mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-24 16:52:24 +00:00
4f756d2a4d
The previous mb_to_wc and wc_to_mb had horrible and also buggy APIs. This commit introduces a fresh pair of functions to replace them, which generate output by writing to a BinarySink. So it's now up to the caller to decide whether it wants the output written to a fixed-size buffer with overflow checking (via buffer_sink), or dynamically allocated, or even written directly to some other output channel. Nothing uses the new functions yet. I plan to migrate things over in upcoming commits. What was wrong with the old APIs: they had that awkward undocumented Windows-specific 'flags' parameter that I described in the previous commit and took out of the dup_X_to_Y wrappers. But much worse, the semantics for buffer overflow were not just undocumented but actually inconsistent. dup_wc_to_mb() in utils assumed that the underlying wc_to_mb would fill the buffer nearly full and return the size of data it wrote. In fact, this was untrue in the case where wc_to_mb called WideCharToMultiByte: that returns straight-up failure, setting the Windows error code to ERROR_INSUFFICIENT_BUFFER. It _does_ partially fill the output buffer, but doesn't tell you how much it wrote! What's wrong with the new API: it's a bit awkward to write a sequence of wchar_t in native byte order to a byte-oriented BinarySink, so people using put_mb_to_wc directly have to do some annoying pointer casting. But I think that's less horrible than the previous APIs. Another change: in the new API for wc_to_mb, defchr can be "", but not NULL.
297 lines
8.6 KiB
C
297 lines
8.6 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include <locale.h>
|
|
#include <limits.h>
|
|
#include <wchar.h>
|
|
|
|
#include <time.h>
|
|
|
|
#include "putty.h"
|
|
#include "charset.h"
|
|
#include "terminal.h"
|
|
#include "misc.h"
|
|
|
|
/*
|
|
* Unix Unicode-handling routines.
|
|
*/
|
|
|
|
bool is_dbcs_leadbyte(int codepage, char byte)
|
|
{
|
|
return false; /* we don't do DBCS */
|
|
}
|
|
|
|
bool BinarySink_put_mb_to_wc(
|
|
BinarySink *bs, int codepage, const char *mbstr, int mblen)
|
|
{
|
|
if (codepage == DEFAULT_CODEPAGE) {
|
|
mbstate_t state;
|
|
|
|
memset(&state, 0, sizeof state);
|
|
|
|
while (mblen > 0) {
|
|
wchar_t wc;
|
|
size_t i = mbrtowc(&wc, mbstr, (size_t)mblen, &state);
|
|
if (i == (size_t)-1 || i == (size_t)-2)
|
|
break;
|
|
put_data(bs, &wc, sizeof(wc));
|
|
mbstr += i;
|
|
mblen -= i;
|
|
}
|
|
} else if (codepage == CS_NONE) {
|
|
while (mblen > 0) {
|
|
wchar_t wc = 0xD800 | (mbstr[0] & 0xFF);
|
|
put_data(bs, &wc, sizeof(wc));
|
|
mbstr++;
|
|
mblen--;
|
|
}
|
|
} else {
|
|
wchar_t wbuf[1024];
|
|
while (mblen > 0) {
|
|
int wlen = charset_to_unicode(&mbstr, &mblen, wbuf, lenof(wbuf),
|
|
codepage, NULL, NULL, 0);
|
|
put_data(bs, wbuf, wlen * sizeof(wchar_t));
|
|
}
|
|
}
|
|
|
|
/* We never expect to receive invalid charset values on Unix,
|
|
* because we're not dependent on an externally defined space of
|
|
* OS-provided code pages */
|
|
return true;
|
|
}
|
|
|
|
bool BinarySink_put_wc_to_mb(
|
|
BinarySink *bs, int codepage, const wchar_t *wcstr, int wclen,
|
|
const char *defchr)
|
|
{
|
|
size_t defchr_len = 0;
|
|
bool defchr_len_known = false;
|
|
|
|
if (codepage == DEFAULT_CODEPAGE) {
|
|
char output[MB_LEN_MAX];
|
|
mbstate_t state;
|
|
|
|
memset(&state, 0, sizeof state);
|
|
|
|
while (wclen > 0) {
|
|
size_t i = wcrtomb(output, wcstr[0], &state);
|
|
if (i == (size_t)-1) {
|
|
if (!defchr_len_known) {
|
|
defchr_len = strlen(defchr);
|
|
defchr_len_known = true;
|
|
}
|
|
put_data(bs, defchr, defchr_len);
|
|
} else {
|
|
put_data(bs, output, i);
|
|
}
|
|
wcstr++;
|
|
wclen--;
|
|
}
|
|
} else if (codepage == CS_NONE) {
|
|
while (wclen > 0) {
|
|
if (*wcstr >= 0xD800 && *wcstr < 0xD900) {
|
|
put_byte(bs, *wcstr & 0xFF);
|
|
} else {
|
|
if (!defchr_len_known) {
|
|
defchr_len = strlen(defchr);
|
|
defchr_len_known = true;
|
|
}
|
|
put_data(bs, defchr, defchr_len);
|
|
}
|
|
wcstr++;
|
|
wclen--;
|
|
}
|
|
} else {
|
|
char buf[2048];
|
|
defchr_len = strlen(defchr);
|
|
|
|
while (wclen > 0) {
|
|
int len = charset_from_unicode(
|
|
&wcstr, &wclen, buf, lenof(buf), codepage,
|
|
NULL, defchr, defchr_len);
|
|
put_data(bs, buf, len);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return value is true if pterm is to run in direct-to-font mode.
|
|
*/
|
|
bool init_ucs(struct unicode_data *ucsdata, char *linecharset,
|
|
bool utf8_override, int font_charset, int vtmode)
|
|
{
|
|
int i;
|
|
bool ret = false;
|
|
|
|
/*
|
|
* In the platform-independent parts of the code, font_codepage
|
|
* is used only for system DBCS support - which we don't
|
|
* support at all. So we set this to something which will never
|
|
* be used.
|
|
*/
|
|
ucsdata->font_codepage = -1;
|
|
|
|
/*
|
|
* If utf8_override is set and the POSIX locale settings
|
|
* dictate a UTF-8 character set, then just go straight for
|
|
* UTF-8.
|
|
*/
|
|
ucsdata->line_codepage = CS_NONE;
|
|
if (utf8_override) {
|
|
const char *s;
|
|
if (((s = getenv("LC_ALL")) && *s) ||
|
|
((s = getenv("LC_CTYPE")) && *s) ||
|
|
((s = getenv("LANG")) && *s)) {
|
|
if (strstr(s, "UTF-8"))
|
|
ucsdata->line_codepage = CS_UTF8;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Failing that, line_codepage should be decoded from the
|
|
* specification in conf.
|
|
*/
|
|
if (ucsdata->line_codepage == CS_NONE)
|
|
ucsdata->line_codepage = decode_codepage(linecharset);
|
|
|
|
/*
|
|
* If line_codepage is _still_ CS_NONE, we assume we're using
|
|
* the font's own encoding. This has been passed in to us, so
|
|
* we use that. If it's still CS_NONE after _that_ - i.e. the
|
|
* font we were given had an incomprehensible charset - then we
|
|
* fall back to using the D800 page.
|
|
*/
|
|
if (ucsdata->line_codepage == CS_NONE)
|
|
ucsdata->line_codepage = font_charset;
|
|
|
|
if (ucsdata->line_codepage == CS_NONE)
|
|
ret = true;
|
|
|
|
/*
|
|
* Set up unitab_line, by translating each individual character
|
|
* in the line codepage into Unicode.
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
char c[1];
|
|
const char *p;
|
|
wchar_t wc[1];
|
|
int len;
|
|
c[0] = i;
|
|
p = c;
|
|
len = 1;
|
|
if (ucsdata->line_codepage == CS_NONE)
|
|
ucsdata->unitab_line[i] = 0xD800 | i;
|
|
else if (1 == charset_to_unicode(&p, &len, wc, 1,
|
|
ucsdata->line_codepage,
|
|
NULL, L"", 0))
|
|
ucsdata->unitab_line[i] = wc[0];
|
|
else
|
|
ucsdata->unitab_line[i] = 0xFFFD;
|
|
}
|
|
|
|
/*
|
|
* Set up unitab_xterm. This is the same as unitab_line except
|
|
* in the line-drawing regions, where it follows the Unicode
|
|
* encoding.
|
|
*
|
|
* (Note that the strange X encoding of line-drawing characters
|
|
* in the bottom 32 glyphs of ISO8859-1 fonts is taken care of
|
|
* by the font encoding, which will spot such a font and act as
|
|
* if it were in a variant encoding of ISO8859-1.)
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
static const wchar_t unitab_xterm_std[32] = {
|
|
0x2666, 0x2592, 0x2409, 0x240c, 0x240d, 0x240a, 0x00b0, 0x00b1,
|
|
0x2424, 0x240b, 0x2518, 0x2510, 0x250c, 0x2514, 0x253c, 0x23ba,
|
|
0x23bb, 0x2500, 0x23bc, 0x23bd, 0x251c, 0x2524, 0x2534, 0x252c,
|
|
0x2502, 0x2264, 0x2265, 0x03c0, 0x2260, 0x00a3, 0x00b7, 0x0020
|
|
};
|
|
static const wchar_t unitab_xterm_poorman[32] =
|
|
L"*#****o~**+++++-----++++|****L. ";
|
|
|
|
const wchar_t *ptr;
|
|
|
|
if (vtmode == VT_POORMAN)
|
|
ptr = unitab_xterm_poorman;
|
|
else
|
|
ptr = unitab_xterm_std;
|
|
|
|
if (i >= 0x5F && i < 0x7F)
|
|
ucsdata->unitab_xterm[i] = ptr[i & 0x1F];
|
|
else
|
|
ucsdata->unitab_xterm[i] = ucsdata->unitab_line[i];
|
|
}
|
|
|
|
/*
|
|
* Set up unitab_scoacs. The SCO Alternate Character Set is
|
|
* simply CP437.
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
char c[1];
|
|
const char *p;
|
|
wchar_t wc[1];
|
|
int len;
|
|
c[0] = i;
|
|
p = c;
|
|
len = 1;
|
|
if (1 == charset_to_unicode(&p, &len, wc, 1, CS_CP437, NULL, L"", 0))
|
|
ucsdata->unitab_scoacs[i] = wc[0];
|
|
else
|
|
ucsdata->unitab_scoacs[i] = 0xFFFD;
|
|
}
|
|
|
|
/*
|
|
* Find the control characters in the line codepage. For
|
|
* direct-to-font mode using the D800 hack, we assume 00-1F and
|
|
* 7F are controls, but allow 80-9F through. (It's as good a
|
|
* guess as anything; and my bet is that half the weird fonts
|
|
* used in this way will be IBM or MS code pages anyway.)
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
int lineval = ucsdata->unitab_line[i];
|
|
if (lineval < ' ' || (lineval >= 0x7F && lineval < 0xA0) ||
|
|
(lineval >= 0xD800 && lineval < 0xD820) || (lineval == 0xD87F))
|
|
ucsdata->unitab_ctrl[i] = i;
|
|
else
|
|
ucsdata->unitab_ctrl[i] = 0xFF;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void init_ucs_generic(Conf *conf, struct unicode_data *ucsdata)
|
|
{
|
|
init_ucs(ucsdata, conf_get_str(conf, CONF_line_codepage),
|
|
conf_get_bool(conf, CONF_utf8_override),
|
|
CS_NONE, conf_get_int(conf, CONF_vtmode));
|
|
}
|
|
|
|
const char *cp_name(int codepage)
|
|
{
|
|
if (codepage == CS_NONE)
|
|
return "Use font encoding";
|
|
return charset_to_localenc(codepage);
|
|
}
|
|
|
|
const char *cp_enumerate(int index)
|
|
{
|
|
int charset;
|
|
charset = charset_localenc_nth(index);
|
|
if (charset == CS_NONE) {
|
|
/* "Use font encoding" comes after all the named charsets */
|
|
if (charset_localenc_nth(index-1) != CS_NONE)
|
|
return "Use font encoding";
|
|
return NULL;
|
|
}
|
|
return charset_to_localenc(charset);
|
|
}
|
|
|
|
int decode_codepage(const char *cp_name)
|
|
{
|
|
if (!cp_name || !*cp_name)
|
|
return CS_UTF8;
|
|
return charset_from_localenc(cp_name);
|
|
}
|