mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 09:27:59 +00:00
0d2d20aad0
All the hash-specific state structures, and the functions that directly accessed them, are now local to the source files implementing the hashes themselves. Everywhere we previously used those types or functions, we're now using the standard ssh_hash or ssh2_mac API. The 'simple' functions (hmacmd5_simple, SHA_Simple etc) are now a pair of wrappers in sshauxcrypt.c, each of which takes an algorithm structure and can do the same conceptual thing regardless of what it is.
169 lines
4.4 KiB
C
169 lines
4.4 KiB
C
/*
|
|
* sshauxcrypt.c: wrapper functions on crypto primitives for use in
|
|
* other contexts than the main SSH packet protocol, such as
|
|
* encrypting private key files and performing XDM-AUTHORIZATION-1.
|
|
*
|
|
* These all work through the standard cipher/hash/MAC APIs, so they
|
|
* don't need to live in the same actual source files as the ciphers
|
|
* they wrap, and I think it keeps things tidier to have them out of
|
|
* the way here instead.
|
|
*/
|
|
|
|
#include "ssh.h"
|
|
|
|
static ssh_cipher *aes256_pubkey_cipher(const void *key)
|
|
{
|
|
/*
|
|
* PuTTY's own .PPK format for SSH-2 private key files is
|
|
* encrypted with 256-bit AES in CBC mode.
|
|
*/
|
|
char iv[16];
|
|
memset(iv, 0, 16);
|
|
ssh_cipher *cipher = ssh_cipher_new(&ssh_aes256_cbc);
|
|
ssh_cipher_setkey(cipher, key);
|
|
ssh_cipher_setiv(cipher, iv);
|
|
return cipher;
|
|
}
|
|
|
|
void aes256_encrypt_pubkey(const void *key, void *blk, int len)
|
|
{
|
|
ssh_cipher *c = aes256_pubkey_cipher(key);
|
|
ssh_cipher_encrypt(c, blk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
void aes256_decrypt_pubkey(const void *key, void *blk, int len)
|
|
{
|
|
ssh_cipher *c = aes256_pubkey_cipher(key);
|
|
ssh_cipher_decrypt(c, blk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
static ssh_cipher *des3_pubkey_cipher(const void *vkey)
|
|
{
|
|
/*
|
|
* SSH-1 private key files are encrypted with triple-DES in SSH-1
|
|
* style (three separate CBC layers), but the same key is used for
|
|
* the first and third layers.
|
|
*/
|
|
ssh_cipher *c = ssh_cipher_new(&ssh_3des_ssh1);
|
|
uint8_t keys3[24], iv[8];
|
|
|
|
memcpy(keys3, vkey, 16);
|
|
memcpy(keys3 + 16, vkey, 8);
|
|
ssh_cipher_setkey(c, keys3);
|
|
smemclr(keys3, sizeof(keys3));
|
|
|
|
memset(iv, 0, 8);
|
|
ssh_cipher_setiv(c, iv);
|
|
|
|
return c;
|
|
}
|
|
|
|
void des3_decrypt_pubkey(const void *vkey, void *vblk, int len)
|
|
{
|
|
ssh_cipher *c = des3_pubkey_cipher(vkey);
|
|
ssh_cipher_decrypt(c, vblk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
void des3_encrypt_pubkey(const void *vkey, void *vblk, int len)
|
|
{
|
|
ssh_cipher *c = des3_pubkey_cipher(vkey);
|
|
ssh_cipher_encrypt(c, vblk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
static ssh_cipher *des3_pubkey_ossh_cipher(const void *vkey, const void *viv)
|
|
{
|
|
/*
|
|
* OpenSSH PEM private key files are encrypted with triple-DES in
|
|
* SSH-2 style (one CBC layer), with three distinct keys, and an
|
|
* IV also generated from the passphrase.
|
|
*/
|
|
ssh_cipher *c = ssh_cipher_new(&ssh_3des_ssh2);
|
|
ssh_cipher_setkey(c, vkey);
|
|
ssh_cipher_setiv(c, viv);
|
|
return c;
|
|
}
|
|
|
|
void des3_decrypt_pubkey_ossh(const void *vkey, const void *viv,
|
|
void *vblk, int len)
|
|
{
|
|
ssh_cipher *c = des3_pubkey_ossh_cipher(vkey, viv);
|
|
ssh_cipher_decrypt(c, vblk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
void des3_encrypt_pubkey_ossh(const void *vkey, const void *viv,
|
|
void *vblk, int len)
|
|
{
|
|
ssh_cipher *c = des3_pubkey_ossh_cipher(vkey, viv);
|
|
ssh_cipher_encrypt(c, vblk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
static ssh_cipher *des_xdmauth_cipher(const void *vkeydata)
|
|
{
|
|
/*
|
|
* XDM-AUTHORIZATION-1 uses single-DES, but packs the key into 7
|
|
* bytes, so here we have to repack it manually into the canonical
|
|
* form where it occupies 8 bytes each with the low bit unused.
|
|
*/
|
|
const unsigned char *keydata = (const unsigned char *)vkeydata;
|
|
unsigned char key[8];
|
|
int i, nbits, j;
|
|
unsigned int bits;
|
|
|
|
bits = 0;
|
|
nbits = 0;
|
|
j = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if (nbits < 7) {
|
|
bits = (bits << 8) | keydata[j];
|
|
nbits += 8;
|
|
j++;
|
|
}
|
|
key[i] = (bits >> (nbits - 7)) << 1;
|
|
bits &= ~(0x7F << (nbits - 7));
|
|
nbits -= 7;
|
|
}
|
|
|
|
ssh_cipher *c = ssh_cipher_new(&ssh_des);
|
|
ssh_cipher_setkey(c, key);
|
|
smemclr(key, sizeof(key));
|
|
ssh_cipher_setiv(c, key);
|
|
return c;
|
|
}
|
|
|
|
void des_encrypt_xdmauth(const void *keydata, void *blk, int len)
|
|
{
|
|
ssh_cipher *c = des_xdmauth_cipher(keydata);
|
|
ssh_cipher_encrypt(c, blk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
void des_decrypt_xdmauth(const void *keydata, void *blk, int len)
|
|
{
|
|
ssh_cipher *c = des_xdmauth_cipher(keydata);
|
|
ssh_cipher_decrypt(c, blk, len);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
void hash_simple(const ssh_hashalg *alg, ptrlen data, void *output)
|
|
{
|
|
ssh_hash *hash = ssh_hash_new(alg);
|
|
put_datapl(hash, data);
|
|
ssh_hash_final(hash, output);
|
|
}
|
|
|
|
void mac_simple(const ssh2_macalg *alg, ptrlen key, ptrlen data, void *output)
|
|
{
|
|
ssh2_mac *mac = ssh2_mac_new(alg, NULL);
|
|
ssh2_mac_setkey(mac, key);
|
|
ssh2_mac_start(mac);
|
|
put_datapl(mac, data);
|
|
ssh2_mac_genresult(mac, output);
|
|
ssh2_mac_free(mac);
|
|
}
|