mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 01:02:24 +00:00
9396fcc9f7
Ian Jackson points out that the Linux kernel has a macro of this name with the same purpose, and suggests that it's a good idea to use the same name as they do, so that at least some people reading one code base might recognise it from the other. I never really thought very hard about what order FROMFIELD's parameters should go in, and therefore I'm pleasantly surprised to find that my order agrees with the kernel's, so I don't have to permute every call site as part of making this change :-)
699 lines
19 KiB
C
699 lines
19 KiB
C
/*
|
|
* SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
|
|
* also used as a `stirring' function for the PuTTY random number
|
|
* pool. Implemented directly from the specification by Simon
|
|
* Tatham.
|
|
*/
|
|
|
|
#include "ssh.h"
|
|
|
|
#include <assert.h>
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Core SHA algorithm: processes 16-word blocks into a message digest.
|
|
*/
|
|
|
|
#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
|
|
|
|
static void sha1_sw(SHA_State * s, const unsigned char *q, int len);
|
|
static void sha1_ni(SHA_State * s, const unsigned char *q, int len);
|
|
|
|
static void SHA_Core_Init(uint32 h[5])
|
|
{
|
|
h[0] = 0x67452301;
|
|
h[1] = 0xefcdab89;
|
|
h[2] = 0x98badcfe;
|
|
h[3] = 0x10325476;
|
|
h[4] = 0xc3d2e1f0;
|
|
}
|
|
|
|
void SHATransform(word32 * digest, word32 * block)
|
|
{
|
|
word32 w[80];
|
|
word32 a, b, c, d, e;
|
|
int t;
|
|
|
|
#ifdef RANDOM_DIAGNOSTICS
|
|
{
|
|
extern int random_diagnostics;
|
|
if (random_diagnostics) {
|
|
int i;
|
|
printf("SHATransform:");
|
|
for (i = 0; i < 5; i++)
|
|
printf(" %08x", digest[i]);
|
|
printf(" +");
|
|
for (i = 0; i < 16; i++)
|
|
printf(" %08x", block[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (t = 0; t < 16; t++)
|
|
w[t] = block[t];
|
|
|
|
for (t = 16; t < 80; t++) {
|
|
word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
|
|
w[t] = rol(tmp, 1);
|
|
}
|
|
|
|
a = digest[0];
|
|
b = digest[1];
|
|
c = digest[2];
|
|
d = digest[3];
|
|
e = digest[4];
|
|
|
|
for (t = 0; t < 20; t++) {
|
|
word32 tmp =
|
|
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 20; t < 40; t++) {
|
|
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 40; t < 60; t++) {
|
|
word32 tmp = rol(a,
|
|
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
|
|
0x8f1bbcdc;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 60; t < 80; t++) {
|
|
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
|
|
digest[0] += a;
|
|
digest[1] += b;
|
|
digest[2] += c;
|
|
digest[3] += d;
|
|
digest[4] += e;
|
|
|
|
#ifdef RANDOM_DIAGNOSTICS
|
|
{
|
|
extern int random_diagnostics;
|
|
if (random_diagnostics) {
|
|
int i;
|
|
printf(" =");
|
|
for (i = 0; i < 5; i++)
|
|
printf(" %08x", digest[i]);
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Outer SHA algorithm: take an arbitrary length byte string,
|
|
* convert it into 16-word blocks with the prescribed padding at
|
|
* the end, and pass those blocks to the core SHA algorithm.
|
|
*/
|
|
|
|
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len);
|
|
|
|
void SHA_Init(SHA_State * s)
|
|
{
|
|
SHA_Core_Init(s->h);
|
|
s->blkused = 0;
|
|
s->lenhi = s->lenlo = 0;
|
|
if (supports_sha_ni())
|
|
s->sha1 = &sha1_ni;
|
|
else
|
|
s->sha1 = &sha1_sw;
|
|
BinarySink_INIT(s, SHA_BinarySink_write);
|
|
}
|
|
|
|
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len)
|
|
{
|
|
struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
|
|
const unsigned char *q = (const unsigned char *) p;
|
|
uint32 lenw = len;
|
|
assert(lenw == len);
|
|
|
|
/*
|
|
* Update the length field.
|
|
*/
|
|
s->lenlo += lenw;
|
|
s->lenhi += (s->lenlo < lenw);
|
|
(*(s->sha1))(s, q, len);
|
|
}
|
|
|
|
static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
uint32 wordblock[16];
|
|
int i;
|
|
|
|
if (s->blkused && s->blkused + len < 64) {
|
|
/*
|
|
* Trivial case: just add to the block.
|
|
*/
|
|
memcpy(s->block + s->blkused, q, len);
|
|
s->blkused += len;
|
|
} else {
|
|
/*
|
|
* We must complete and process at least one block.
|
|
*/
|
|
while (s->blkused + len >= 64) {
|
|
memcpy(s->block + s->blkused, q, 64 - s->blkused);
|
|
q += 64 - s->blkused;
|
|
len -= 64 - s->blkused;
|
|
/* Now process the block. Gather bytes big-endian into words */
|
|
for (i = 0; i < 16; i++) {
|
|
wordblock[i] =
|
|
(((uint32) s->block[i * 4 + 0]) << 24) |
|
|
(((uint32) s->block[i * 4 + 1]) << 16) |
|
|
(((uint32) s->block[i * 4 + 2]) << 8) |
|
|
(((uint32) s->block[i * 4 + 3]) << 0);
|
|
}
|
|
SHATransform(s->h, wordblock);
|
|
s->blkused = 0;
|
|
}
|
|
memcpy(s->block, q, len);
|
|
s->blkused = len;
|
|
}
|
|
}
|
|
|
|
void SHA_Final(SHA_State * s, unsigned char *output)
|
|
{
|
|
int i;
|
|
int pad;
|
|
unsigned char c[64];
|
|
uint32 lenhi, lenlo;
|
|
|
|
if (s->blkused >= 56)
|
|
pad = 56 + 64 - s->blkused;
|
|
else
|
|
pad = 56 - s->blkused;
|
|
|
|
lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
|
|
lenlo = (s->lenlo << 3);
|
|
|
|
memset(c, 0, pad);
|
|
c[0] = 0x80;
|
|
put_data(s, &c, pad);
|
|
|
|
put_uint32(s, lenhi);
|
|
put_uint32(s, lenlo);
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
output[i * 4] = (s->h[i] >> 24) & 0xFF;
|
|
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
|
|
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
|
|
output[i * 4 + 3] = (s->h[i]) & 0xFF;
|
|
}
|
|
}
|
|
|
|
void SHA_Simple(const void *p, int len, unsigned char *output)
|
|
{
|
|
SHA_State s;
|
|
|
|
SHA_Init(&s);
|
|
put_data(&s, p, len);
|
|
SHA_Final(&s, output);
|
|
smemclr(&s, sizeof(s));
|
|
}
|
|
|
|
/*
|
|
* Thin abstraction for things where hashes are pluggable.
|
|
*/
|
|
|
|
struct sha1_hash {
|
|
SHA_State state;
|
|
ssh_hash hash;
|
|
};
|
|
|
|
static ssh_hash *sha1_new(const struct ssh_hashalg *alg)
|
|
{
|
|
struct sha1_hash *h = snew(struct sha1_hash);
|
|
SHA_Init(&h->state);
|
|
h->hash.vt = alg;
|
|
BinarySink_DELEGATE_INIT(&h->hash, &h->state);
|
|
return &h->hash;
|
|
}
|
|
|
|
static ssh_hash *sha1_copy(ssh_hash *hashold)
|
|
{
|
|
struct sha1_hash *hold, *hnew;
|
|
ssh_hash *hashnew = sha1_new(hashold->vt);
|
|
|
|
hold = container_of(hashold, struct sha1_hash, hash);
|
|
hnew = container_of(hashnew, struct sha1_hash, hash);
|
|
|
|
hnew->state = hold->state;
|
|
BinarySink_COPIED(&hnew->state);
|
|
|
|
return hashnew;
|
|
}
|
|
|
|
static void sha1_free(ssh_hash *hash)
|
|
{
|
|
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
|
|
|
|
smemclr(h, sizeof(*h));
|
|
sfree(h);
|
|
}
|
|
|
|
static void sha1_final(ssh_hash *hash, unsigned char *output)
|
|
{
|
|
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
|
|
SHA_Final(&h->state, output);
|
|
sha1_free(hash);
|
|
}
|
|
|
|
const struct ssh_hashalg ssh_sha1 = {
|
|
sha1_new, sha1_copy, sha1_final, sha1_free, 20, "SHA-1"
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* The above is the SHA-1 algorithm itself. Now we implement the
|
|
* HMAC wrapper on it.
|
|
*/
|
|
|
|
struct hmacsha1 {
|
|
SHA_State sha[3];
|
|
ssh2_mac mac;
|
|
};
|
|
|
|
static ssh2_mac *hmacsha1_new(
|
|
const struct ssh2_macalg *alg, ssh2_cipher *cipher)
|
|
{
|
|
struct hmacsha1 *ctx = snew(struct hmacsha1);
|
|
ctx->mac.vt = alg;
|
|
BinarySink_DELEGATE_INIT(&ctx->mac, &ctx->sha[2]);
|
|
return &ctx->mac;
|
|
}
|
|
|
|
static void hmacsha1_free(ssh2_mac *mac)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
smemclr(ctx, sizeof(*ctx));
|
|
sfree(ctx);
|
|
}
|
|
|
|
static void sha1_key_internal(SHA_State *keys,
|
|
const unsigned char *key, int len)
|
|
{
|
|
unsigned char foo[64];
|
|
int i;
|
|
|
|
memset(foo, 0x36, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA_Init(&keys[0]);
|
|
put_data(&keys[0], foo, 64);
|
|
|
|
memset(foo, 0x5C, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA_Init(&keys[1]);
|
|
put_data(&keys[1], foo, 64);
|
|
|
|
smemclr(foo, 64); /* burn the evidence */
|
|
}
|
|
|
|
static void hmacsha1_key(ssh2_mac *mac, const void *key)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
/* Reading the key length out of the ssh2_macalg structure means
|
|
* this same method can be used for the _buggy variants which use
|
|
* a shorter key */
|
|
sha1_key_internal(ctx->sha, key, ctx->mac.vt->keylen);
|
|
}
|
|
|
|
static void hmacsha1_start(ssh2_mac *mac)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
|
|
ctx->sha[2] = ctx->sha[0]; /* structure copy */
|
|
BinarySink_COPIED(&ctx->sha[2]);
|
|
}
|
|
|
|
static void hmacsha1_genresult(ssh2_mac *mac, unsigned char *hmac)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
SHA_State s;
|
|
unsigned char intermediate[20];
|
|
|
|
s = ctx->sha[2]; /* structure copy */
|
|
BinarySink_COPIED(&s);
|
|
SHA_Final(&s, intermediate);
|
|
s = ctx->sha[1]; /* structure copy */
|
|
BinarySink_COPIED(&s);
|
|
put_data(&s, intermediate, 20);
|
|
SHA_Final(&s, intermediate);
|
|
memcpy(hmac, intermediate, ctx->mac.vt->len);
|
|
smemclr(intermediate, sizeof(intermediate));
|
|
}
|
|
|
|
void hmac_sha1_simple(const void *key, int keylen,
|
|
const void *data, int datalen,
|
|
unsigned char *output) {
|
|
SHA_State states[2];
|
|
unsigned char intermediate[20];
|
|
|
|
sha1_key_internal(states, key, keylen);
|
|
put_data(&states[0], data, datalen);
|
|
SHA_Final(&states[0], intermediate);
|
|
|
|
put_data(&states[1], intermediate, 20);
|
|
SHA_Final(&states[1], output);
|
|
}
|
|
|
|
const struct ssh2_macalg ssh_hmac_sha1 = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult,
|
|
"hmac-sha1", "hmac-sha1-etm@openssh.com",
|
|
20, 20,
|
|
"HMAC-SHA1"
|
|
};
|
|
|
|
const struct ssh2_macalg ssh_hmac_sha1_96 = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult,
|
|
"hmac-sha1-96", "hmac-sha1-96-etm@openssh.com",
|
|
12, 20,
|
|
"HMAC-SHA1-96"
|
|
};
|
|
|
|
const struct ssh2_macalg ssh_hmac_sha1_buggy = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult,
|
|
"hmac-sha1", NULL,
|
|
20, 16,
|
|
"bug-compatible HMAC-SHA1"
|
|
};
|
|
|
|
const struct ssh2_macalg ssh_hmac_sha1_96_buggy = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult,
|
|
"hmac-sha1-96", NULL,
|
|
12, 16,
|
|
"bug-compatible HMAC-SHA1-96"
|
|
};
|
|
|
|
#ifdef COMPILER_SUPPORTS_SHA_NI
|
|
|
|
#if defined _MSC_VER && defined _M_AMD64
|
|
# include <intrin.h>
|
|
#endif
|
|
|
|
/*
|
|
* Set target architecture for Clang and GCC
|
|
*/
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
# pragma GCC target("sha")
|
|
# pragma GCC target("sse4.1")
|
|
#endif
|
|
|
|
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
|
|
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
|
|
#else
|
|
# define FUNC_ISA
|
|
#endif
|
|
|
|
#include <wmmintrin.h>
|
|
#include <smmintrin.h>
|
|
#include <immintrin.h>
|
|
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
#include <shaintrin.h>
|
|
#endif
|
|
|
|
/*
|
|
* Determinators of CPU type
|
|
*/
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
|
|
#include <cpuid.h>
|
|
int supports_sha_ni(void)
|
|
{
|
|
unsigned int CPUInfo[4];
|
|
__cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
|
|
if (CPUInfo[0] < 7)
|
|
return 0;
|
|
|
|
__cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
|
|
return CPUInfo[1] & (1 << 29); /* SHA */
|
|
}
|
|
|
|
#else /* defined(__clang__) || defined(__GNUC__) */
|
|
|
|
int supports_sha_ni(void)
|
|
{
|
|
unsigned int CPUInfo[4];
|
|
__cpuid(CPUInfo, 0);
|
|
if (CPUInfo[0] < 7)
|
|
return 0;
|
|
|
|
__cpuidex(CPUInfo, 7, 0);
|
|
return CPUInfo[1] & (1 << 29); /* Check SHA */
|
|
}
|
|
|
|
#endif /* defined(__clang__) || defined(__GNUC__) */
|
|
|
|
/* SHA1 implementation using new instructions
|
|
The code is based on Jeffrey Walton's SHA1 implementation:
|
|
https://github.com/noloader/SHA-Intrinsics
|
|
*/
|
|
FUNC_ISA
|
|
static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
if (s->blkused && s->blkused + len < 64) {
|
|
/*
|
|
* Trivial case: just add to the block.
|
|
*/
|
|
memcpy(s->block + s->blkused, q, len);
|
|
s->blkused += len;
|
|
} else {
|
|
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
|
|
const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
|
|
|
|
ABCD = _mm_loadu_si128((const __m128i*) s->h);
|
|
E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
|
|
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
|
|
|
|
/*
|
|
* We must complete and process at least one block.
|
|
*/
|
|
while (s->blkused + len >= 64)
|
|
{
|
|
__m128i MSG0, MSG1, MSG2, MSG3;
|
|
memcpy(s->block + s->blkused, q, 64 - s->blkused);
|
|
q += 64 - s->blkused;
|
|
len -= 64 - s->blkused;
|
|
|
|
/* Save current state */
|
|
ABCD_SAVE = ABCD;
|
|
E0_SAVE = E0;
|
|
|
|
/* Rounds 0-3 */
|
|
MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0));
|
|
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
|
|
E0 = _mm_add_epi32(E0, MSG0);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
|
|
/* Rounds 4-7 */
|
|
MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16));
|
|
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
|
|
/* Rounds 8-11 */
|
|
MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32));
|
|
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 12-15 */
|
|
MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48));
|
|
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 16-19 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 20-23 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 24-27 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 28-31 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 32-35 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 36-39 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 40-43 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 44-47 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 48-51 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 52-55 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 56-59 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 60-63 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 64-67 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 68-71 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 72-75 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
|
|
/* Rounds 76-79 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
|
|
/* Combine state */
|
|
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
|
|
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
|
|
|
|
s->blkused = 0;
|
|
}
|
|
|
|
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
|
|
|
|
/* Save state */
|
|
_mm_storeu_si128((__m128i*) s->h, ABCD);
|
|
s->h[4] = _mm_extract_epi32(E0, 3);
|
|
|
|
memcpy(s->block, q, len);
|
|
s->blkused = len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
|
|
*/
|
|
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
sha1_ni_(s, q, len);
|
|
}
|
|
|
|
#else /* COMPILER_SUPPORTS_AES_NI */
|
|
|
|
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
int supports_sha_ni(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* COMPILER_SUPPORTS_AES_NI */
|