1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/contrib/kh2reg.py
Simon Tatham 5f204d1ef1 kh2reg.py: handle OpenSSH hashed hostnames.
Obviously we can't do that by inverting the hash function itself, but
if the user provides one or more host names on the command line that
they're expecting to appear in the file, we can at least compare the
stored hashes against those.
2019-04-21 14:46:12 +01:00

441 lines
16 KiB
Python
Executable File

#! /usr/bin/env python
# Convert OpenSSH known_hosts and known_hosts2 files to "new format" PuTTY
# host keys.
# usage:
# kh2reg.py [ --win ] known_hosts1 2 3 4 ... > hosts.reg
# Creates a Windows .REG file (double-click to install).
# kh2reg.py --unix known_hosts1 2 3 4 ... > sshhostkeys
# Creates data suitable for storing in ~/.putty/sshhostkeys (Unix).
# Line endings are someone else's problem as is traditional.
# Should run under either Python 2 or 3.
import fileinput
import base64
import struct
import string
import re
import sys
import argparse
import itertools
import collections
import hashlib
from functools import reduce
def winmungestr(s):
"Duplicate of PuTTY's mungestr() in winstore.c:1.10 for Registry keys"
candot = 0
r = ""
for c in s:
if c in ' \*?%~' or ord(c)<ord(' ') or (c == '.' and not candot):
r = r + ("%%%02X" % ord(c))
else:
r = r + c
candot = 1
return r
def strtoint(s):
"Convert arbitrary-length big-endian binary data to a Python int"
bytes = struct.unpack(">{:d}B".format(len(s)), s)
return reduce ((lambda a, b: (int(a) << 8) + int(b)), bytes)
def strtoint_le(s):
"Convert arbitrary-length little-endian binary data to a Python int"
bytes = reversed(struct.unpack(">{:d}B".format(len(s)), s))
return reduce ((lambda a, b: (int(a) << 8) + int(b)), bytes)
def inttohex(n):
"Convert int to lower-case hex."
return "0x{:x}".format(n)
def warn(s):
"Warning with file/line number"
sys.stderr.write("%s:%d: %s\n"
% (fileinput.filename(), fileinput.filelineno(), s))
class HMAC(object):
def __init__(self, hashclass, blocksize):
self.hashclass = hashclass
self.blocksize = blocksize
self.struct = struct.Struct(">{:d}B".format(self.blocksize))
def pad_key(self, key):
return key + b'\0' * (self.blocksize - len(key))
def xor_key(self, key, xor):
return self.struct.pack(*[b ^ xor for b in self.struct.unpack(key)])
def keyed_hash(self, key, padbyte, string):
return self.hashclass(self.xor_key(key, padbyte) + string).digest()
def compute(self, key, string):
if len(key) > self.blocksize:
key = self.hashclass(key).digest()
key = self.pad_key(key)
return self.keyed_hash(key, 0x5C, self.keyed_hash(key, 0x36, string))
def openssh_hashed_host_match(hashed_host, try_host):
if hashed_host.startswith(b'|1|'):
salt, expected = hashed_host[3:].split(b'|')
salt = base64.decodestring(salt)
expected = base64.decodestring(expected)
mac = HMAC(hashlib.sha1, 64)
else:
return False # unrecognised magic number prefix
return mac.compute(salt, try_host) == expected
def invert(n, p):
"""Compute inverse mod p."""
if n % p == 0:
raise ZeroDivisionError()
a = n, 1, 0
b = p, 0, 1
while b[0]:
q = a[0] // b[0]
a = a[0] - q*b[0], a[1] - q*b[1], a[2] - q*b[2]
b, a = a, b
assert abs(a[0]) == 1
return a[1]*a[0]
def jacobi(n,m):
"""Compute the Jacobi symbol.
The special case of this when m is prime is the Legendre symbol,
which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
non-zero square number mod m; -1 if n is not congruent to any
square mod m.
"""
assert m & 1
acc = 1
while True:
n %= m
if n == 0:
return 0
while not (n & 1):
n >>= 1
if (m & 7) not in {1,7}:
acc *= -1
if n == 1:
return acc
if (n & 3) == 3 and (m & 3) == 3:
acc *= -1
n, m = m, n
class SqrtModP(object):
"""Class for finding square roots of numbers mod p.
p must be an odd prime (but its primality is not checked)."""
def __init__(self, p):
p = abs(p)
assert p & 1
self.p = p
# Decompose p as 2^e k + 1 for odd k.
self.k = p-1
self.e = 0
while not (self.k & 1):
self.k >>= 1
self.e += 1
# Find a non-square mod p.
for self.z in itertools.count(1):
if jacobi(self.z, self.p) == -1:
break
self.zinv = invert(self.z, self.p)
def sqrt_recurse(self, a):
ak = pow(a, self.k, self.p)
for i in range(self.e, -1, -1):
if ak == 1:
break
ak = ak*ak % self.p
assert i > 0
if i == self.e:
return pow(a, (self.k+1) // 2, self.p)
r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
def sqrt(self, a):
j = jacobi(a, self.p)
if j == 0:
return 0
if j < 0:
raise ValueError("{} has no square root mod {}".format(a, self.p))
a %= self.p
r = self.sqrt_recurse(a)
assert r*r % self.p == a
# Normalise to the smaller (or 'positive') one of the two roots.
return min(r, self.p - r)
def __str__(self):
return "{}({})".format(type(self).__name__, self.p)
def __repr__(self):
return self.__str__()
instances = {}
@classmethod
def make(cls, p):
if p not in cls.instances:
cls.instances[p] = cls(p)
return cls.instances[p]
@classmethod
def root(cls, n, p):
return cls.make(p).sqrt(n)
NistCurve = collections.namedtuple("NistCurve", "p a b")
nist_curves = {
"ecdsa-sha2-nistp256": NistCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b),
"ecdsa-sha2-nistp384": NistCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef),
"ecdsa-sha2-nistp521": NistCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00),
}
class BlankInputLine(Exception):
pass
class UnknownKeyType(Exception):
def __init__(self, keytype):
self.keytype = keytype
class KeyFormatError(Exception):
def __init__(self, msg):
self.msg = msg
def handle_line(line, output_formatter, try_hosts):
try:
# Remove leading/trailing whitespace (should zap CR and LF)
line = line.strip()
# Skip blanks and comments
if line == '' or line[0] == '#':
raise BlankInputLine
# Split line on spaces.
fields = line.split(' ')
# Common fields
hostpat = fields[0]
keyparams = [] # placeholder
keytype = "" # placeholder
# Grotty heuristic to distinguish known_hosts from known_hosts2:
# is second field entirely decimal digits?
if re.match (r"\d*$", fields[1]):
# Treat as SSH-1-type host key.
# Format: hostpat bits10 exp10 mod10 comment...
# (PuTTY doesn't store the number of bits.)
keyparams = map (int, fields[2:4])
keytype = "rsa"
else:
# Treat as SSH-2-type host key.
# Format: hostpat keytype keyblob64 comment...
sshkeytype, blob = fields[1], base64.decodestring(
fields[2].encode("ASCII"))
# 'blob' consists of a number of
# uint32 N (big-endian)
# uint8[N] field_data
subfields = []
while blob:
sizefmt = ">L"
(size,) = struct.unpack (sizefmt, blob[0:4])
size = int(size) # req'd for slicage
(data,) = struct.unpack (">%lus" % size, blob[4:size+4])
subfields.append(data)
blob = blob [struct.calcsize(sizefmt) + size : ]
# The first field is keytype again.
if subfields[0].decode("ASCII") != sshkeytype:
raise KeyFormatError("""
outer and embedded key types do not match: '%s', '%s'
""" % (sshkeytype, subfields[1]))
# Translate key type string into something PuTTY can use, and
# munge the rest of the data.
if sshkeytype == "ssh-rsa":
keytype = "rsa2"
# The rest of the subfields we can treat as an opaque list
# of bignums (same numbers and order as stored by PuTTY).
keyparams = map (strtoint, subfields[1:])
elif sshkeytype == "ssh-dss":
keytype = "dss"
# Same again.
keyparams = map (strtoint, subfields[1:])
elif sshkeytype in nist_curves:
keytype = sshkeytype
# Have to parse this a bit.
if len(subfields) > 3:
raise KeyFormatError("too many subfields in blob")
(curvename, Q) = subfields[1:]
# First is yet another copy of the key name.
if not re.match("ecdsa-sha2-" + re.escape(
curvename.decode("ASCII")), sshkeytype):
raise KeyFormatError("key type mismatch ('%s' vs '%s')"
% (sshkeytype, curvename))
# Second contains key material X and Y (hopefully).
# First a magic octet indicating point compression.
point_type = struct.unpack_from("B", Q, 0)[0]
Qrest = Q[1:]
if point_type == 4:
# Then two equal-length bignums (X and Y).
bnlen = len(Qrest)
if (bnlen % 1) != 0:
raise KeyFormatError("odd-length X+Y")
bnlen = bnlen // 2
x = strtoint(Qrest[:bnlen])
y = strtoint(Qrest[bnlen:])
elif 2 <= point_type <= 3:
# A compressed point just specifies X, and leaves
# Y implicit except for parity, so we have to
# recover it from the curve equation.
curve = nist_curves[sshkeytype]
x = strtoint(Qrest)
yy = (x*x*x + curve.a*x + curve.b) % curve.p
y = SqrtModP.root(yy, curve.p)
if y % 2 != point_type % 2:
y = curve.p - y
keyparams = [curvename, x, y]
elif sshkeytype == "ssh-ed25519":
keytype = sshkeytype
if len(subfields) != 2:
raise KeyFormatError("wrong number of subfields in blob")
# Key material y, with the top bit being repurposed as
# the expected parity of the associated x (point
# compression).
y = strtoint_le(subfields[1])
x_parity = y >> 255
y &= ~(1 << 255)
# Standard Ed25519 parameters.
p = 2**255 - 19
d = 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
# Recover x^2 = (y^2 - 1) / (d y^2 + 1).
xx = (y*y - 1) * invert(d*y*y + 1, p) % p
# Take the square root.
x = SqrtModP.root(xx, p)
# Pick the square root of the correct parity.
if (x % 2) != x_parity:
x = p - x
keyparams = [x, y]
else:
raise UnknownKeyType(sshkeytype)
# Now print out one line per host pattern, discarding wildcards.
for host in hostpat.split(','):
if re.search (r"[*?!]", host):
warn("skipping wildcard host pattern '%s'" % host)
continue
if re.match (r"\|", host):
for try_host in try_hosts:
if openssh_hashed_host_match(host.encode('ASCII'),
try_host.encode('UTF-8')):
host = try_host
break
else:
warn("unable to match hashed hostname '%s'" % host)
continue
m = re.match (r"\[([^]]*)\]:(\d*)$", host)
if m:
(host, port) = m.group(1,2)
port = int(port)
else:
port = 22
# Slightly bizarre output key format: 'type@port:hostname'
# XXX: does PuTTY do anything useful with literal IP[v4]s?
key = keytype + ("@%d:%s" % (port, host))
# Most of these are numbers, but there's the occasional
# string that needs passing through
value = ",".join(map(
lambda x: x if isinstance(x, str)
else x.decode('ASCII') if isinstance(x, bytes)
else inttohex(x), keyparams))
output_formatter.key(key, value)
except UnknownKeyType as k:
warn("unknown SSH key type '%s', skipping" % k.keytype)
except KeyFormatError as k:
warn("trouble parsing key (%s), skipping" % k.msg)
except BlankInputLine:
pass
class OutputFormatter(object):
def __init__(self, fh):
self.fh = fh
def header(self):
pass
def trailer(self):
pass
class WindowsOutputFormatter(OutputFormatter):
def header(self):
# Output REG file header.
self.fh.write("""REGEDIT4
[HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\SshHostKeys]
""")
def key(self, key, value):
# XXX: worry about double quotes?
self.fh.write("\"%s\"=\"%s\"\n" % (winmungestr(key), value))
def trailer(self):
# The spec at http://support.microsoft.com/kb/310516 says we need
# a blank line at the end of the reg file:
#
# Note the registry file should contain a blank line at the
# bottom of the file.
#
self.fh.write("\n")
class UnixOutputFormatter(OutputFormatter):
def key(self, key, value):
self.fh.write('%s %s\n' % (key, value))
def main():
parser = argparse.ArgumentParser(
description="Convert OpenSSH known hosts files to PuTTY's format.")
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--windows", "--win", action='store_const',
dest="output_formatter_class", const=WindowsOutputFormatter,
help="Produce Windows .reg file output that regedit.exe can import"
" (default).")
group.add_argument(
"--unix", action='store_const',
dest="output_formatter_class", const=UnixOutputFormatter,
help="Produce a file suitable for use as ~/.putty/sshhostkeys.")
parser.add_argument("-o", "--output", type=argparse.FileType("w"),
default=argparse.FileType("w")("-"),
help="Output file to write to (default stdout).")
parser.add_argument("--hostname", action="append",
help="Host name(s) to try matching against hashed "
"host entries in input.")
parser.add_argument("infile", nargs="*",
help="Input file(s) to read from (default stdin).")
parser.set_defaults(output_formatter_class=WindowsOutputFormatter,
hostname=[])
args = parser.parse_args()
output_formatter = args.output_formatter_class(args.output)
output_formatter.header()
for line in fileinput.input(args.infile):
handle_line(line, output_formatter, args.hostname)
output_formatter.trailer()
if __name__ == "__main__":
main()