1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/primecandidate.c
Simon Tatham 6b1fbfe55c PrimeCandidateSource: add Sophie Germain filtering.
A Sophie Germain prime is a prime p such that 2p+1 is also prime. The
larger prime of the pair 2p+1 is also known as a 'safe prime', and is
the preferred kind of modulus for conventional Diffie-Hellman.

Generating these is harder work than normal prime generation. There's
not really much of a technique except to just keep generating
candidate primes p and then testing 2p+1. But what you _can_ do to
speed things up is to get the prime-candidate generator to help a bit:
it's already enforcing that no small prime divides p, and it's easy to
get it to also enforce that no small prime divides 2p+1. That check
can filter out a lot of bad candidates early, before you waste time on
the more expensive checks, so you have a better chance of success with
each number that gets as far as Miller-Rabin.

Here I add an extra setup function for PrimeCandidateSource which
enables those extra checks. After you call pcs_try_sophie_germain(),
the PCS will only deliver you numbers for which both p and 2p+1 are
free of small factors.
2020-03-07 11:24:12 +00:00

433 lines
13 KiB
C

/*
* primecandidate.c: implementation of the PrimeCandidateSource
* abstraction declared in sshkeygen.h.
*/
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "mpunsafe.h"
#include "sshkeygen.h"
struct avoid {
unsigned mod, res;
};
struct PrimeCandidateSource {
unsigned bits;
bool ready, try_sophie_germain;
/* We'll start by making up a random number strictly less than this ... */
mp_int *limit;
/* ... then we'll multiply by 'factor', and add 'addend'. */
mp_int *factor, *addend;
/* Then we'll try to add a small multiple of 'factor' to it to
* avoid it being a multiple of any small prime. Also, for RSA, we
* may need to avoid it being _this_ multiple of _this_: */
unsigned avoid_residue, avoid_modulus;
/* Once we're actually running, this will be the complete list of
* (modulus, residue) pairs we want to avoid. */
struct avoid *avoids;
size_t navoids, avoidsize;
/* List of known primes that our number will be congruent to 1 modulo */
mp_int **kps;
size_t nkps, kpsize;
};
PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits,
unsigned first, unsigned nfirst)
{
PrimeCandidateSource *s = snew(PrimeCandidateSource);
assert(first >> (nfirst-1) == 1);
s->bits = bits;
s->ready = false;
s->try_sophie_germain = false;
s->kps = NULL;
s->nkps = s->kpsize = 0;
s->avoids = NULL;
s->navoids = s->avoidsize = 0;
/* Make the number that's the lower limit of our range */
mp_int *firstmp = mp_from_integer(first);
mp_int *base = mp_lshift_fixed(firstmp, bits - nfirst);
mp_free(firstmp);
/* Set the low bit of that, because all (nontrivial) primes are odd */
mp_set_bit(base, 0, 1);
/* That's our addend. Now initialise factor to 2, to ensure we
* only generate odd numbers */
s->factor = mp_from_integer(2);
s->addend = base;
/* And that means the limit of our random numbers must be one
* factor of two _less_ than the position of the low bit of
* 'first', because we'll be multiplying the random number by
* 2 immediately afterwards. */
s->limit = mp_power_2(bits - nfirst - 1);
/* avoid_modulus == 0 signals that there's no extra residue to avoid */
s->avoid_residue = 1;
s->avoid_modulus = 0;
return s;
}
PrimeCandidateSource *pcs_new(unsigned bits)
{
return pcs_new_with_firstbits(bits, 1, 1);
}
void pcs_free(PrimeCandidateSource *s)
{
mp_free(s->limit);
mp_free(s->factor);
mp_free(s->addend);
for (size_t i = 0; i < s->nkps; i++)
mp_free(s->kps[i]);
sfree(s->avoids);
sfree(s->kps);
sfree(s);
}
void pcs_try_sophie_germain(PrimeCandidateSource *s)
{
s->try_sophie_germain = true;
}
static void pcs_require_residue_inner(PrimeCandidateSource *s,
mp_int *mod, mp_int *res)
{
/*
* We already have a factor and addend. Ensure this one doesn't
* contradict it.
*/
mp_int *gcd = mp_gcd(mod, s->factor);
mp_int *test1 = mp_mod(s->addend, gcd);
mp_int *test2 = mp_mod(res, gcd);
assert(mp_cmp_eq(test1, test2));
mp_free(test1);
mp_free(test2);
/*
* Reduce our input factor and addend, which are constraints on
* the ultimate output number, so that they're constraints on the
* initial cofactor we're going to make up.
*
* If we're generating x and we want to ensure ax+b == r (mod m),
* how does that work? We've already checked that b == r modulo g
* = gcd(a,m), i.e. r-b is a multiple of g, and so are a and m. So
* let's write a=gA, m=gM, (r-b)=gR, and then we can start by
* dividing that off:
*
* ax == r-b (mod m )
* => gAx == gR (mod gM)
* => Ax == R (mod M)
*
* Now the moduli A,M are coprime, which makes things easier.
*
* We're going to need to generate the x in this equation by
* generating a new smaller value y, multiplying it by M, and
* adding some constant K. So we have x = My + K, and we need to
* work out what K will satisfy the above equation. In other
* words, we need A(My+K) == R (mod M), and the AMy term vanishes,
* so we just need AK == R (mod M). So our congruence is solved by
* setting K to be R * A^{-1} mod M.
*/
mp_int *A = mp_div(s->factor, gcd);
mp_int *M = mp_div(mod, gcd);
mp_int *Rpre = mp_modsub(res, s->addend, mod);
mp_int *R = mp_div(Rpre, gcd);
mp_int *Ainv = mp_invert(A, M);
mp_int *K = mp_modmul(R, Ainv, M);
mp_free(gcd);
mp_free(Rpre);
mp_free(Ainv);
mp_free(A);
mp_free(R);
/*
* So we know we have to transform our existing (factor, addend)
* pair into (factor * M, addend * factor * K). Now we just need
* to work out what the limit should be on the random value we're
* generating.
*
* If we need My+K < old_limit, then y < (old_limit-K)/M. But the
* RHS is a fraction, so in integers, we need y < ceil of it.
*/
assert(!mp_cmp_hs(K, s->limit));
mp_int *dividend = mp_add(s->limit, M);
mp_sub_integer_into(dividend, dividend, 1);
mp_sub_into(dividend, dividend, K);
mp_free(s->limit);
s->limit = mp_div(dividend, M);
mp_free(dividend);
/*
* Now just update the real factor and addend, and we're done.
*/
mp_int *addend_old = s->addend;
mp_int *tmp = mp_mul(s->factor, K); /* use the _old_ value of factor */
s->addend = mp_add(s->addend, tmp);
mp_free(tmp);
mp_free(addend_old);
mp_int *factor_old = s->factor;
s->factor = mp_mul(s->factor, M);
mp_free(factor_old);
mp_free(M);
mp_free(K);
s->factor = mp_unsafe_shrink(s->factor);
s->addend = mp_unsafe_shrink(s->addend);
s->limit = mp_unsafe_shrink(s->limit);
}
void pcs_require_residue(PrimeCandidateSource *s,
mp_int *mod, mp_int *res_orig)
{
/*
* Reduce the input residue to its least non-negative value, in
* case it was given as a larger equivalent value.
*/
mp_int *res_reduced = mp_mod(res_orig, mod);
pcs_require_residue_inner(s, mod, res_reduced);
mp_free(res_reduced);
}
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod)
{
mp_int *res = mp_from_integer(1);
pcs_require_residue(s, mod, res);
mp_free(res);
}
void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod)
{
pcs_require_residue_1(s, mod);
sgrowarray(s->kps, s->kpsize, s->nkps);
s->kps[s->nkps++] = mp_copy(mod);
}
void pcs_avoid_residue_small(PrimeCandidateSource *s,
unsigned mod, unsigned res)
{
assert(!s->avoid_modulus); /* can't cope with more than one */
s->avoid_modulus = mod;
s->avoid_residue = res % mod; /* reduce, just in case */
}
static int avoid_cmp(const void *av, const void *bv)
{
const struct avoid *a = (const struct avoid *)av;
const struct avoid *b = (const struct avoid *)bv;
return a->mod < b->mod ? -1 : a->mod > b->mod ? +1 : 0;
}
static uint64_t invert(uint64_t a, uint64_t m)
{
int64_t v0 = a, i0 = 1;
int64_t v1 = m, i1 = 0;
while (v0) {
int64_t tmp, q = v1 / v0;
tmp = v0; v0 = v1 - q*v0; v1 = tmp;
tmp = i0; i0 = i1 - q*i0; i1 = tmp;
}
assert(v1 == 1 || v1 == -1);
return i1 * v1;
}
void pcs_ready(PrimeCandidateSource *s)
{
/*
* List all the small (modulus, residue) pairs we want to avoid.
*/
init_smallprimes();
#define ADD_AVOID(newmod, newres) do { \
sgrowarray(s->avoids, s->avoidsize, s->navoids); \
s->avoids[s->navoids].mod = (newmod); \
s->avoids[s->navoids].res = (newres); \
s->navoids++; \
} while (0)
unsigned limit = (mp_hs_integer(s->addend, 65536) ? 65536 :
mp_get_integer(s->addend));
/*
* Don't be divisible by any small prime, or at least, any prime
* smaller than our output number might actually manage to be. (If
* asked to generate a really small prime, it would be
* embarrassing to rule out legitimate answers on the grounds that
* they were divisible by themselves.)
*/
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
ADD_AVOID(smallprimes[i], 0);
if (s->try_sophie_germain) {
/*
* If we're aiming to generate a Sophie Germain prime (i.e. p
* such that 2p+1 is also prime), then we also want to ensure
* 2p+1 is not congruent to 0 mod any small prime, because if
* it is, we'll waste a lot of time generating a p for which
* 2p+1 can't possibly work. So we have to avoid an extra
* residue mod each odd q.
*
* We can simplify: 2p+1 == 0 (mod q)
* => 2p == -1 (mod q)
* => p == -2^{-1} (mod q)
*
* There's no need to do Euclid's algorithm to compute those
* inverses, because for any odd q, the modular inverse of -2
* mod q is just (q-1)/2. (Proof: multiplying it by -2 gives
* 1-q, which is congruent to 1 mod q.)
*/
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
if (smallprimes[i] != 2)
ADD_AVOID(smallprimes[i], (smallprimes[i] - 1) / 2);
}
/*
* Finally, if there's a particular modulus and residue we've been
* told to avoid, put it on the list.
*/
if (s->avoid_modulus)
ADD_AVOID(s->avoid_modulus, s->avoid_residue);
#undef ADD_AVOID
/*
* Sort our to-avoid list by modulus. Partly this is so that we'll
* check the smaller moduli first during the live runs, which lets
* us spot most failing cases earlier rather than later. Also, it
* brings equal moduli together, so that we can reuse the residue
* we computed from a previous one.
*/
qsort(s->avoids, s->navoids, sizeof(*s->avoids), avoid_cmp);
/*
* Next, adjust each of these moduli to take account of our factor
* and addend. If we want factor*x+addend to avoid being congruent
* to 'res' modulo 'mod', then x itself must avoid being congruent
* to (res - addend) * factor^{-1}.
*
* If factor == 0 modulo mod, then the answer will have a fixed
* residue anyway, so we can discard it from our list to test.
*/
int64_t factor_m = 0, addend_m = 0, last_mod = 0;
size_t out = 0;
for (size_t i = 0; i < s->navoids; i++) {
int64_t mod = s->avoids[i].mod, res = s->avoids[i].res;
if (mod != last_mod) {
last_mod = mod;
addend_m = mp_unsafe_mod_integer(s->addend, mod);
factor_m = mp_unsafe_mod_integer(s->factor, mod);
}
if (factor_m == 0) {
assert(res != addend_m);
continue;
}
res = (res - addend_m) * invert(factor_m, mod);
res %= mod;
if (res < 0)
res += mod;
s->avoids[out].mod = mod;
s->avoids[out].res = res;
out++;
}
s->navoids = out;
s->ready = true;
}
mp_int *pcs_generate(PrimeCandidateSource *s)
{
assert(s->ready);
while (true) {
mp_int *x = mp_random_upto(s->limit);
int64_t x_res = 0, last_mod = 0;
bool ok = true;
for (size_t i = 0; i < s->navoids; i++) {
int64_t mod = s->avoids[i].mod, avoid_res = s->avoids[i].res;
if (mod != last_mod) {
last_mod = mod;
x_res = mp_unsafe_mod_integer(x, mod);
}
if (x_res == avoid_res) {
ok = false;
break;
}
}
if (!ok) {
mp_free(x);
continue; /* try a new x */
}
/*
* We've found a viable x. Make the final output value.
*/
mp_int *toret = mp_new(s->bits);
mp_mul_into(toret, x, s->factor);
mp_add_into(toret, toret, s->addend);
mp_free(x);
return toret;
}
}
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
mp_int **factor_out, mp_int **addend_out)
{
*limit_out = mp_copy(pcs->limit);
*factor_out = mp_copy(pcs->factor);
*addend_out = mp_copy(pcs->addend);
}
unsigned pcs_get_bits(PrimeCandidateSource *pcs)
{
return pcs->bits;
}
unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs)
{
return mp_get_nbits(pcs->limit);
}
mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs)
{
/* Compute (limit-1) * factor + addend */
mp_int *tmp = mp_mul(pcs->limit, pcs->factor);
mp_int *bound = mp_add(tmp, pcs->addend);
mp_free(tmp);
mp_sub_into(bound, bound, pcs->factor);
return bound;
}
mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout)
{
*nout = pcs->nkps;
return pcs->kps;
}