelism: %"PRIu32"\n",
params.argon2_parallelism);
put_fmt(out, "Argon2-Salt: ");
for (size_t i = 0; i < passphrase_salt->len; i++)
put_fmt(out, "%02x", passphrase_salt->u[i]);
put_fmt(out, "\n");
}
put_fmt(out, "Private-Lines: %d\n", base64_lines(priv_encrypted_len));
base64_encode_bs(BinarySink_UPCAST(out),
make_ptrlen(priv_blob_encrypted, priv_encrypted_len), 64);
put_fmt(out, "Private-MAC: ");
for (i = 0; i < macalg->len; i++)
put_fmt(out, "%02x", priv_mac[i]);
put_fmt(out, "\n");
strbuf_free(cipher_mac_keys_blob);
strbuf_free(passphrase_salt);
strbuf_free(pub_blob);
strbuf_free(priv_blob);
smemclr(priv_blob_encrypted, priv_encrypted_len);
sfree(priv_blob_encrypted);
return out;
}
bool ppk_save_f(const Filename *filename, ssh2_userkey *key,
const char *passphrase, const ppk_save_parameters *params)
{
FILE *fp = f_open(filename, "wb", true);
if (!fp)
return false;
strbuf *buf = ppk_save_sb(key, passphrase, params);
bool toret = fwrite(buf->s, 1, buf->len, fp) == buf->len;
if (fclose(fp))
toret = false;
strbuf_free(buf);
return toret;
}
/* ----------------------------------------------------------------------
* Output public keys.
*/
char *ssh1_pubkey_str(RSAKey *key)
{
char *buffer;
char *dec1, *dec2;
dec1 = mp_get_decimal(key->exponent);
dec2 = mp_get_decimal(key->modulus);
buffer = dupprintf("%"SIZEu" %s %s%s%s", mp_get_nbits(key->modulus),
dec1, dec2, key->comment ? " " : "",
key->comment ? key->comment : "");
sfree(dec1);
sfree(dec2);
return buffer;
}
void ssh1_write_pubkey(FILE *fp, RSAKey *key)
{
char *buffer = ssh1_pubkey_str(key);
fprintf(fp, "%s\n", buffer);
sfree(buffer);
}
static char *ssh2_pubkey_openssh_str_internal(const char *comment,
const void *v_pub_blob,
int pub_len)
{
const unsigned char *ssh2blob = (const unsigned char *)v_pub_blob;
ptrlen alg;
char *buffer, *p;
int i;
{
BinarySource src[1];
BinarySource_BARE_INIT(src, ssh2blob, pub_len);
alg = get_string(src);
if (get_err(src)) {
const char *replacement_str = "INVALID-ALGORITHM";
alg.ptr = replacement_str;
alg.len = strlen(replacement_str);
}
}
buffer = snewn(alg.len +
4 * ((pub_len+2) / 3) +
(comment ? strlen(comment) : 0) + 3, char);
p = buffer + sprintf(buffer, "%.*s ", PTRLEN_PRINTF(alg));
i = 0;
while (i < pub_len) {
int n = (pub_len - i < 3 ? pub_len - i : 3);
base64_encode_atom(ssh2blob + i, n, p);
i += n;
p += 4;
}
if (comment) {
*p++ = ' ';
strcpy(p, comment);
} else
*p++ = '\0';
return buffer;
}
char *ssh2_pubkey_openssh_str(ssh2_userkey *key)
{
strbuf *blob;
char *ret;
blob = strbuf_new();
ssh_key_public_blob(key->key, BinarySink_UPCAST(blob));
ret = ssh2_pubkey_openssh_str_internal(
key->comment, blob->s, blob->len);
strbuf_free(blob);
return ret;
}
void ssh2_write_pubkey(FILE *fp, const char *comment,
const void *v_pub_blob, int pub_len,
int keytype)
{
unsigned char *pub_blob = (unsigned char *)v_pub_blob;
if (keytype == SSH_KEYTYPE_SSH2_PUBLIC_RFC4716) {
const char *p;
int i, column;
fprintf(fp, "---- BEGIN SSH2 PUBLIC KEY ----\n");
if (comment) {
fprintf(fp, "Comment: \"");
for (p = comment; *p; p++) {
if (*p == '\\' || *p == '\"')
fputc('\\', fp);
fputc(*p, fp);
}
fprintf(fp, "\"\n");
}
i = 0;
column = 0;
while (i < pub_len) {
char buf[5];
int n = (pub_len - i < 3 ? pub_len - i : 3);
base64_encode_atom(pub_blob + i, n, buf);
i += n;
buf[4] = '\0';
fputs(buf, fp);
if (++column >= 16) {
fputc('\n', fp);
column = 0;
}
}
if (column > 0)
fputc('\n', fp);
fprintf(fp, "---- END SSH2 PUBLIC KEY ----\n");
} else if (keytype == SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH) {
char *buffer = ssh2_pubkey_openssh_str_internal(comment,
v_pub_blob, pub_len);
fprintf(fp, "%s\n", buffer);
sfree(buffer);
} else {
unreachable("Bad key type in ssh2_write_pubkey");
}
}
/* ----------------------------------------------------------------------
* Utility functions to compute SSH-2 fingerprints in a uniform way.
*/
static void ssh2_fingerprint_blob_md5(ptrlen blob, strbuf *sb)
{
unsigned char digest[16];
hash_simple(&ssh_md5, blob, digest);
for (unsigned i = 0; i < 16; i++)
put_fmt(sb, "%02x%s", digest[i], i==15 ? "" : ":");
}
static void ssh2_fingerprint_blob_sha256(ptrlen blob, strbuf *sb)
{
unsigned char digest[32];
hash_simple(&ssh_sha256, blob, digest);
put_datapl(sb, PTRLEN_LITERAL("SHA256:"));
for (unsigned i = 0; i < 32; i += 3) {
char buf[5];
unsigned len = 32-i;
if (len > 3)
len = 3;
base64_encode_atom(digest + i, len, buf);
put_data(sb, buf, 4);
}
strbuf_chomp(sb, '=');
}
char *ssh2_fingerprint_blob(ptrlen blob, FingerprintType fptype)
{
strbuf *sb = strbuf_new();
strbuf *tmp = NULL;
/*
* Identify the key algorithm, if possible.
*
* If we can't do that, then we have a seriously confused key
* blob, in which case we return only the hash.
*/
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, blob);
ptrlen algname = get_string(src);
if (!get_err(src)) {
const ssh_keyalg *alg = find_pubkey_alg_len(algname);
if (alg) {
int bits = ssh_key_public_bits(alg, blob);
put_fmt(sb, "%.*s %d ", PTRLEN_PRINTF(algname), bits);
if (!ssh_fptype_is_cert(fptype) && alg->is_certificate) {
ssh_key *key = ssh_key_new_pub(alg, blob);
if (key) {
tmp = strbuf_new();
ssh_key_public_blob(ssh_key_base_key(key),
BinarySink_UPCAST(tmp));
blob = ptrlen_from_strbuf(tmp);
ssh_key_free(key);
}
}
} else {
put_fmt(sb, "%.*s ", PTRLEN_PRINTF(algname));
}
}
switch (ssh_fptype_from_cert(fptype)) {
case SSH_FPTYPE_MD5:
ssh2_fingerprint_blob_md5(blob, sb);
break;
case SSH_FPTYPE_SHA256:
ssh2_fingerprint_blob_sha256(blob, sb);
break;
default:
unreachable("ssh_fptype_from_cert ruled out the other values");
}
if (tmp)
strbuf_free(tmp);
return strbuf_to_str(sb);
}
char *ssh2_double_fingerprint_blob(ptrlen blob, FingerprintType fptype)
{
if (ssh_fptype_is_cert(fptype))
fptype = ssh_fptype_from_cert(fptype);
char *fp = ssh2_fingerprint_blob(blob, fptype);
char *p = strrchr(fp, ' ');
char *hash = p ? p + 1 : fp;
char *fpc = ssh2_fingerprint_blob(blob, ssh_fptype_to_cert(fptype));
char *pc = strrchr(fpc, ' ');
char *hashc = pc ? pc + 1 : fpc;
if (strcmp(hash, hashc)) {
char *tmp = dupprintf("%s (with certificate: %s)", fp, hashc);
sfree(fp);
fp = tmp;
}
sfree(fpc);
return fp;
}
char **ssh2_all_fingerprints_for_blob(ptrlen blob)
{
char **fps = snewn(SSH_N_FPTYPES, char *);
for (unsigned i = 0; i < SSH_N_FPTYPES; i++)
fps[i] = ssh2_fingerprint_blob(blob, i);
return fps;
}
char *ssh2_fingerprint(ssh_key *data, FingerprintType fptype)
{
strbuf *blob = strbuf_new();
ssh_key_public_blob(data, BinarySink_UPCAST(blob));
char *ret = ssh2_fingerprint_blob(ptrlen_from_strbuf(blob), fptype);
strbuf_free(blob);
return ret;
}
char *ssh2_double_fingerprint(ssh_key *data, FingerprintType fptype)
{
strbuf *blob = strbuf_new();
ssh_key_public_blob(data, BinarySink_UPCAST(blob));
char *ret = ssh2_double_fingerprint_blob(ptrlen_from_strbuf(blob), fptype);
strbuf_free(blob);
return ret;
}
char **ssh2_all_fingerprints(ssh_key *data)
{
strbuf *blob = strbuf_new();
ssh_key_public_blob(data, BinarySink_UPCAST(blob));
char **ret = ssh2_all_fingerprints_for_blob(ptrlen_from_strbuf(blob));
strbuf_free(blob);
return ret;
}
void ssh2_free_all_fingerprints(char **fps)
{
for (unsigned i = 0; i < SSH_N_FPTYPES; i++)
sfree(fps[i]);
sfree(fps);
}
/* ----------------------------------------------------------------------
* Determine the type of a private key file.
*/
static int key_type_s_internal(BinarySource *src)
{
static const ptrlen public_std_sig =
PTRLEN_DECL_LITERAL("---- BEGIN SSH2 PUBLIC KEY");
static const ptrlen putty2_sig =
PTRLEN_DECL_LITERAL("PuTTY-User-Key-File-");
static const ptrlen sshcom_sig =
PTRLEN_DECL_LITERAL("---- BEGIN SSH2 ENCRYPTED PRIVAT");
static const ptrlen openssh_new_sig =
PTRLEN_DECL_LITERAL("-----BEGIN OPENSSH PRIVATE KEY");
static const ptrlen openssh_sig =
PTRLEN_DECL_LITERAL("-----BEGIN ");
if (BinarySource_REWIND(src), expect_signature(src, rsa1_signature))
return SSH_KEYTYPE_SSH1;
if (BinarySource_REWIND(src), expect_signature(src, public_std_sig))
return SSH_KEYTYPE_SSH2_PUBLIC_RFC4716;
if (BinarySource_REWIND(src), expect_signature(src, putty2_sig))
return SSH_KEYTYPE_SSH2;
if (BinarySource_REWIND(src), expect_signature(src, openssh_new_sig))
return SSH_KEYTYPE_OPENSSH_NEW;
if (BinarySource_REWIND(src), expect_signature(src, openssh_sig))
return SSH_KEYTYPE_OPENSSH_PEM;
if (BinarySource_REWIND(src), expect_signature(src, sshcom_sig))
return SSH_KEYTYPE_SSHCOM;
BinarySource_REWIND(src);
if (get_chars(src, "0123456789").len > 0 && get_chars(src, " ").len == 1 &&
get_chars(src, "0123456789").len > 0 && get_chars(src, " ").len == 1 &&
get_chars(src, "0123456789").len > 0 &&
get_nonchars(src, " \n").len == 0)
return SSH_KEYTYPE_SSH1_PUBLIC;
BinarySource_REWIND(src);
if (find_pubkey_alg_len(get_nonchars(src, " \n")) > 0 &&
get_chars(src, " ").len == 1 &&
get_chars(src, "0123456789ABCDEFGHIJKLMNOPQRSTUV"
"WXYZabcdefghijklmnopqrstuvwxyz+/=").len > 0 &&
get_nonchars(src, " \n").len == 0)
return SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH;
return SSH_KEYTYPE_UNKNOWN; /* unrecognised or EOF */
}
int key_type_s(BinarySource *src)
{
int toret = key_type_s_internal(src);
BinarySource_REWIND(src);
return toret;
}
int key_type(const Filename *filename)
{
LoadedFile *lf = lf_new(1024);
if (lf_load(lf, filename) == LF_ERROR) {
lf_free(lf);
return SSH_KEYTYPE_UNOPENABLE;
}
int toret = key_type_s(BinarySource_UPCAST(lf));
lf_free(lf);
return toret;
}
/*
* Convert the type word to a string, for `wrong type' error
* messages.
*/
const char *key_type_to_str(int type)
{
switch (type) {
case SSH_KEYTYPE_UNOPENABLE:
return "unable to open file";
case SSH_KEYTYPE_UNKNOWN:
return "not a recognised key file format";
case SSH_KEYTYPE_SSH1_PUBLIC:
return "SSH-1 public key";
case SSH_KEYTYPE_SSH2_PUBLIC_RFC4716:
return "SSH-2 public key (RFC 4716 format)";
case SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH:
return "SSH-2 public key (OpenSSH format)";
case SSH_KEYTYPE_SSH1:
return "SSH-1 private key";
case SSH_KEYTYPE_SSH2:
return "PuTTY SSH-2 private key";
case SSH_KEYTYPE_OPENSSH_PEM:
return "OpenSSH SSH-2 private key (old PEM format)";
case SSH_KEYTYPE_OPENSSH_NEW:
return "OpenSSH SSH-2 private key (new format)";
case SSH_KEYTYPE_SSHCOM:
return "ssh.com SSH-2 private key";
/*
* This function is called with a key type derived from
* looking at an actual key file, so the output-only type
* OPENSSH_AUTO should never get here, and is much an INTERNAL
* ERROR as a code we don't even understand.
*/
case SSH_KEYTYPE_OPENSSH_AUTO:
unreachable("OPENSSH_AUTO should never reach key_type_to_str");
default:
unreachable("bad key type in key_type_to_str");
}
}