mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
7762d71226
PuTTY's main mb_to_wc() function is all very well for embedding in fiddly data pipelines, but for the simple job of turning a C string into a C wide string, really I want something much more like dupprintf. So here is one. I've had to put it in a new separate source file miscucs.c rather than throwing it into misc.c, because misc.c is linked into tools that don't also include a module providing the internal Unicode API (winucs or uxucs). The new miscucs.c appears only in Unicode-using tools.
189 lines
6.1 KiB
C
189 lines
6.1 KiB
C
/*
|
|
* Header for misc.c.
|
|
*/
|
|
|
|
#ifndef PUTTY_MISC_H
|
|
#define PUTTY_MISC_H
|
|
|
|
#include "puttymem.h"
|
|
|
|
#include <stdio.h> /* for FILE * */
|
|
#include <stdarg.h> /* for va_list */
|
|
#include <time.h> /* for struct tm */
|
|
|
|
#ifndef FALSE
|
|
#define FALSE 0
|
|
#endif
|
|
#ifndef TRUE
|
|
#define TRUE 1
|
|
#endif
|
|
|
|
typedef struct Filename Filename;
|
|
typedef struct FontSpec FontSpec;
|
|
|
|
unsigned long parse_blocksize(const char *bs);
|
|
char ctrlparse(char *s, char **next);
|
|
|
|
size_t host_strcspn(const char *s, const char *set);
|
|
char *host_strchr(const char *s, int c);
|
|
char *host_strrchr(const char *s, int c);
|
|
char *host_strduptrim(const char *s);
|
|
|
|
char *dupstr(const char *s);
|
|
char *dupcat(const char *s1, ...);
|
|
char *dupprintf(const char *fmt, ...)
|
|
#ifdef __GNUC__
|
|
__attribute__ ((format (printf, 1, 2)))
|
|
#endif
|
|
;
|
|
char *dupvprintf(const char *fmt, va_list ap);
|
|
void burnstr(char *string);
|
|
|
|
/* String-to-Unicode converters that auto-allocate the destination and
|
|
* work around the rather deficient interface of mb_to_wc.
|
|
*
|
|
* These actually live in miscucs.c, not misc.c (the distinction being
|
|
* that the former is only linked into tools that also have the main
|
|
* Unicode support). */
|
|
wchar_t *dup_mb_to_wc_c(int codepage, int flags, const char *string, int len);
|
|
wchar_t *dup_mb_to_wc(int codepage, int flags, const char *string);
|
|
|
|
int toint(unsigned);
|
|
|
|
char *fgetline(FILE *fp);
|
|
char *chomp(char *str);
|
|
|
|
void base64_encode_atom(const unsigned char *data, int n, char *out);
|
|
int base64_decode_atom(const char *atom, unsigned char *out);
|
|
|
|
struct bufchain_granule;
|
|
typedef struct bufchain_tag {
|
|
struct bufchain_granule *head, *tail;
|
|
int buffersize; /* current amount of buffered data */
|
|
} bufchain;
|
|
|
|
void bufchain_init(bufchain *ch);
|
|
void bufchain_clear(bufchain *ch);
|
|
int bufchain_size(bufchain *ch);
|
|
void bufchain_add(bufchain *ch, const void *data, int len);
|
|
void bufchain_prefix(bufchain *ch, void **data, int *len);
|
|
void bufchain_consume(bufchain *ch, int len);
|
|
void bufchain_fetch(bufchain *ch, void *data, int len);
|
|
|
|
int validate_manual_hostkey(char *key);
|
|
|
|
struct tm ltime(void);
|
|
|
|
/* Wipe sensitive data out of memory that's about to be freed. Simpler
|
|
* than memset because we don't need the fill char parameter; also
|
|
* attempts (by fiddly use of volatile) to inhibit the compiler from
|
|
* over-cleverly trying to optimise the memset away because it knows
|
|
* the variable is going out of scope. */
|
|
void smemclr(void *b, size_t len);
|
|
|
|
/* Compare two fixed-length chunks of memory for equality, without
|
|
* data-dependent control flow (so an attacker with a very accurate
|
|
* stopwatch can't try to guess where the first mismatching byte was).
|
|
* Returns 0 for mismatch or 1 for equality (unlike memcmp), hinted at
|
|
* by the 'eq' in the name. */
|
|
int smemeq(const void *av, const void *bv, size_t len);
|
|
|
|
/* Extracts an SSH-marshalled string from the start of *data. If
|
|
* successful (*datalen is not too small), advances data/datalen past
|
|
* the string and returns a pointer to the string itself and its
|
|
* length in *stringlen. Otherwise does nothing and returns NULL.
|
|
*
|
|
* Like strchr, this function can discard const from its parameter.
|
|
* Treat it as if it was a family of two functions, one returning a
|
|
* non-const string given a non-const pointer, and one taking and
|
|
* returning const. */
|
|
void *get_ssh_string(int *datalen, const void **data, int *stringlen);
|
|
/* Extracts an SSH uint32, similarly. Returns TRUE on success, and
|
|
* leaves the extracted value in *ret. */
|
|
int get_ssh_uint32(int *datalen, const void **data, unsigned *ret);
|
|
/* Given a not-necessarily-zero-terminated string in (length,data)
|
|
* form, check if it equals an ordinary C zero-terminated string. */
|
|
int match_ssh_id(int stringlen, const void *string, const char *id);
|
|
|
|
/*
|
|
* Debugging functions.
|
|
*
|
|
* Output goes to debug.log
|
|
*
|
|
* debug(()) (note the double brackets) is like printf().
|
|
*
|
|
* dmemdump() and dmemdumpl() both do memory dumps. The difference
|
|
* is that dmemdumpl() is more suited for when the memory address is
|
|
* important (say because you'll be recording pointer values later
|
|
* on). dmemdump() is more concise.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
void debug_printf(const char *fmt, ...);
|
|
void debug_memdump(const void *buf, int len, int L);
|
|
#define debug(x) (debug_printf x)
|
|
#define dmemdump(buf,len) debug_memdump (buf, len, 0);
|
|
#define dmemdumpl(buf,len) debug_memdump (buf, len, 1);
|
|
#else
|
|
#define debug(x)
|
|
#define dmemdump(buf,len)
|
|
#define dmemdumpl(buf,len)
|
|
#endif
|
|
|
|
#ifndef lenof
|
|
#define lenof(x) ( (sizeof((x))) / (sizeof(*(x))))
|
|
#endif
|
|
|
|
#ifndef min
|
|
#define min(x,y) ( (x) < (y) ? (x) : (y) )
|
|
#endif
|
|
#ifndef max
|
|
#define max(x,y) ( (x) > (y) ? (x) : (y) )
|
|
#endif
|
|
|
|
#define GET_32BIT_LSB_FIRST(cp) \
|
|
(((unsigned long)(unsigned char)(cp)[0]) | \
|
|
((unsigned long)(unsigned char)(cp)[1] << 8) | \
|
|
((unsigned long)(unsigned char)(cp)[2] << 16) | \
|
|
((unsigned long)(unsigned char)(cp)[3] << 24))
|
|
|
|
#define PUT_32BIT_LSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)(value), \
|
|
(cp)[1] = (unsigned char)((value) >> 8), \
|
|
(cp)[2] = (unsigned char)((value) >> 16), \
|
|
(cp)[3] = (unsigned char)((value) >> 24) )
|
|
|
|
#define GET_16BIT_LSB_FIRST(cp) \
|
|
(((unsigned long)(unsigned char)(cp)[0]) | \
|
|
((unsigned long)(unsigned char)(cp)[1] << 8))
|
|
|
|
#define PUT_16BIT_LSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)(value), \
|
|
(cp)[1] = (unsigned char)((value) >> 8) )
|
|
|
|
#define GET_32BIT_MSB_FIRST(cp) \
|
|
(((unsigned long)(unsigned char)(cp)[0] << 24) | \
|
|
((unsigned long)(unsigned char)(cp)[1] << 16) | \
|
|
((unsigned long)(unsigned char)(cp)[2] << 8) | \
|
|
((unsigned long)(unsigned char)(cp)[3]))
|
|
|
|
#define GET_32BIT(cp) GET_32BIT_MSB_FIRST(cp)
|
|
|
|
#define PUT_32BIT_MSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)((value) >> 24), \
|
|
(cp)[1] = (unsigned char)((value) >> 16), \
|
|
(cp)[2] = (unsigned char)((value) >> 8), \
|
|
(cp)[3] = (unsigned char)(value) )
|
|
|
|
#define PUT_32BIT(cp, value) PUT_32BIT_MSB_FIRST(cp, value)
|
|
|
|
#define GET_16BIT_MSB_FIRST(cp) \
|
|
(((unsigned long)(unsigned char)(cp)[0] << 8) | \
|
|
((unsigned long)(unsigned char)(cp)[1]))
|
|
|
|
#define PUT_16BIT_MSB_FIRST(cp, value) ( \
|
|
(cp)[0] = (unsigned char)((value) >> 8), \
|
|
(cp)[1] = (unsigned char)(value) )
|
|
|
|
#endif
|